Seasonal variation in SARS-CoV-2 transmission in temperate climates: A Bayesian modelling study in 143 European regions
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MC_PC_19012
Medical Research Council - United Kingdom
MR/R015600/1
Medical Research Council - United Kingdom
Department of Health - United Kingdom
MR/V038109/1
Medical Research Council - United Kingdom
PubMed
36026483
PubMed Central
PMC9455844
DOI
10.1371/journal.pcbi.1010435
PII: PCOMPBIOL-D-21-01911
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- COVID-19 * epidemiologie MeSH
- lidé MeSH
- podnebí MeSH
- roční období MeSH
- SARS-CoV-2 * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Although seasonal variation has a known influence on the transmission of several respiratory viral infections, its role in SARS-CoV-2 transmission remains unclear. While there is a sizable and growing literature on environmental drivers of COVID-19 transmission, recent reviews have highlighted conflicting and inconclusive findings. This indeterminacy partly owes to the fact that seasonal variation relates to viral transmission by a complicated web of causal pathways, including many interacting biological and behavioural factors. Since analyses of specific factors cannot determine the aggregate strength of seasonal forcing, we sidestep the challenge of disentangling various possible causal paths in favor of a holistic approach. We model seasonality as a sinusoidal variation in transmission and infer a single Bayesian estimate of the overall seasonal effect. By extending two state-of-the-art models of non-pharmaceutical intervention (NPI) effects and their datasets covering 143 regions in temperate Europe, we are able to adjust our estimates for the role of both NPIs and mobility patterns in reducing transmission. We find strong seasonal patterns, consistent with a reduction in the time-varying reproduction number R(t) (the expected number of new infections generated by an infectious individual at time t) of 42.1% (95% CI: 24.7%-53.4%) from the peak of winter to the peak of summer. These results imply that the seasonality of SARS-CoV-2 transmission is comparable in magnitude to the most effective individual NPIs but less than the combined effect of multiple interventions.
Centre for Theoretical Studies Charles University Prague Czech Republic
Department of Computer Science University of Bristol Bristol United Kingdom
Department of Engineering Science University of Oxford Oxford United Kingdom
Department of Health Policy London School of Economics and Political Science London United Kingdom
Department of Public Health University of Copenhagen Copenhagen Denmark
Department of Statistics University of Oxford Oxford United Kingdom
Faculty of Medicine School of Public Health Imperial College London London United Kingdom
Future of Humanity Institute University of Oxford Oxford United Kingdom
Zobrazit více v PubMed
Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science. 2020;368(6493):860–868. doi: 10.1126/science.abb5793 PubMed DOI PMC
Moriyama M, Hugentobler WJ, Iwasaki A. Seasonality of respiratory viral infections. Annual review of virology. 2020;7:83–101. doi: 10.1146/annurev-virology-012420-022445 PubMed DOI
Ma Y, Pei S, Shaman J, Dubrow R, Chen K. Role of meteorological factors in the transmission of SARS-CoV-2 in the United States. Nat Commun. 2021;12(3602):1–9. doi: 10.1038/s41467-021-23866-7 PubMed DOI PMC
Landier J, Paireau J, Rebaudet S, Legendre E, Lehot L, Fontanet A, et al.. Cold and dry winter conditions are associated with greater SARS-CoV-2 transmission at regional level in western countries during the first epidemic wave. Sci Rep. 2021;11(12756):1–13. doi: 10.1038/s41598-021-91798-9 PubMed DOI PMC
Sajadi MM, Habibzadeh P, Vintzileos A, Shokouhi S, Miralles-Wilhelm F, Amoroso A. Temperature, humidity, and latitude analysis to estimate potential spread and seasonality of coronavirus disease 2019 (COVID-19). JAMA network open. 2020;3(6):e2011834–e2011834. doi: 10.1001/jamanetworkopen.2020.11834 PubMed DOI PMC
Smith TP, Dorigatti I, Mishra S, Volz E, Walker PGT, Ragonnet-Cronin M, et al.. Environmental drivers of SARS-CoV-2 lineage B.1.1.7 transmission intensity. medRxiv. 2021.
