Delays, Masks, the Elderly, and Schools: First Covid-19 Wave in the Czech Republic
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
U01 AG009740
NIA NIH HHS - United States
P01 AG005842
NIA NIH HHS - United States
P01 AG008291
NIA NIH HHS - United States
P30 AG012815
NIA NIH HHS - United States
R21 AG025169
NIA NIH HHS - United States
HHSN271201300071C
NIA NIH HHS - United States
PubMed
35726074
PubMed Central
PMC9208712
DOI
10.1007/s11538-022-01031-5
PII: 10.1007/s11538-022-01031-5
Knihovny.cz E-zdroje
- Klíčová slova
- Age structure, Approximate Bayesian computation, Covid-19 pandemic, Non-pharmaceutical interventions, School closure,
- MeSH
- biologické modely MeSH
- COVID-19 * epidemiologie prevence a kontrola MeSH
- kontrola infekčních nemocí MeSH
- lidé MeSH
- masky * MeSH
- matematické pojmy MeSH
- pandemie prevence a kontrola MeSH
- SARS-CoV-2 MeSH
- senioři MeSH
- školy MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
Running across the globe for nearly 2 years, the Covid-19 pandemic keeps demonstrating its strength. Despite a lot of understanding, uncertainty regarding the efficiency of interventions still persists. We developed an age-structured epidemic model parameterized with epidemiological and sociological data for the first Covid-19 wave in the Czech Republic and found that (1) starting the spring 2020 lockdown 4 days earlier might prevent half of the confirmed cases by the end of lockdown period, (2) personal protective measures such as face masks appear more effective than just a realized reduction in social contacts, (3) the strategy of sheltering just the elderly is not at all effective, and (4) leaving schools open is a risky strategy. Despite vaccination programs, evidence-based choice and timing of non-pharmaceutical interventions remains an effective weapon against the Covid-19 pandemic.
Center for Theoretical Studies Husova 4 11000 Prague 1 Czech Republic
CERGE EI Politických vězňů 7 11121 Prague 1 Czech Republic
Department of Criminology School of Social Sciences University of Manchester Oxford Rd Manchester UK
Department of Mathematics University of Zagreb Bijenička 30 10000 Zagreb Croatia
New Media Studies Faculty of Arts Charles University Na Příkopě 29 11000 Prague 1 Czech Republic
Zobrazit více v PubMed
BBC (2020) Covid-19 pandemic: Sweden reverses face mask guidelines for public transport. www.bbc.com/news/world-europe-55371102. Accessed 20 Jan 2021
Beaumont MA. Approximate Bayesian computation in evolution and ecology. Annu Rev Ecol Evol Syst. 2010;41:379–406. doi: 10.1146/annurev-ecolsys-102209-144621. DOI
Blum MG, Tran VC. HIV with contact tracing: a case study in approximate Bayesian computation. Bioinformatics. 2010;11:644–660. PubMed
Börsch-Supan A, et al. Data resource profile: the survey of health, ageing and retirement in Europe (SHARE) Int J Epidemiol. 2013;4:992–1001. doi: 10.1093/ije/dyt088. PubMed DOI PMC
Brauner JM, et al. Inferring the effectiveness of government interventions against COVID-19. Science. 2021;371:eabd9338. doi: 10.1126/science.abd9338. PubMed DOI PMC
Bubar KM, et al. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science. 2021;371:916. doi: 10.1126/science.abe6959. PubMed DOI PMC
Chang S, et al. Mobility network models of Covid-19 explain inequities and inform reopening. Nature. 2021;589:7. doi: 10.1038/s41586-020-2923-3. PubMed DOI
Chen Y, et al. Epidemiological characteristics of infection in COVID-19 close contacts in Ningbo city. Chin J Epidemiol. 2020;41:667–671. PubMed
Csilléry K, et al. Approximate Bayesian computation (ABC) in practice. Trends Ecol Evol. 2010;25:410–418. doi: 10.1016/j.tree.2010.04.001. PubMed DOI
Csilléry K et al (2015) ABC: tools for approximate Bayesian computation (ABC). https://cran.r-project.org/web/packages/abc/index.html
Davies NG, et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med. 2020;26:1205–1211. doi: 10.1038/s41591-020-0962-9. PubMed DOI
Dehning J, et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science. 2020;369:eabb9789. doi: 10.1126/science.abb9789. PubMed DOI PMC
Domenico LD, et al. Impact of lockdown on COVID-19 epidemic in Île-de-France and possible exit strategies. BMC Med. 2020;18:240. doi: 10.1186/s12916-020-01698-4. PubMed DOI PMC
Eikenberry SE, et al. To mask or not to mask: modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic. Infect Dis Model. 2020;5:293–308. PubMed PMC
Ferguson NM et al (2020) Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College- COVID19-NPI-modelling-16-03-2020.pdf PubMed PMC
Flaxman S, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. 2020;584:257–261. doi: 10.1038/s41586-020-2405-7. PubMed DOI
