Profiling of Metabolomic Changes in Plasma and Urine of Pigs Caused by Illegal Administration of Testosterone Esters
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QJ1910311
Ministerstvo Zemědělství
RO1518
Ministerstvo Zemědělství
LO1218
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32727023
PubMed Central
PMC7463996
DOI
10.3390/metabo10080307
PII: metabo10080307
Knihovny.cz E-zdroje
- Klíčová slova
- anabolic practices, metabolomic, pigs, plasma, testosterone, urine,
- Publikační typ
- časopisecké články MeSH
The use of anabolic steroid hormones as growth promoters in feed for farm animals has been banned in the European Union since 1988 on the basis of Council Directive 96/22/EC. However, there is still ongoing monitoring and reporting of positive findings of these banned substances in EU countries. The aim of this work was to investigate the efficacy and discriminatory ability of metabolic fingerprinting after the administration of 17β-testosterone esters to pigs. Plasma and urine samples were chromatographically separated on a Hypersil Gold C18 column. High resolution mass spectrometry metabolomic fingerprints were analysed on a hybrid mass spectrometer Q-Exactive. Three independent multivariate statistical methods, namely principal component analysis, clustre analysis, and orthogonal partial least squares discriminant analysis showed significant differences between the treated and control groups of pigs even 14 days after the administration of the hormonal drug. Plasma samples were also analysed by a conventional quantitative analysis using liquid chromatography with tandem mass spectrometry and a pharmacokinetic curve was constructed based on the results. In this case, no testosterone residue was detected 14 days after the administration. The results clearly showed that a metabolomics approach can be a useful and effective tool for the detection and monitoring of banned anabolic steroids used illegally in pig fattening.
Zobrazit více v PubMed
European Food Safety Authority Report for 2018 on the results from the monitoring of veterinary medicinal product residues and other substances in live animals and animal products. EFSA Support. Publ. 2020;17:1775E.
Rosner W. Plasma steroid-binding proteins. Endocrinol. Metab. Clin. N. Am. 1991;20:697–720. doi: 10.1016/S0889-8529(18)30240-8. PubMed DOI
Westphal U. Steroid-Protein Interactions II. Springer; Berlin/Heidelberg, Germany: 1986. Steroid-Protein Interactions Revisited; pp. 1–7.
Peng S.H., Segura J., Farré M., González J.C., De La Torre X. Plasma and urinary markers of oral testosterone undecanoate misuse. Steroids. 2002;67:39–50. doi: 10.1016/S0039-128X(01)00128-3. PubMed DOI
Nielen M.W.F., Nijrolder A.W.J.M., Hooijerink H., Stolker A.A.M. Feasibility of desorption electrospray ionization mass spectrometry for rapid screening of anabolic steroid esters in hair. Anal. Chim. Acta. 2011;700:63–69. doi: 10.1016/j.aca.2010.08.009. PubMed DOI
Van De Kerkhof D.H., De Boer D., Thijssen J.H.H., Maes R.A.A. Evaluation of testosterone/epitestosterone ratio influential factors as determined in doping analysis. J. Anal. Toxicol. 2000;24:102–115. doi: 10.1093/jat/24.2.102. PubMed DOI
Wada Laboratory Expert Group . WADA Technical Document TD2014EAAS—Endogenous Anabolic Androgenic Steroids Measurement and Reporting. World Anti-Doping Agency; Montreal, QC, Canada: 2014. pp. 1–8.
Le Bizec B., Monteau F., Gaudin I., André F. Evidence for the presence of endogenous 19-norandrosterone in human urine. J. Chromatogr. B Biomed. Sci. Appl. 1999;723:157–172. doi: 10.1016/S0378-4347(98)00541-6. PubMed DOI
Pinel G., Weigel S., Antignac J.P., Mooney M.H., Elliott C., Nielen M.W.F., Le Bizec B. Targeted and untargeted profiling of biological fluids to screen for anabolic practices in cattle. Trends Anal. Chem. 2010;29:1269–1280. doi: 10.1016/j.trac.2010.06.010. DOI
Community Reference Laboratories . CRL Guidance Paper (7 December 2007)—CRL’s View on State of the Art Analytical Methods for National Residue Control Plans. RIVM—National Institute for Public Health and the Environment; Bilthoven, The Netherlands: 2007. pp. 1–8.
