Inferring the effectiveness of government interventions against COVID-19
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MC_PC_19012
Medical Research Council - United Kingdom
MR/R015600/1
Medical Research Council - United Kingdom
PubMed
33323424
PubMed Central
PMC7877495
DOI
10.1126/science.abd9338
PII: science.abd9338
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- COVID-19 prevence a kontrola přenos MeSH
- fyzický odstup MeSH
- kontrola infekčních nemocí * MeSH
- lidé MeSH
- obchod MeSH
- pandemie prevence a kontrola MeSH
- školy MeSH
- teoretické modely MeSH
- univerzity MeSH
- vláda * MeSH
- zdravotní politika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Asie epidemiologie MeSH
- Evropa epidemiologie MeSH
Governments are attempting to control the COVID-19 pandemic with nonpharmaceutical interventions (NPIs). However, the effectiveness of different NPIs at reducing transmission is poorly understood. We gathered chronological data on the implementation of NPIs for several European and non-European countries between January and the end of May 2020. We estimated the effectiveness of these NPIs, which range from limiting gathering sizes and closing businesses or educational institutions to stay-at-home orders. To do so, we used a Bayesian hierarchical model that links NPI implementation dates to national case and death counts and supported the results with extensive empirical validation. Closing all educational institutions, limiting gatherings to 10 people or less, and closing face-to-face businesses each reduced transmission considerably. The additional effect of stay-at-home orders was comparatively small.
College of Engineering and Computer Science Australian National University Canberra Australia
Department of Engineering Science University of Oxford Oxford UK
Department of Health Policy London School of Economics and Political Science London UK
Department of Statistics University of Oxford Oxford UK
Engineering Department University of Cambridge Cambridge UK
Faculty of Economics University of Cambridge Cambridge UK
Faculty of Public Health and Policy London School of Hygiene and Tropical Medicine London UK
Future of Humanity Institute University of Oxford Oxford UK
Independent scholar Prague Czech Republic
Mathematical Physical and Life Sciences Doctoral Training Centre University of Oxford Oxford UK
Quantified Uncertainty Research Institute San Francisco CA USA
School of Computer Science University of Bristol Bristol UK
School of Medical Sciences University of Manchester Manchester UK
Zobrazit více v PubMed
Flaxman S., Mishra S., Gandy A., Unwin H. J. T., Mellan T. A., Coupland H., Whittaker C., Zhu H., Berah T., Eaton J. W., Monod M., Ghani A. C., Donnelly C. A., Riley S., Vollmer M. A. C., Ferguson N. M., Okell L. C., Bhatt S.; Imperial College COVID-19 Response Team , Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584, 257–261 (2020). 10.1038/s41586-020-2405-7 PubMed DOI
Dehning J., Zierenberg J., Spitzner F. P., Wibral M., Neto J. P., Wilczek M., Priesemann V., Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science 369, eabb9789 (2020). 10.1126/science.abb9789 PubMed DOI PMC
Hsiang S., Allen D., Annan-Phan S., Bell K., Bolliger I., Chong T., Druckenmiller H., Huang L. Y., Hultgren A., Krasovich E., Lau P., Lee J., Rolf E., Tseng J., Wu T., The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature 584, 262–267 (2020). 10.1038/s41586-020-2404-8 PubMed DOI
Lai S., Ruktanonchai N. W., Zhou L., Prosper O., Luo W., Floyd J. R., Wesolowski A., Santillana M., Zhang C., Du X., Yu H., Tatem A. J., Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature 585, 410–413 (2020). 10.1038/s41586-020-2293-x PubMed DOI PMC
Y. Liu, C. Morgenstern, J. Kelly, R. Lowe, CMMID COVID-19 Working Group, M. Jit, The impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territories. medRxiv 2020.08.11.20172643v1 [Preprint]. 12 August 2020. 10.1101/2020.08.11.20172643. PubMed DOI PMC
N. Banholzer, E. van Weenen, B. Kratzwald, A. Seeliger, D.Tschernutter, P. Bottrighi, A. Cenedese, J. Puig Salles, W. Vach, S. Feuerriegel, Impact of non-pharmaceutical interventions on documented cases of COVID-19. medRxiv 2020.04.16.20062141v3 [Preprint]. 28 April 2020. 10.1101/2020.04.16.20062141. DOI
Islam N., Sharp S. J., Chowell G., Shabnam S., Kawachi I., Lacey B., Massaro J. M., D’Agostino R. B. Sr.., White M., Physical distancing interventions and incidence of coronavirus disease 2019: Natural experiment in 149 countries. BMJ 370, m2743 (2020). 10.1136/bmj.m2743 PubMed DOI PMC
Chen X., Qiu Z., Scenario analysis of non-pharmaceutical interventions on global COVID-19 transmissions. Covid Economics 7, 46–67 (2020).