Giordano G, et al. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat Med. 2020;26:855–866. doi: 10.1038/s41591-020-0883-7. PubMed DOI PMC
Haug N, et al. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat Hum Behav. 2020;4:1303–1312. doi: 10.1038/s41562-020-01009-0. PubMed DOI
He W, Yi GY, Zhu Y. Estimation of the basic reproduction number, average incubation time, asymptomatic infection rate, and case fatality rate for COVID-19: Meta-analysis and sensitivity analysis. J Med Virol. 2020;92:2543–2550. doi: 10.1002/jmv.26041. PubMed DOI PMC
Iwata K, Doi A, Miyakoshi C. Was school closure effective in mitigating coronavirus disease 2019 (COVID-19)? Time series analysis using Bayesian inference. Int J Infect Dis. 2020;99:57–61. doi: 10.1016/j.ijid.2020.07.052. PubMed DOI PMC
Kissler SM, et al. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science. 2020;368:860–868. doi: 10.1126/science.abb5793. PubMed DOI PMC
Komenda M, et al. Complex reporting of the COVID-19 epidemic in the Czech Republic: use of an interactive web-based app in practice. J Med Internet Res. 2020;22:e19367. doi: 10.2196/19367. PubMed DOI PMC
Krendl AC, Perry BL. The impact of sheltering in place during the COVID-19 pandemic on older adults’ social and mental well-being. J Gerontol Ser B. 2021;76:e53–e58. doi: 10.1093/geronb/gbaa110. PubMed DOI PMC
Kretzschmar ME, et al. Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study. Lancet Public Health. 2020;5:E452–E459. doi: 10.1016/S2468-2667(20)30157-2. PubMed DOI PMC
Kucharski AJ, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020;20:553–558. doi: 10.1016/S1473-3099(20)30144-4. PubMed DOI PMC
Li R, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2) Science. 2020;368:489–493. doi: 10.1126/science.abb3221. PubMed DOI PMC
Liu Y, et al. The impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territories. BMC Med. 2021;19:40. doi: 10.1186/s12916-020-01872-8. PubMed DOI PMC
Luciani F, et al. The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis. PNAS. 2009;106:14711–14715. doi: 10.1073/pnas.0902437106. PubMed DOI PMC
Ministry of Health of the Czech Republic, (2020). COVID-19: an overview of the actual situation in the Czech Republic (in Czech). https://onemocneni-aktualne.mzcr.cz/covid-19. Accessed 20 Jan 2021
Pei S, Kandula S, Shaman J. Differential effects of intervention timing on COVID-19 spread in the United States. Sci Adv. 2020;6:eabd6370. doi: 10.1126/sciadv.abd6370. PubMed DOI PMC
Pierce M, et al. Mental health before and during the COVID-19 pandemic: a longitudinal probability sample survey of the UK population. Lancet Psychiatry. 2020;7:883–892. doi: 10.1016/S2215-0366(20)30308-4. PubMed DOI PMC
Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput Biol. 2017;13:e1005697. doi: 10.1371/journal.pcbi.1005697. PubMed DOI PMC
Rozhnova G, et al. Model-based evaluation of school- and non-school-related measures to control the COVID-19 pandemic. Nat Commun. 2021;12:1614. doi: 10.1038/s41467-021-21899-6. PubMed DOI PMC
Ruschel S, et al. An SIQ delay differential model for disease control via isolation. J Math Biol. 2019;79:249–279. doi: 10.1007/s00285-019-01356-1. PubMed DOI
Smith H. An Introduction to Delay Differential Equations with Applications to the Life Sciences. Berlin: Springer; 2010.
Stutt ROJH, et al. A modelling framework to assess the likely effectiveness of facemasks in combination with ‘lock-down’ in managing the COVID-19 pandemic. Proc R Soc A. 2020;476:20200376. doi: 10.1098/rspa.2020.0376. PubMed DOI PMC
Toni T, et al. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface. 2009;6:187–202. doi: 10.1098/rsif.2008.0172. PubMed DOI PMC
Viner RM, et al. School closure and management practices during coronavirus outbreaks including COVID-19: a rapid systematic review. Lancet Child Adolesc Health. 2020;4:397–404. doi: 10.1016/S2352-4642(20)30095-X. PubMed DOI PMC
Wei WE, et al. Presymptomatic transmission of SARS-CoV-2—Singapore, January 23-March 16, 2020. Morb Mortal Wkly Rep. 2020;69:411–415. doi: 10.15585/mmwr.mm6914e1. PubMed DOI PMC
Weissman GE, et al. Locally informed simulation to predict hospital capacity needs during the COVID-19 pandemic. Anna Intern Med. 2020;173:21–28. doi: 10.7326/M20-1260. PubMed DOI PMC
Yang W, Karspeck A, Shaman J. Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics. PLoS Comput Biol. 2014;10:e1003583. doi: 10.1371/journal.pcbi.1003583. PubMed DOI PMC
Young L-S, et al. An SIQ delay differential model for disease control via isolation. Sci Rep. 2019;9:3505. doi: 10.1038/s41598-019-39714-0. PubMed DOI