Boschi S., De Iasio R., Mesini P., Bolelli G.F., Sciajno R., Pasquali R., Capelli M. Measurement of steroid hormones in plasma by isocratic high performance liquid chromatography coupled to radioimmunoassay. Clin. Chim. Acta. 1994;231:107–113. doi: 10.1016/0009-8981(94)90260-7. PubMed DOI
Di Benedetto L.T., Dimitrakopoulos T., Davy R.M., Iles P.J. Testosterone determination using rapid heterogeneous competitive-binding for enzyme-linked immunosorbent assay in flow injection. Anal. Lett. 1996;29:2125–2139. doi: 10.1080/00032719608002236. DOI
Zhang Z., Duan H., Zhang L., Chen X., Liu W., Chen G. Direct determination of anabolic steroids in pig urine by a new SPME-GC-MS method. Talanta. 2009;78:1083–1089. doi: 10.1016/j.talanta.2009.01.022. PubMed DOI
De la Torre X., Segura J., Polettini A., Montagna M. Detection of testosterone esters in human plasma. J. Mass Spectrom. 1995;30:1393–1404. doi: 10.1002/jms.1190301004. DOI
He C., Li S., Liu H., Li K., Liu F. Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. J. Chromatogr. A. 2005;1082:143–149. doi: 10.1016/j.chroma.2005.05.065. PubMed DOI
Shackleton C.H.L., Chuang H., Kim J., De La Torre X., Segura J. Electrospray mass spectrometry of testosterone esters: Potential for use in doping control. Steroids. 1997;62:523–529. doi: 10.1016/S0039-128X(97)00004-4. PubMed DOI
Konieczna L., Plenis A., Oldzka I., Kowalski P., Bczek T. Optimization of LC method for the determination of testosterone and epitestosterone in urine samples in view of biomedical studies and anti-doping research studies. Talanta. 2011;83:804–814. doi: 10.1016/j.talanta.2010.10.044. PubMed DOI
Wang G., Hsieh Y., Cui X., Cheng K.-C., Korfmacher W.A. Ultra-performance liquid chromatography/tandem mass spectrometric determination of testosterone and its metabolites in vitro samples. Rapid Commun. Mass Spectrom. 2006;20:2215–2221. doi: 10.1002/rcm.2580. PubMed DOI
You Y., Uboh C.E., Soma L.R., Guan F., Li X., Liu Y., Rudy J.A., Chen J., Tsang D. Simultaneous separation and determination of 16 testosterone and nandrolone esters in equine plasma using ultra high performance liquid chromatography-tandem mass spectrometry for doping control. J. Chromatogr. A. 2011;1218:3982–3993. doi: 10.1016/j.chroma.2011.04.087. PubMed DOI
Ponzetto F., Boccard J., Baume N., Kuuranne T., Rudaz S., Saugy M., Nicoli R. High-resolution mass spectrometry as an alternative detection method to tandem mass spectrometry for the analysis of endogenous steroids in serum. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017;1052:34–42. doi: 10.1016/j.jchromb.2017.03.016. PubMed DOI
Aqai P., Stolker A.A.M., Lasaroms J.J.P. Effect of sample pre-treatment on the determination of steroid esters in hair of bovine calves. J. Chromatogr. A. 2009;1216:8233–8239. doi: 10.1016/j.chroma.2009.04.029. PubMed DOI
Matraszek-Żuchowska I., Woźniak B., Sielska K., Posyniak A. Determination of steroid esters in hair of slaughter animals by liquid chromatography with tandem mass spectrometry. J. Vet. Res. 2019;63:561–572. doi: 10.2478/jvetres-2019-0061. PubMed DOI PMC
Dervilly-Pinel G., Courant F., Chéreau S., Royer A.L., Boyard-Kieken F., Antignac J.P., Monteau F., Le Bizec B. Metabolomics in food analysis: Application to the control of forbidden substances. Drug Test. Anal. 2012;4:59–69. doi: 10.1002/dta.1349. PubMed DOI