K. Soltesz, F. Gustafsson, T. Timpka, J. Jalden, C. Jidling,A. Heimerson, T. B. Schon, A. Spreco, J. Ekberg, O. Dahlstrom, F. Bagge Carlson, A. Joud, B. Bernhardsson, On the sensitivity of non-pharmaceutical intervention models for SARS-CoV-2 spread estimation. medRxiv 2020.06.10.20127324 [Preprint]. 12 June 2020. 10.1101/2020.06.10.20127324. DOI
M. Sharma, S. Mindermann, J. M. Brauner, G. Leech, A. B. Stephenson, T. Gavenčiak, J. Kulveit, Y. W. Teh, L. Chindelevitch, Y. Gal, How robust are the estimated effects of nonpharmaceutical interventions against COVID-19? arXiv:2007.13454 [stat.AP] (27 July 2020).
Cheng C., Barceló J., Hartnett A. S., Kubinec R., Messerschmidt L., COVID-19 government response event dataset (CoronaNet v. 1.0). Nat. Hum. Behav. 4, 756–768 (2020). 10.1038/s41562-020-0909-7 PubMed DOI
Oxford COVID-19 Government Response Tracker (OxCGRT) (2020); https://github.com/OxCGRT/covid-policy-tracker. PubMed
Dong E., Du H., Gardner L., An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020). 10.1016/S1473-3099(20)30120-1 PubMed DOI PMC
J. M. Brauner, S. Mindermann, M. Sharma, D. Johnston, J.Salvatier, T. Gavenčiak, A. B. Stephenson, G. Leech, G. Altman, V. Mikulik, A. J. Norman, J.T. Monrad, T. Besiroglu, H. Ge, M. A. Hartwick, Y. W. The, L. Chindelevitch, Y. Gal, J. Kulveit, epidemics/COVIDNPIs: Inferring the effectiveness of government interventions against COVID-19,Zenodo (2020); 10.5281/zenodo.4268449. PubMed DOI PMC
Winship C., Western B., Multicollinearity and model misspecification. Sociol. Sci. 3, 627–649 (2016). 10.15195/v3.a27 DOI
EpidemicForecasting.org, Mitigation calculator (2020); http://epidemicforecasting.org/calc.
T. C. Jones, B. Mühlemann, T. Veith, G. Biele, M.Zuchowski, J. Hoffmann, A. Stein, A. Edelmann, V. M. Corman, C. Drosten, An analysis of SARS-CoV-2 viral load by patient age. medRxiv 2020.06.08.20125484v1 [Preprint]. 9 June 2020. 10.1101/2020.06.08.20125484. DOI
L’Huillier A. G., Torriani G., Pigny F., Kaiser L., Eckerle I., Culture-competent SARS-CoV-2 in nasopharynx of symptomatic neonates, children, and adolescents. Emerg. Infect. Dis. 26, 2494–2497 (2020). 10.3201/eid2610.202403 PubMed DOI PMC
The Independent Scientific Advisory Group for Emergencies (SAGE), The Independent SAGE Report 3, “When should a school reopen? Final report” (2020); www.independentsage.org/wp-content/uploads/2020/06/Independent-Sage-Brief-Report-on-Schools.pdf.
