On the contact tracing for COVID-19: A simulation study

. 2023 Jun ; 43 () : 100677. [epub] 20230316

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36989916
Odkazy

PubMed 36989916
PubMed Central PMC10019035
DOI 10.1016/j.epidem.2023.100677
PII: S1755-4365(23)00013-0
Knihovny.cz E-zdroje

BACKGROUND: Contact tracing is one of the most effective non-pharmaceutical interventions in the COVID-19 pandemic. This study uses a multi-agent model to investigate the impact of four types of contact tracing strategies to prevent the spread of COVID-19. METHODS: In order to analyse individual contact tracing in a reasonably realistic setup, we construct an agent-based model of a small municipality with about 60.000 inhabitants (nodes) and about 2.8 million social contacts (edges) in 30 different layers. Those layers reflect demographic, geographic, sociological and other patterns of the TTWA (Travel-to-work-area) Hodonín in Czechia. Various data sources such as census, land register, transport data or data reflecting the shopping behaviour, were employed to meet this purpose. On this multi-graph structure we run a modified SEIR model of the COVID-19 dynamics. The parameters of the model are calibrated on data from the outbreak in the Czech Republic in the period March to June 2020. The simplest type of contact tracing follows just the family, the second tracing version tracks the family and all the work contacts, the third type finds all contacts with the family, work contacts and friends (leisure activities). The last one is a complete (digital) tracing capable of recalling any and all contacts. We evaluate the performance of these contact tracing strategies in four different environments. First, we consider an environment without any contact restrictions (benchmark); second with strict contact restriction (replicating the stringent non-pharmaceutical interventions employed in Czechia in the spring 2020); third environment, where the measures were substantially relaxed, and, finally an environment with weak contact restrictions and superspreader events (replicating the situation in Czechia in the summer 2020). FINDINGS: There are four main findings in our paper. 1. In general, local closures are more effective than any type of tracing. 2. In an environment with strict contact restrictions there are only small differences among the four contact tracing strategies. 3. In an environment with relaxed contact restrictions the effectiveness of the tracing strategies differs substantially. 4. In the presence of superspreader events only complete contact tracing can stop the epidemic. INTERPRETATION: In situations, where many other non-pharmaceutical interventions are in place, the specific extent of contact tracing may not have a large influence on their effectiveness. In a more relaxed setting with few contact restrictions and larger events the effectiveness of contact tracing depends heavily on their extent.

Centre for Modelling of Biological and Social Processes Na Břehu 497 15 190 00 Praha 9 Czech Republic; Centre for Mathematical Biology Institute of Mathematics Faculty of Science University of South Bohemia Branišovská 1760 37005 České Budějovice Czech Republic; Czech Academy of Sciences Biology Centre Institute of Entomology Department of Ecology Branišovská 31 37005 České Budějovice Czech Republic

Centre for Modelling of Biological and Social Processes Na Břehu 497 15 190 00 Praha 9 Czech Republic; CERGE EI Politických vězňů 7 11121 Praha 1 Czech Republic; New Media Studies Faculty of Arts Charles University Na Pří kopě 29 110 00 Praha 1 Czech Republic

Centre for Modelling of Biological and Social Processes Na Břehu 497 15 190 00 Praha 9 Czech Republic; Department of Biochemistry Cell and Molecular Biology 3rd Faculty of Medicine Charles University Ruská 87 100 00 Praha 10 Czech Republic

Centre for Modelling of Biological and Social Processes Na Břehu 497 15 190 00 Praha 9 Czech Republic; Department of Criminology and Mitchell Centre for Social Network Analysis School of Social Sciences University of Manchester Oxford Rd Manchester UK

Centre for Modelling of Biological and Social Processes Na Břehu 497 15 190 00 Praha 9 Czech Republic; Department of Mathematics University of Zagreb Bijenička 30 10000 Zagreb Croatia

Centre for Modelling of Biological and Social Processes Na Břehu 497 15 190 00 Praha 9 Czech Republic; New Media Studies Faculty of Arts Charles University Na Pří kopě 29 110 00 Praha 1 Czech Republic