Chen S, Prettner K, Kuhn M, Geldsetzer P, Wang C, Bärnighausen T, et al.. Climate and the spread of COVID-19. Scientific Reports. 2021;11(1):1–6. doi: 10.1038/s41598-021-87692-z PubMed DOI PMC
Poirier C, Luo W, Majumder MS, Liu D, Mandl KD, Mooring TA, et al.. The role of environmental factors on transmission rates of the COVID-19 outbreak: an initial assessment in two spatial scales. Scientific reports. 2020;10(1):1–11. doi: 10.1038/s41598-020-74089-7 PubMed DOI PMC
Carlson CJ, Gomez AC, Bansal S, Ryan SJ. Misconceptions about weather and seasonality must not misguide COVID-19 response. Nature Communications. 2020;11(1):1–4. doi: 10.1038/s41467-020-18150-z PubMed DOI PMC
Baker RE, Yang W, Vecchi GA, Metcalf CJE, Grenfell BT. Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic. Science. 2020;369(6501):315–319. doi: 10.1126/science.abc2535 PubMed DOI PMC
McClymont H, Hu W. Weather Variability and COVID-19 Transmission: A Review of Recent Research. International journal of environmental research and public health. 2021;18(2):396. doi: 10.3390/ijerph18020396 PubMed DOI PMC
Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M. Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol. 2010;8(2):e1000316. doi: 10.1371/journal.pbio.1000316 PubMed DOI PMC
Yang W, Elankumaran S, Marr LC. Relationship between humidity and influenza A viability in droplets and implications for influenza’s seasonality. PloS one. 2012;7(10):e46789. doi: 10.1371/journal.pone.0046789 PubMed DOI PMC
Lowen AC, Mubareka S, Steel J, Palese P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007;3(10):e151. doi: 10.1371/journal.ppat.0030151 PubMed DOI PMC
Kudo E, Song E, Yockey LJ, Rakib T, Wong PW, Homer RJ, et al.. Low ambient humidity impairs barrier function and innate resistance against influenza infection. Proceedings of the National Academy of Sciences. 2019;116(22):10905–10910. doi: 10.1073/pnas.1902840116 PubMed DOI PMC
Foxman EF, Storer JA, Vanaja K, Levchenko A, Iwasaki A. Two interferon-independent double-stranded RNA-induced host defense strategies suppress the common cold virus at warm temperature. Proceedings of the National Academy of Sciences. 2016;113(30):8496–8501. doi: 10.1073/pnas.1601942113 PubMed DOI PMC
Lofgren E, Fefferman NH, Naumov YN, Gorski J, Naumova EN. Influenza seasonality: underlying causes and modeling theories. Journal of virology. 2007;81(11):5429–5436. doi: 10.1128/JVI.01680-06 PubMed DOI PMC
Willem L, Van Kerckhove K, Chao DL, Hens N, Beutels P. A nice day for an infection? Weather conditions and social contact patterns relevant to influenza transmission. PloS one. 2012;7(11):e48695. doi: 10.1371/journal.pone.0048695 PubMed DOI PMC
Ewing A, Lee EC, Viboud C, Bansal S. Contact, travel, and transmission: The impact of winter holidays on influenza dynamics in the United States. The Journal of infectious diseases. 2017;215(5):732–739. doi: 10.1093/infdis/jiw642 PubMed DOI PMC
Eames KT, Tilston NL, Brooks-Pollock E, Edmunds WJ. Measured dynamic social contact patterns explain the spread of H1N1v influenza. PLoS Comput Biol. 2012;8(3):e1002425. doi: 10.1371/journal.pcbi.1002425 PubMed DOI PMC
Lipsitch M, Viboud C. Influenza seasonality: lifting the fog. Proceedings of the National Academy of Sciences. 2009;106(10):3645–3646. doi: 10.1073/pnas.0900933106 PubMed DOI PMC
Smith TP, Flaxman S, Gallinat AS, Kinosian SP, Stemkovski M, Unwin HJT, et al.. Temperature and population density influence SARS-CoV-2 transmission in the absence of nonpharmaceutical interventions. Proc Natl Acad Sci USA. 2021;118(25):e2019284118. doi: 10.1073/pnas.2019284118 PubMed DOI PMC
Brauner JM, Mindermann S, Sharma M, Johnston D, Salvatier J, Gavenčiak T, et al.. Inferring the effectiveness of government interventions against COVID-19. Science. 2021;371 (6531). doi: 10.1126/science.abd9338 PubMed DOI PMC
Sharma M, Mindermann S, Rogers-Smith C, Leech G, Snodin B, Ahuja J, et al.. Understanding the effectiveness of government interventions against the resurgence of COVID-19 in Europe. Nature communications. 2021;12(1):1–13. doi: 10.1038/s41467-021-26013-4 PubMed DOI PMC
Stolwijk A, Straatman H, Zielhuis G. Studying seasonality by using sine and cosine functions in regression analysis. Journal of Epidemiology & Community Health. 1999;53(4):235–238. doi: 10.1136/jech.53.4.235 PubMed DOI PMC
Allen LJ, Brauer F, Van den Driessche P, Wu J. Mathematical epidemiology. vol. 1945. Springer; 2008.
