On the contact tracing for COVID-19: A simulation study
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36989916
PubMed Central
PMC10019035
DOI
10.1016/j.epidem.2023.100677
PII: S1755-4365(23)00013-0
Knihovny.cz E-zdroje
- Klíčová slova
- Agent-based model, Epidemiological model, Network model, Non-pharmaceutical interventions,
- MeSH
- COVID-19 * epidemiologie MeSH
- epidemický výskyt choroby prevence a kontrola MeSH
- lidé MeSH
- pandemie prevence a kontrola MeSH
- SARS-CoV-2 MeSH
- trasování kontaktů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Contact tracing is one of the most effective non-pharmaceutical interventions in the COVID-19 pandemic. This study uses a multi-agent model to investigate the impact of four types of contact tracing strategies to prevent the spread of COVID-19. METHODS: In order to analyse individual contact tracing in a reasonably realistic setup, we construct an agent-based model of a small municipality with about 60.000 inhabitants (nodes) and about 2.8 million social contacts (edges) in 30 different layers. Those layers reflect demographic, geographic, sociological and other patterns of the TTWA (Travel-to-work-area) Hodonín in Czechia. Various data sources such as census, land register, transport data or data reflecting the shopping behaviour, were employed to meet this purpose. On this multi-graph structure we run a modified SEIR model of the COVID-19 dynamics. The parameters of the model are calibrated on data from the outbreak in the Czech Republic in the period March to June 2020. The simplest type of contact tracing follows just the family, the second tracing version tracks the family and all the work contacts, the third type finds all contacts with the family, work contacts and friends (leisure activities). The last one is a complete (digital) tracing capable of recalling any and all contacts. We evaluate the performance of these contact tracing strategies in four different environments. First, we consider an environment without any contact restrictions (benchmark); second with strict contact restriction (replicating the stringent non-pharmaceutical interventions employed in Czechia in the spring 2020); third environment, where the measures were substantially relaxed, and, finally an environment with weak contact restrictions and superspreader events (replicating the situation in Czechia in the summer 2020). FINDINGS: There are four main findings in our paper. 1. In general, local closures are more effective than any type of tracing. 2. In an environment with strict contact restrictions there are only small differences among the four contact tracing strategies. 3. In an environment with relaxed contact restrictions the effectiveness of the tracing strategies differs substantially. 4. In the presence of superspreader events only complete contact tracing can stop the epidemic. INTERPRETATION: In situations, where many other non-pharmaceutical interventions are in place, the specific extent of contact tracing may not have a large influence on their effectiveness. In a more relaxed setting with few contact restrictions and larger events the effectiveness of contact tracing depends heavily on their extent.
Zobrazit více v PubMed
Aleta A., Martín-Corral D., Pastore Y Piontti A., Ajelli M., Litvinova M., Chinazzi M., Dean N.E., Halloran M.E., Longini I.M.J., Merler S., Pentland A., Vespignani A., Moro E., Moreno Y. Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nat. Hum. Behav. 2020;4(9):964–971. PubMed PMC
Berec L., Diviák T., Kuběna A., Levínský R., Neruda R., Suchopárová G., Šlerka J., Šmíd M., Trnka J., Tuček V., Vidnerová P., Zajíček M., Zapletal F. Model-M: An agent-based epidemic model of a middle-sized municipality. MedRxiv. 2021 doi: 10.1101/2021.05.13.21257139. DOI
Berec L., Smyčka J., Levínskỳ R., Hromádková E., Šoltés M., Šlerka J., Tuček V., Trnka J., Šmíd M., Zajíček M., et al. Delays, masks, the elderly, and schools: First Covid-19 wave in the czech Republic. Bull. Math. Biol. 2022;84(8):75. PubMed PMC
Bilinski A., Mostashari F., Salomon J.A. Modeling Contact Tracing Strategies for COVID-19 in the Context of Relaxed Physical Distancing Measures. JAMA Netw. Open. 2020;3(8):e2019217. PubMed PMC
Block P., Hoffman M., Raabe I.J., Dowd J.B., Rahal C., Kashyap R., Mills M.C. Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nat. Hum. Behav. 2020:1–9. PubMed
Borgatti S.P., Mehra A., Brass D.J., Labianca G. Network analysis in the social sciences. Science. 2009;323(5916):892–895. PubMed
Braithwaite I., Callender T., Bullock M., Aldridge R.W. Automated and partly automated contact tracing: a systematic review to inform the control of COVID-19. Lancet Digit Health. 2020;2(11):e607–e621. PubMed PMC