Park Y. J., Choe Y. J., Park O., Park S. Y., Kim Y.-M., Kim J., Kweon S., Woo Y., Gwack J., Kim S. S., Lee J., Hyun J., Ryu B., Jang Y. S., Kim H., Shin S. H., Yi S., Lee S., Kim H. K., Lee H., Jin Y., Park E., Choi S. W., Kim M., Song J., Choi S. W., Kim D., Jeon B.-H., Yoo H., Jeong E. K.; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team , Contact tracing during coronavirus disease outbreak, South Korea, 2020. Emerg. Infect. Dis. 26, 2465–2468 (2020). 10.3201/eid2610.201315 PubMed DOI PMC
Mehta N. S., Mytton O. T., Mullins E. W. S., Fowler T. A., Falconer C. L., Murphy O. B., Langenberg C., Jayatunga W. J. P., Eddy D. H., Nguyen-Van-Tam J. S., SARS-CoV-2 (COVID-19): What do we know about children? A systematic review. Clin. Infect. Dis. 71, 2469–2479 (2020). 10.1093/cid/ciaa556 PubMed DOI PMC
Zimmermann P., Curtis N., Coronavirus infections in children including COVID-19: An overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. Pediatr. Infect. Dis. J. 39, 355–368 (2020). 10.1097/INF.0000000000002660 PubMed DOI PMC
Office for National Statistics, Coronavirus (COVID-19) Infection Survey, UK: 6 November 2020 (2020); www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/6november2020.
A. Aleta, Y. Moreno, Age differential analysis of COVID-19 second wave in Europe reveals highest incidence amongst young adults. medRxiv 2020.11.11.20230177 [Preprint]. 13 November 2020. 10.1101/2020.11.11.20230177. DOI
Levinson M., Cevik M., Lipsitch M., Reopening primary schools during the pandemic. N. Engl. J. Med. 383, 981–985 (2020). 10.1056/NEJMms2024920 PubMed DOI
Couzin-Frankel J., Vogel G., Weiland M., School openings across globe suggest ways to keep coronavirus at bay, despite outbreaks. Science 10.1126/science.abd7107 (2020). 10.1126/science.abd7107 DOI
A. Fontanet, L. Tondeur, Y. Madec, R. Grant, C. Besombes, N.Jolly, S. Fernandes Pellerin, M.-N. Ungeheuer, I. Cailleau, L. Kuhmel, S. Temmam, C. Huon, K.-Y.Chen, B. Crescenzo, S. Munier, C. Demeret, L. Grzelak, I. Staropoli, T. Bruel, P. Gallian, S.Cauchemez, S. van der Werf, O. Schwartz, M. Eloit, B. Hoen, Cluster of COVID-19 in northern France: A retrospective closed cohort study. medRxiv 2020.04.18.20071134 [Preprint]. 23 April 2020. 10.1101/2020.04.18.20071134. DOI
Stein-Zamir C., Abramson N., Shoob H., Libal E., Bitan M., Cardash T., Cayam R., Miskin I., A large COVID-19 outbreak in a high school 10 days after schools’ reopening, Israel, May 2020. Euro Surveill. 25, 2001352 (2020). 10.2807/1560-7917.ES.2020.25.29.2001352 PubMed DOI PMC
Sun K., Wang W., Gao L., Wang Y., Luo K., Ren L., Zhan Z., Chen X., Zhao S., Huang Y., Sun Q., Liu Z., Litvinova M., Vespignani A., Ajelli M., Viboud C., Yu H., Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science 10.1126/science.abe2424 (2020). 10.1126/science.abe2424 PubMed DOI PMC
University and College Union, COVID-19 case dashboard (2020); www.ucu.org.uk/covid-dashboard.