Rijk J.C.W., Lommen A., Essers M.L., Groot M.J., Van Hende J.M., Doeswijk T.G., Nielen M.W.F. Metabolomics approach to anabolic steroid urine profiling of bovines treated with prohormones. Anal. Chem. 2009;81:6879–6888. doi: 10.1021/ac900874m. PubMed DOI
Kieken F., Pinel G., Antignac J.P., Monteau F., Paris A.C., Popot M.A., Bonnaire Y., Le Bizec B. Development of a metabonomic approach based on LC-ESI-HRMS measurements for profiling of metabolic changes induced by recombinant equine growth hormone in horse urine. Anal. Bioanal. Chem. 2009;394:2119–2128. doi: 10.1007/s00216-009-2912-8. PubMed DOI
Anizan S., Bichon E., Duval T., Monteau F., Cesbron N., Antignac J.-P., Le Bizec B. Gas chromatography coupled to mass spectrometry-based metabolomic to screen for anabolic practices in cattle: Identification of 5α-androst-2-en-17-one as new biomarker of 4-androstenedione misuse. J. Mass Spectrom. 2012;47:131–140. doi: 10.1002/jms.2035. PubMed DOI
Pinel G., Rambaud L., Monteau F., Elliot C., Le Bizec B. Estranediols profiling in calves’ urine after 17β-nandrolone laureate ester administration. J. Steroid Biochem. Mol. Biol. 2010;121:626–632. doi: 10.1016/j.jsbmb.2010.01.012. PubMed DOI
Dervilly-Pinel G., Weigel S., Lommen A., Chereau S., Rambaud L., Essers M., Antignac J.P., Nielen M.W.F., Le Bizec B. Assessment of two complementary liquid chromatography coupled to high resolution mass spectrometry metabolomics strategies for the screening of anabolic steroid treatment in calves. Anal. Chim. Acta. 2011;700:144–154. doi: 10.1016/j.aca.2011.02.008. PubMed DOI
Regal P., Anizan S., Antignac J.P., Le Bizec B., Cepeda A., Fente C. Metabolomic approach based on liquid chromatography coupled to high resolution mass spectrometry to screen for the illegal use of estradiol and progesterone in cattle. Anal. Chim. Acta. 2011;700:16–25. doi: 10.1016/j.aca.2011.01.005. PubMed DOI
Blokland M.H., Van Tricht E.F., Van Rossum H.J., Sterk S.S., Nielen M.W.F. Endogenous steroid profiling by gas chromatography-tandem mass spectrometry and multivariate statistics for the detection of natural hormone abuse in cattle. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012;29:1030–1045. doi: 10.1080/19440049.2012.675593. PubMed DOI
Dervilly-Pinel G., Chereau S., Cesbron N., Monteau F., Le Bizec B. LC-HRMS based metabolomics screening model to detect various β-agonists treatments in bovines. Metabolomics. 2015;11:403–411. doi: 10.1007/s11306-014-0705-3. DOI
Blokland M.H., van Tricht E.F., van Ginkel L.A., Sterk S.S. Applicability of an innovative steroid-profiling method to determine synthetic growth promoter abuse in cattle. J. Steroid Biochem. Mol. Biol. 2017;174:265–275. doi: 10.1016/j.jsbmb.2017.10.007. PubMed DOI
Peng T., Royer A.L., Guitton Y., Le Bizec B., Dervilly-Pinel G. Serum-based metabolomics characterization of pigs treated with ractopamine. Metabolomics. 2017;13:77. doi: 10.1007/s11306-017-1212-0. DOI
European Commission 2002/657/EC: Commission Decision of 12 August 2002 Implementing Council Directive 96/23EC Concerning the Performance of Analytical Methods and Interpretation of Results. Off. J. Eur. Communities. 2002;45:8–36.
European Medicines Agency . VICH GL49 Studies to Evaluate the Metabolism and Residue Kinetics of Veterinary Drugsin Food-Producing Animals: Validation of Analytical Methods Used in Residue Depletion Studies. European Medicines Agency; Amsterdam, The Netherlands: 2015.