Sharma M, Mindermann S, Brauner J, Leech G, Stephenson A, Gavenčiak T, et al.. How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? In: Advances in Neural Information Processing Systems. vol. 33; 2020. p. 12175–12186. Available from: https://proceedings.neurips.cc/paper/2020/file/8e3308c853e47411c761429193511819-Paper.pdf.
Jódar L, Villanueva RJ, Arenas A. Modeling the spread of seasonal epidemiological diseases: theory and applications. Mathematical and Computer Modelling. 2008;48(3-4):548–557. doi: 10.1016/j.mcm.2007.08.017 DOI
White L, Mandl J, Gomes M, Bodley-Tickell A, Cane P, Perez-Brena P, et al.. Understanding the transmission dynamics of respiratory syncytial virus using multiple time series and nested models. Mathematical biosciences. 2007;209(1):222–239. doi: 10.1016/j.mbs.2006.08.018 PubMed DOI PMC
Weber A, Weber M, Milligan P. Modeling epidemics caused by respiratory syncytial virus (RSV). Mathematical biosciences. 2001;172(2):95–113. doi: 10.1016/S0025-5564(01)00066-9 PubMed DOI
Hoffman MD, Gelman A, et al.. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res. 2014;15(1):1593–1623.
Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. The Lancet infectious diseases. 2020;20(5):533–534. doi: 10.1016/S1473-3099(20)30120-1 PubMed DOI PMC
Neher RA, Dyrdak R, Druelle V, Hodcroft EB, Albert J. Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss medical weekly. 2020;150 (1112). PubMed
Mishra S, Mindermann S, Sharma M, Whittaker C, Mellan TA, Wilton T, et al.. Changing composition of SARS-CoV-2 lineages and rise of Delta variant in England. EClinicalMedicine. 2021;39:101064. doi: 10.1016/j.eclinm.2021.101064 PubMed DOI PMC
Price RHM, Graham C, Ramalingam S. Association between viral seasonality and meteorological factors. Scientific Reports. 2019;9(1). doi: 10.1038/s41598-018-37481-y PubMed DOI PMC
Chao DL, Halloran ME, Longini IM. School opening dates predict pandemic influenza A (H1N1) outbreaks in the United States. The Journal of infectious diseases. 2010;202(6):877–880. doi: 10.1086/655810 PubMed DOI PMC
Grenfell BT, Pybus OG, Gog JR, Wood JL, Daly JM, Mumford JA, et al.. Unifying the epidemiological and evolutionary dynamics of pathogens. science. 2004;303(5656):327–332. doi: 10.1126/science.1090727 PubMed DOI
Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;. doi: 10.1016/j.cell.2021.01.007 PubMed DOI PMC
Okell LC, Verity R, Watson OJ, Mishra S, Walker P, Whittaker C, et al.. Have deaths from COVID-19 in Europe plateaued due to herd immunity? The Lancet. 2020;395(10241):e110–e111. doi: 10.1016/S0140-6736(20)31357-X PubMed DOI PMC