Colbourn T., Waites W., Panovska-Griffiths J., Manheim D., Sturniolo S., Colbourn G., Bowie C., Godfrey K. M., Peto J., Burgess R. A., Foster D., McCoy D., Alwan N. A., Yao G., Ouyang K., Roderick P. J., Pizzo E., Hill T., McGrath N., Orcutt M., Evans O., Cheetham N. J., Sculpher M., Bonell C., Gomes M., Raine R., Modelling the health and economic impacts of population-wide testing, contact tracing and isolation (PTTI) strategies for COVID-19 in the UK. SSRN 10.2139/ssrn.3627273 (2020). 10.2139/ssrn.3627273 DOI
Prem K., Liu Y., Russell T. W., Kucharski A. J., Eggo R. M., Davies N., Jit M., Klepac P.; Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group , The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. Lancet Public Health 5, e261–e270 (2020). 10.1016/S2468-2667(20)30073-6 PubMed DOI PMC
Walker P. G. T., Whittaker C., Watson O. J., Baguelin M., Winskill P., Hamlet A., Djafaara B. A., Cucunubá Z., Olivera Mesa D., Green W., Thompson H., Nayagam S., Ainslie K. E. C., Bhatia S., Bhatt S., Boonyasiri A., Boyd O., Brazeau N. F., Cattarino L., Cuomo-Dannenburg G., Dighe A., Donnelly C. A., Dorigatti I., van Elsland S. L., FitzJohn R., Fu H., Gaythorpe K. A. M., Geidelberg L., Grassly N., Haw D., Hayes S., Hinsley W., Imai N., Jorgensen D., Knock E., Laydon D., Mishra S., Nedjati-Gilani G., Okell L. C., Unwin H. J., Verity R., Vollmer M., Walters C. E., Wang H., Wang Y., Xi X., Lalloo D. G., Ferguson N. M., Ghani A. C., The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries. Science 369, 413–422 (2020). 10.1126/science.abc0035 PubMed DOI PMC
Davies N. G., Kucharski A. J., Eggo R. M., Gimma A., Edmunds W. J., Jombart T., O’Reilly K., Endo A., Hellewell J., Nightingale E. S., Quilty B. J., Jarvis C. I., Russell T. W., Klepac P., Bosse N. I., Funk S., Abbott S., Medley G. F., Gibbs H., Pearson C. A. B., Flasche S., Jit M., Clifford S., Prem K., Diamond C., Emery J., Deol A. K., Procter S. R., van Zandvoort K., Sun Y. F., Munday J. D., Rosello A., Auzenbergs M., Knight G., Houben R. M. G. J., Liu Y.; Centre for the Mathematical Modelling of Infectious Diseases COVID-19 working group , Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: A modelling study. Lancet Public Health 5, e375–e385 (2020). 10.1016/S2468-2667(20)30133-X PubMed DOI PMC
Hao X., Cheng S., Wu D., Wu T., Lin X., Wang C., Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature 584, 420–424 (2020). 10.1038/s41586-020-2554-8 PubMed DOI
Ruktanonchai N. W., Floyd J. R., Lai S., Ruktanonchai C. W., Sadilek A., Rente-Lourenco P., Ben X., Carioli A., Gwinn J., Steele J. E., Prosper O., Schneider A., Oplinger A., Eastham P., Tatem A. J., Assessing the impact of coordinated COVID-19 exit strategies across Europe. Science 369, 1465–1470 (2020). 10.1126/science.abc5096 PubMed DOI PMC
EpidemicForecasting.org, Epidemic forecasting global NPI database (2020); http://epidemicforecasting.org/datasets.