Centre for Modelling of Biological and Social Processes Na Břehu 497 15 190 00 Praha 9 Czech Republic; The Czech Academy of Sciences Institute of Computer Science Pod Vodárenskou věží 2 18200 Praha 8 Czech Republic

Centre for Modelling of Biological and Social Processes Na Břehu 497 15 190 00 Praha 9 Czech Republic; The Czech Academy of Sciences Institute of Information Theory and Automation Pod Vodárenskou věží 4 18200 Praha 8 Czech Republic

Zobrazit více v PubMed

Aleta A., Martín-Corral D., Pastore Y Piontti A., Ajelli M., Litvinova M., Chinazzi M., Dean N.E., Halloran M.E., Longini I.M.J., Merler S., Pentland A., Vespignani A., Moro E., Moreno Y. Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nat. Hum. Behav. 2020;4(9):964–971. PubMed PMC

Berec L., Diviák T., Kuběna A., Levínský R., Neruda R., Suchopárová G., Šlerka J., Šmíd M., Trnka J., Tuček V., Vidnerová P., Zajíček M., Zapletal F. Model-M: An agent-based epidemic model of a middle-sized municipality. MedRxiv. 2021 doi: 10.1101/2021.05.13.21257139. DOI

Berec L., Smyčka J., Levínskỳ R., Hromádková E., Šoltés M., Šlerka J., Tuček V., Trnka J., Šmíd M., Zajíček M., et al. Delays, masks, the elderly, and schools: First Covid-19 wave in the czech Republic. Bull. Math. Biol. 2022;84(8):75. PubMed PMC

Bilinski A., Mostashari F., Salomon J.A. Modeling Contact Tracing Strategies for COVID-19 in the Context of Relaxed Physical Distancing Measures. JAMA Netw. Open. 2020;3(8):e2019217. PubMed PMC

Block P., Hoffman M., Raabe I.J., Dowd J.B., Rahal C., Kashyap R., Mills M.C. Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nat. Hum. Behav. 2020:1–9. PubMed

Borgatti S.P., Mehra A., Brass D.J., Labianca G. Network analysis in the social sciences. Science. 2009;323(5916):892–895. PubMed

Braithwaite I., Callender T., Bullock M., Aldridge R.W. Automated and partly automated contact tracing: a systematic review to inform the control of COVID-19. Lancet Digit Health. 2020;2(11):e607–e621. PubMed PMC

Colomer M., Margalida A., Alòs F., Oliva-Vidal P., Vilella A., Fraile L. Modeling of vaccination and contact tracing as tools to control the COVID-19 outbreak in Spain. Vaccines (Basel) 2021;9(4) PubMed PMC

Danon L., Ford A.P., House T., Jewell C.P., Keeling M.J., Roberts G.O., Ross J.V., Vernon M.C. Networks and the epidemiology of infectious disease. Interdiscip. Perspect. Infect. Dis. 2011;2011 PubMed PMC

Ferreira-Santos D., Maranhão P., Monteiro-Soares M. Identifying common baseline clinical features of COVID-19: a scoping review. BMJ Open. 2020;10(9) PubMed PMC

Fiore V.G., DeFelice N., Glicksberg B.S., Perl O., Shuster A., Kulkarni K., O’Brien M., Pisauro M.A., Chung D., Gu X. Containment of COVID-19: Simulating the impact of different policies and testing capacities for contact tracing, testing, and isolation. PLoS One. 2021;16(3) PubMed PMC

Grantz K., Lee E., D’Agostino McGowan L., Lee K., Metcalf C., Gurley E., Lessler J. Maximizing and evaluating the impact of test-trace-isolate programs: A modeling study. PLOS Med. 2021;18 PubMed PMC

Haug N., Geyrhofer L., Londei A., Dervic E., Desvars-Larrive A., Loreto V., Pinior B., Thurner S., Klimek P. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat. Hum. Behav. 2020;4(12):1303–1312. PubMed