Colomer M., Margalida A., Alòs F., Oliva-Vidal P., Vilella A., Fraile L. Modeling of vaccination and contact tracing as tools to control the COVID-19 outbreak in Spain. Vaccines (Basel) 2021;9(4) PubMed PMC
Danon L., Ford A.P., House T., Jewell C.P., Keeling M.J., Roberts G.O., Ross J.V., Vernon M.C. Networks and the epidemiology of infectious disease. Interdiscip. Perspect. Infect. Dis. 2011;2011 PubMed PMC
Ferreira-Santos D., Maranhão P., Monteiro-Soares M. Identifying common baseline clinical features of COVID-19: a scoping review. BMJ Open. 2020;10(9) PubMed PMC
Fiore V.G., DeFelice N., Glicksberg B.S., Perl O., Shuster A., Kulkarni K., O’Brien M., Pisauro M.A., Chung D., Gu X. Containment of COVID-19: Simulating the impact of different policies and testing capacities for contact tracing, testing, and isolation. PLoS One. 2021;16(3) PubMed PMC
Grantz K., Lee E., D’Agostino McGowan L., Lee K., Metcalf C., Gurley E., Lessler J. Maximizing and evaluating the impact of test-trace-isolate programs: A modeling study. PLOS Med. 2021;18 PubMed PMC
Haug N., Geyrhofer L., Londei A., Dervic E., Desvars-Larrive A., Loreto V., Pinior B., Thurner S., Klimek P. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat. Hum. Behav. 2020;4(12):1303–1312. PubMed
Keeling M.J., Hollingsworth T.D., Read J.M. Efficacy of contact tracing for the containment of the 2019 novel coronavirus (COVID-19) J. Epidemiology & Community Health. 2020;74(10):861–866. PubMed PMC
Kerr C.C., Stuart R.M., Mistry D., Abeysuriya R.G., Rosenfeld K., Hart G.R., Núñez R.C., Cohen J.A., Selvaraj P., Hagedorn B., George L., Jastrzébski M., Izzo A., Fowler G., Palmer A., Delport D., Scott N., Kelly S., Bennette C., Wagner B., Chang S., Oron A.P., Wenger E., Panovska-Griffiths J., Famulare M., Klein D.J. Covasim: an agent-based model of COVID-19 dynamics and interventions. MedRxiv. 2021 PubMed PMC
Kivelä M., Arenas A., Barthelemy M., Gleeson J.P., Moreno Y., Porter M.A. Multilayer networks. J. Complex Netw. 2014;2(3):203–271.
Kucharski A.J., Klepac P., Conlan A.J.K., Kissler S.M., Tang M.L., Fry H., Gog J.R., Edmunds W.J. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. Lancet Infect. Dis. 2020;20:1151–1160. PubMed PMC
Liu Y., Morgenstern C., Kelly J., Lowe R., Jit M. The impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territories. BMC Med. 2021;19(1):40. PubMed PMC
Luke D.A., Harris J.K. Network analysis in public health: history, methods, and applications. Annu. Rev. Public Health. 2007;28:69–93. PubMed
Marineli F., Tsoucalas G., Karamanou M., Androutsos G. Mary mallon (1869-1938) and the history of typhoid fever. Ann. Gastroenterol. 2013;26(2):132–134. PubMed PMC
MEDIAN F. 2020. Interactions and everyday life during COVID-19 pandemics. sociological survey.
Moon S.A., Scoglio C.M. Contact tracing evaluation for COVID-19 transmission in the different movement levels of a rural college town in the USA. Sci. Rep. 2021;11(1):4891. PubMed PMC
Mooney G. “A menace to the public health” — Contact tracing and the limits of persuasion. N. Engl. J. Med. 2020;383(19):1806–1808. PubMed
Mossong J., Hens N., Jit M., Beutels P., Auranen K., Mikolajczyk R., Massari M., Salmaso S., Tomba G.S., Wallinga J., et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008;5(3) PubMed PMC
PaQ J. 2020. Life during pandemics. sociologic survey.
Pozo-Martin F., Beltran Sanchez M.A., Müller S.A., Diaconu V., Weil K., El Bcheraoui C. Comparative effectiveness of contact tracing interventions in the context of the COVID-19 pandemic: a systematic review. Eur. J. Epidemiol. 2023:1–24. PubMed PMC
Pozo-Martin F., Weishaar H., Cristea F., Hanefeld J., Bahr T., Schaade L., El Bcheraoui C. The impact of non-pharmaceutical interventions on COVID-19 epidemic growth in the 37 OECD member states. Eur. J. Epidemiol. 2021;36(6):629–640. PubMed PMC
Prem K., Cook A.R., Jit M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput. Biol. 2017;13 PubMed PMC
Sun J., He W.-T., Wang L., Lai A., Ji X., Zhai X., Li G., Suchard M.A., Tian J., Zhou J., Veit M., Su S. COVID-19: Epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol. Med. 2020;26(5):483–495. PubMed PMC
Valente T.W., Pitts S.R. An appraisal of social network theory and analysis as applied to public health: challenges and opportunities. Annu. Rev. Public Health. 2017;38:103–118. PubMed
Vespignani A., Tian H., Dye C., Lloyd-Smith J.O., Eggo R.M., Shrestha M., Scarpino S.V., Gutierrez B., Kraemer M.U., Wu J., et al. Modelling COVID-19. Nat. Rev. Phys. 2020:1–3. PubMed PMC