T. Hale, S. Webster, A. Petherick, T. Phillips, B. Kira, Oxford COVID-19 Government Response Tracker, Blavatnik School of Government (2020); www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker. PubMed
Abbott S., Hellewell J., Thompson R. N., Sherratt K., Gibbs H. P., Bosse N. I., Munday J. D., Meakin S., Doughty E. L., Chun J. Y., Chan Y.-W. D., Finger F., Campbell P., Endo A., Pearson C. A. B., Gimma A., Russell T., Flasche S., Kucharski A. J., Eggo R. M., Funk S., Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts. Wellcome Open Res. 5, 112 (2020). 10.12688/wellcomeopenres.16006.2 DOI
S. Yadav, P. K. Yadav, Basic reproduction rate and case fatality rate of COVID-19: Application of meta-analysis. medRxiv 2020.05.13.20100750v1 [Preprint]. 16 May 2020. 10.1101/2020.05.13.20100750. DOI
Wallinga J., Lipsitch M., How generation intervals shape the relationship between growth rates and reproductive numbers. Proc. Biol. Sci. 274, 599–604 (2007). 10.1098/rspb.2006.3754 PubMed DOI PMC
E. S. Fonfria, M. I. Vigo, D. Garcia-Garcia, Z. Herrador, M.Navarro, C. Bordehore, Essential epidemiological parameters of COVID-19 for clinical and mathematical modeling purposes: A rapid review and meta-analysis. medRxiv 2020.06.17.20133587v1 [Preprint]. 19 June 2020. 10.1101/2020.06.17.20133587. DOI
Hoffman M. D., Gelman A., The No-U-Turn Sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014).
Liu Y., Gayle A. A., Wilder-Smith A., Rocklöv J., The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 27, taaa021 (2020). 10.1093/jtm/taaa021 PubMed DOI PMC
S. Flaxman, S. Mishra, A. Gandy, H. J. T. Unwin, T. A. Mellan, H. Coupland, C. Whittaker, H. Zhu, T. Berah, J. W. Eaton, M. Monod, Imperial College COVID-19 Response Team, A. C. Ghani, C. A. Donnelly, S. Riley, M. A. C. Vollmer, N. M. Ferguson, L. C. Okell, S. Bhatt, Code for modelling estimated deaths and cases for COVID-19 from report 13 published by MRC Centre for Global Infectious Disease Analysis, Imperial College London: Estimating the number of infections and the impact of nonpharmaceutical interventions on COVID-19 in 11 European countries (2020); https://mrc-ide.github.io/covid19estimates/#/interventions/.
Ali S. T., Wang L., Lau E. H. Y., Xu X.-K., Du Z., Wu Y., Leung G. M., Cowling B. J., Serial interval of SARS-CoV-2 was shortened over time by nonpharmaceutical interventions. Science 369, 1106–1109 (2020). 10.1126/science.abc9004 PubMed DOI PMC
Fraser C., Estimating individual and household reproduction numbers in an emerging epidemic. PLOS ONE 2, e758 (2007). 10.1371/journal.pone.0000758 PubMed DOI PMC
Salvatier J., Wiecki T. V., Fonnesbeck C., Probabilistic programming in python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016). 10.7717/peerj-cs.55 PubMed DOI PMC
Ferretti L., Wymant C., Kendall M., Zhao L., Nurtay A., Abeler-Dörner L., Parker M., Bonsall D., Fraser C., Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 368, eabb6936 (2020). 10.1126/science.abb6936 PubMed DOI PMC
Lauer S. A., Grantz K. H., Bi Q., Jones F. K., Zheng Q., Meredith H. R., Azman A. S., Reich N. G., Lessler J., The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann. Intern. Med. 172, 577–582 (2020). 10.7326/M20-0504 PubMed DOI PMC
D. Cereda, M. Tirani, F. Rovida, V. Demicheli, M. Ajelli, P. Poletti, F. Trentini, G. Guzzetta, V. Marziano, A. Barone, M. Magoni, S. Deandrea, G. Diurno, M. Lombardo, M. Faccini, A. Pan, R. Bruno, E. Pariani, G. Grasselli, A. Piatti, M. Gramegna, F. Baldanti, A. Melegaro, S. Merler, The early phase of the COVID-19 outbreak in Lombardy, Italy. arXiv:2003.09320v1 [q-bio.PE] (20 March 2020).
Linton N. M., Kobayashi T., Yang Y., Hayashi K., Akhmetzhanov A. R., Jung S. M., Yuan B., Kinoshita R., Nishiura H., Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: A statistical analysis of publicly available case data. J. Clin. Med. 9, 538 (2020). 10.3390/jcm9020538 PubMed DOI PMC
A. Gelman, J. B. Carlin, H. S. Stern, D. B. Rubin, “Model checking and improvement” in Bayesian Data Analysis (Chapman & Hall/CRC Texts in Statistical Science, Taylor & Francis, ed. 2, 2003).