Keeling M.J., Hollingsworth T.D., Read J.M. Efficacy of contact tracing for the containment of the 2019 novel coronavirus (COVID-19) J. Epidemiology & Community Health. 2020;74(10):861–866. PubMed PMC

Kerr C.C., Stuart R.M., Mistry D., Abeysuriya R.G., Rosenfeld K., Hart G.R., Núñez R.C., Cohen J.A., Selvaraj P., Hagedorn B., George L., Jastrzébski M., Izzo A., Fowler G., Palmer A., Delport D., Scott N., Kelly S., Bennette C., Wagner B., Chang S., Oron A.P., Wenger E., Panovska-Griffiths J., Famulare M., Klein D.J. Covasim: an agent-based model of COVID-19 dynamics and interventions. MedRxiv. 2021 PubMed PMC

Kivelä M., Arenas A., Barthelemy M., Gleeson J.P., Moreno Y., Porter M.A. Multilayer networks. J. Complex Netw. 2014;2(3):203–271.

Kucharski A.J., Klepac P., Conlan A.J.K., Kissler S.M., Tang M.L., Fry H., Gog J.R., Edmunds W.J. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. Lancet Infect. Dis. 2020;20:1151–1160. PubMed PMC

Liu Y., Morgenstern C., Kelly J., Lowe R., Jit M. The impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territories. BMC Med. 2021;19(1):40. PubMed PMC

Luke D.A., Harris J.K. Network analysis in public health: history, methods, and applications. Annu. Rev. Public Health. 2007;28:69–93. PubMed

Marineli F., Tsoucalas G., Karamanou M., Androutsos G. Mary mallon (1869-1938) and the history of typhoid fever. Ann. Gastroenterol. 2013;26(2):132–134. PubMed PMC

MEDIAN F. 2020. Interactions and everyday life during COVID-19 pandemics. sociological survey.

Moon S.A., Scoglio C.M. Contact tracing evaluation for COVID-19 transmission in the different movement levels of a rural college town in the USA. Sci. Rep. 2021;11(1):4891. PubMed PMC

Mooney G. “A menace to the public health” — Contact tracing and the limits of persuasion. N. Engl. J. Med. 2020;383(19):1806–1808. PubMed

Mossong J., Hens N., Jit M., Beutels P., Auranen K., Mikolajczyk R., Massari M., Salmaso S., Tomba G.S., Wallinga J., et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008;5(3) PubMed PMC

PaQ J. 2020. Life during pandemics. sociologic survey.

Pozo-Martin F., Beltran Sanchez M.A., Müller S.A., Diaconu V., Weil K., El Bcheraoui C. Comparative effectiveness of contact tracing interventions in the context of the COVID-19 pandemic: a systematic review. Eur. J. Epidemiol. 2023:1–24. PubMed PMC

Pozo-Martin F., Weishaar H., Cristea F., Hanefeld J., Bahr T., Schaade L., El Bcheraoui C. The impact of non-pharmaceutical interventions on COVID-19 epidemic growth in the 37 OECD member states. Eur. J. Epidemiol. 2021;36(6):629–640. PubMed PMC

Prem K., Cook A.R., Jit M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput. Biol. 2017;13 PubMed PMC

Sun J., He W.-T., Wang L., Lai A., Ji X., Zhai X., Li G., Suchard M.A., Tian J., Zhou J., Veit M., Su S. COVID-19: Epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol. Med. 2020;26(5):483–495. PubMed PMC

Valente T.W., Pitts S.R. An appraisal of social network theory and analysis as applied to public health: challenges and opportunities. Annu. Rev. Public Health. 2017;38:103–118. PubMed

Vespignani A., Tian H., Dye C., Lloyd-Smith J.O., Eggo R.M., Shrestha M., Scarpino S.V., Gutierrez B., Kraemer M.U., Wu J., et al. Modelling COVID-19. Nat. Rev. Phys. 2020:1–3. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...