International Organization for Standardization . ISO 11843-1:1997. Capability of Detection—Part 1: Terms and Definitions. ISO; Geneva, Switzerland: 1997.
Worley B., Powers R. Multivariate Analysis in Metabolomics. Curr. Metab. 2013;1:92–107. PubMed PMC
Filzmoser P., Walczak B. What can go wrong at the data normalization step for identification of biomarkers? J. Chromatogr. A. 2014;1362:194–205. doi: 10.1016/j.chroma.2014.08.050. PubMed DOI
Chow G.C. Tests of Equality Between Sets of Coefficients in Two Linear Regressions. Econometrica. 1960;28:591–605. doi: 10.2307/1910133. DOI
Groot M.J., Lasaroms J.J.P., van Bennekom E.O., Meijer T., Vinyeta E., van der Klis J.D., Nielen M.W.F. Illegal treatment of barrows with nandrolone ester: Effect on growth, histology and residue levels in urine and hair. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012;29:727–735. doi: 10.1080/19440049.2011.647097. PubMed DOI
Holčapek M., Jirásko R., Lísa M. Recent developments in liquid chromatography–mass spectrometry and related techniques. J. Chromatogr. A. 2012;1259:3–15. doi: 10.1016/j.chroma.2012.08.072. PubMed DOI
Rochat B., Kottelat E., McMullen J. The future key role of LC–high-resolution-MS analyses in clinical laboratories: A focus on quantification. Bioanalysis. 2012;4:2939–2958. doi: 10.4155/bio.12.243. PubMed DOI
Stastny K., Stepanova H., Hlavova K., Faldyna M. Identification and determination of deoxynivalenol (DON) and deepoxy-deoxynivalenol (DOM-1) in pig colostrum and serum using liquid chromatography in combination with high resolution mass spectrometry (LC-MS/MS (HR)) J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019;1126–1127 doi: 10.1016/j.jchromb.2019.121735. PubMed DOI
McCoard S., Wise T., Ford J. Endocrine and molecular influences on testicular development in Meishan and White Composite boars. J. Endocrinol. 2003;178:405–416. doi: 10.1677/joe.0.1780405. PubMed DOI
Park C.S., Yi Y.J. Comparison of semen characteristics, sperm freezability and testosterone concentration between Duroc and Yorkshire boars during seasons. Anim. Reprod. Sci. 2002;73:53–61. doi: 10.1016/S0378-4320(02)00129-X. PubMed DOI
Rejtharová M., Rejthar L., Čačková K. Determination of testosterone esters and nortestosterone esters in animal blood serum by LC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018;35:233–240. doi: 10.1080/19440049.2017.1388544. PubMed DOI
Jacob C.C., Dervilly-Pinel G., Biancotto G., Le Bizec B. Evaluation of specific gravity as normalization strategy for cattle urinary metabolome analysis. Metabolomics. 2014;10:627–637. doi: 10.1007/s11306-013-0604-z. DOI
Adusumilli R., Mallick P. Methods in Molecular Biology. Volume 1550. Humana Press Inc.; Totowa, NJ, USA: 2017. Data conversion with proteoWizard msConvert; pp. 339–368. PubMed
Smith C.A., Want E.J., O’Maille G., Abagyan R., Siuzdak G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006;78:779–787. doi: 10.1021/ac051437y. PubMed DOI
Gardlo A., Friedecký D., Najdekr L., Karlíková R., Adam T. Metabol: The Statistical Analysis of Metabolomic Data. Laboratory for Inherited Metabolic Disorders, Faculty of Medicine and Dentistry, Palacky University in Olomouc, University Hospital Olomouc; Olomouc, Czech Republic: 2019.
Gelman A. Exploratory data analysis for complex models. J. Comput. Graph. Stat. 2004;13:755–779. doi: 10.1198/106186004X11435. DOI
Cook T., Ma Y., Gamagedara S. Evaluation of statistical techniques to normalize mass spectrometry-based urinary metabolomics data. J. Pharm. Biomed. Anal. 2020;177:112854. doi: 10.1016/j.jpba.2019.112854. PubMed DOI PMC