Gelman A., Hwang J., Vehtari A., Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2013). 10.1007/s11222-013-9416-2 DOI
Dormann C. F., Elith J., Bacher S., Buchmann C., Carl G., Carré G., Marquéz J. R. G., Gruber B., Lafourcade B., Leitão P. J., Münkemüller T., McClean C., Osborne P. E., Reineking B., Schröder B., Skidmore A. K., Zurell D., Lautenbach S., Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013). 10.1111/j.1600-0587.2012.07348.x DOI
Russell T. W., Golding N., Hellewell J., Abbott S., Wright L., Pearson C. A. B., van Zandvoort K., Jarvis C. I., Gibbs H., Liu Y., Eggo R. M., Edmunds W. J., Kucharski A. J.; CMMID COVID-19 working group , Reconstructing the early global dynamics of under-ascertained COVID-19 cases and infections. BMC Med. 18, 332 (2020). 10.1186/s12916-020-01790-9 PubMed DOI PMC
Cori A., Ferguson N. M., Fraser C., Cauchemez S., A new framework and software to estimate time-varying reproduction numbers during epidemics. Am. J. Epidemiol. 178, 1505–1512 (2013). 10.1093/aje/kwt133 PubMed DOI PMC
Nouvellet P., Cori A., Garske T., Blake I. M., Dorigatti I., Hinsley W., Jombart T., Mills H. L., Nedjati-Gilani G., Van Kerkhove M. D., Fraser C., Donnelly C. A., Ferguson N. M., Riley S., A simple approach to measure transmissibility and forecast incidence. Epidemics 22, 29–35 (2018). 10.1016/j.epidem.2017.02.012 PubMed DOI PMC
Cauchemez S., Valleron A.-J., Boëlle P.-Y., Flahault A., Ferguson N. M., Estimating the impact of school closure on influenza transmission from Sentinel data. Nature 452, 750–754 (2008). 10.1038/nature06732 PubMed DOI
Rosenbaum P. R., Rubin D. B., Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J. R. Stat. Soc. B 45, 212–218 (1983). 10.1111/j.2517-6161.1983.tb01242.x DOI
J. M. Robins, A. Rotnitzky, D. O. Scharfstein, “Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models” in Statistical Models in Epidemiology, the Environment, and Clinical Trials, M. E. Halloran, D. Berry, Eds. (Springer, 2000), pp. 1–94.
A. Gelman, J. Hill, “Causal inference using regression on the treatment variable” in Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007), pp. 167–198.
C. E. Rasmussen, “Gaussian processes in machine learning” in Summer School on Machine Learning, O. Bousquet, U. von Luxburg, G. Rätsch, Eds. (Springer, 2003), pp. 63–71.
Xu B., Gutierrez B., Mekaru S., Sewalk K., Goodwin L., Loskill A., Cohn E. L., Hswen Y., Hill S. C., Cobo M. M., Zarebski A. E., Li S., Wu C.-H., Hulland E., Morgan J. D., Wang L., O’Brien K., Scarpino S. V., Brownstein J. S., Pybus O. G., Pigott D. M., Kraemer M. U. G., Epidemiological data from the COVID-19 outbreak, real-time case information. Sci. Data 7, 106 (2020). 10.1038/s41597-020-0448-0 PubMed DOI PMC
J. Naude, B. Mellado, J. Choma, F. Correa, S. Dahbi, B.Dwolatzky, L. Dwolatzky, K. Hayasi, B. Lieberman, C. Maslo, K. Monnakgotla, X. Ruan, F. Stevenson,Worldwide effectiveness of various non-pharmaceutical intervention control strategies on the globalCOVID-19 pandemic: A linearised control model. medRxiv 2020.04.30.20085316v2 [Preprint]. 12 May2020. 10.1101/2020.04.30.20085316. DOI
R. Dandekar, G. Barbastathis, Neural network aided quarantine control model estimation of global COVID-19 spread. arXiv:2004.02752 [q-bio.PE] (2 April 2020). PubMed PMC
Gatto M., Bertuzzo E., Mari L., Miccoli S., Carraro L., Casagrandi R., Rinaldo A., Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proc. Natl. Acad. Sci. U.S.A. 117, 10484–10491 (2020). 10.1073/pnas.2004978117 PubMed DOI PMC
Jarvis C. I., Van Zandvoort K., Gimma A., Prem K., Klepac P., Rubin G. J., Edmunds W. J.; CMMID COVID-19 working group , Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 18, 124 (2020). 10.1186/s12916-020-01597-8 PubMed DOI PMC
Kraemer M. U. G., Yang C.-H., Gutierrez B., Wu C.-H., Klein B., Pigott D. M., du Plessis L., Faria N. R., Li R., Hanage W. P., Brownstein J. S., Layan M., Vespignani A., Tian H., Dye C., Pybus O. G., Scarpino S. V.; Open COVID-19 Data Working Group , The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 368, 493–497 (2020). 10.1126/science.abb4218 PubMed DOI PMC
Kucharski A. J., Russell T. W., Diamond C., Liu Y., Edmunds J., Funk S., Eggo R. M., Sun F., Jit M., Munday J. D., Davies N., Gimma A., van Zandvoort K., Gibbs H., Hellewell J., Jarvis C. I., Clifford S., Quilty B. J., Bosse N. I., Abbott S., Klepac P., Flasche S.; Centre for Mathematical Modelling of Infectious Diseases COVID-19 working group , Early dynamics of transmission and control of COVID-19: A mathematical modelling study. Lancet Infect. Dis. 20, 553–558 (2020). 10.1016/S1473-3099(20)30144-4 PubMed DOI PMC
L. Lorch, W. Trouleau, S. Tsirtsis, A. Szanto, B. Schölkopf, M. Gomez-Rodriguez, A spatiotemporal epidemic model to quantify the effects of contact tracing, testing, and containment. arXiv:2004.07641 [cs.LG] (15 April 2020).
Maier B. F., Brockmann D., Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science 368, 742–746 (2020). 10.1126/science.abb4557 PubMed DOI PMC
L. Orea, I. Álvarez, “How effective has been the Spanish lockdown to battle COVID-19? A spatial analysis of the coronavirus propagation across provinces” (Tech. Rep. Working Paper 2020-03, FEDEA, 2020). PubMed PMC
B. J. Quilty, C. Diamond, Y. Liu, H. Gibbs, T. W. Russell, C.I. Jarvis, K. Prem, C. A. B. Pearson, S. Clifford, S. Flasche, CMMID COVID-19 working group, P.Klepac, R. M. Eggo, M. Jit, The effect of inter-city travel restrictions on geographical spread ofCOVID-19: Evidence from Wuhan, China. medRxiv 2020.04.16.20067504v1 [Preprint]. 21 April 2020.10.1101/2020.04.16.20067504. DOI
S. B. Villas-Boas, J. Sears, M. Villas-Boas, V. Villas-Boas, Are we #StayingHome to flatten the curve? (Tech. Rep. CUDARE Working Papers, UC Berkeley: Department of Agricultural and Resource Economics, 2020); https://escholarship.org/uc/item/5h97n884.
Siedner M. J., Harling G., Reynolds Z., Gilbert R. F., Haneuse S., Venkataramani A. S., Tsai A. C., Social distancing to slow the US COVID-19 epidemic: Longitudinal pretest-posttest comparison group study. PLOS Med. 17, e1003244 (2020). 10.1371/journal.pmed.1003244 PubMed DOI PMC
Rotation-based schedules in elementary schools to prevent COVID-19 spread: a simulation study
Do elections accelerate the COVID-19 pandemic?: Evidence from a natural experiment
Delays, Masks, the Elderly, and Schools: First Covid-19 Wave in the Czech Republic
Inferring the effectiveness of government interventions against COVID-19