Seasonal variation in SARS-CoV-2 transmission in temperate climates: A Bayesian modelling study in 143 European regions

. 2022 Aug ; 18 (8) : e1010435. [epub] 20220826

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36026483

Grantová podpora
MC_PC_19012 Medical Research Council - United Kingdom
MR/R015600/1 Medical Research Council - United Kingdom
Department of Health - United Kingdom
MR/V038109/1 Medical Research Council - United Kingdom

Odkazy

PubMed 36026483
PubMed Central PMC9455844
DOI 10.1371/journal.pcbi.1010435
PII: PCOMPBIOL-D-21-01911
Knihovny.cz E-zdroje

Although seasonal variation has a known influence on the transmission of several respiratory viral infections, its role in SARS-CoV-2 transmission remains unclear. While there is a sizable and growing literature on environmental drivers of COVID-19 transmission, recent reviews have highlighted conflicting and inconclusive findings. This indeterminacy partly owes to the fact that seasonal variation relates to viral transmission by a complicated web of causal pathways, including many interacting biological and behavioural factors. Since analyses of specific factors cannot determine the aggregate strength of seasonal forcing, we sidestep the challenge of disentangling various possible causal paths in favor of a holistic approach. We model seasonality as a sinusoidal variation in transmission and infer a single Bayesian estimate of the overall seasonal effect. By extending two state-of-the-art models of non-pharmaceutical intervention (NPI) effects and their datasets covering 143 regions in temperate Europe, we are able to adjust our estimates for the role of both NPIs and mobility patterns in reducing transmission. We find strong seasonal patterns, consistent with a reduction in the time-varying reproduction number R(t) (the expected number of new infections generated by an infectious individual at time t) of 42.1% (95% CI: 24.7%-53.4%) from the peak of winter to the peak of summer. These results imply that the seasonality of SARS-CoV-2 transmission is comparable in magnitude to the most effective individual NPIs but less than the combined effect of multiple interventions.

Zobrazit více v PubMed

Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science. 2020;368(6493):860–868. doi: 10.1126/science.abb5793 PubMed DOI PMC

Moriyama M, Hugentobler WJ, Iwasaki A. Seasonality of respiratory viral infections. Annual review of virology. 2020;7:83–101. doi: 10.1146/annurev-virology-012420-022445 PubMed DOI

Ma Y, Pei S, Shaman J, Dubrow R, Chen K. Role of meteorological factors in the transmission of SARS-CoV-2 in the United States. Nat Commun. 2021;12(3602):1–9. doi: 10.1038/s41467-021-23866-7 PubMed DOI PMC

Landier J, Paireau J, Rebaudet S, Legendre E, Lehot L, Fontanet A, et al.. Cold and dry winter conditions are associated with greater SARS-CoV-2 transmission at regional level in western countries during the first epidemic wave. Sci Rep. 2021;11(12756):1–13. doi: 10.1038/s41598-021-91798-9 PubMed DOI PMC

Sajadi MM, Habibzadeh P, Vintzileos A, Shokouhi S, Miralles-Wilhelm F, Amoroso A. Temperature, humidity, and latitude analysis to estimate potential spread and seasonality of coronavirus disease 2019 (COVID-19). JAMA network open. 2020;3(6):e2011834–e2011834. doi: 10.1001/jamanetworkopen.2020.11834 PubMed DOI PMC

Smith TP, Dorigatti I, Mishra S, Volz E, Walker PGT, Ragonnet-Cronin M, et al.. Environmental drivers of SARS-CoV-2 lineage B.1.1.7 transmission intensity. medRxiv. 2021.

Chen S, Prettner K, Kuhn M, Geldsetzer P, Wang C, Bärnighausen T, et al.. Climate and the spread of COVID-19. Scientific Reports. 2021;11(1):1–6. doi: 10.1038/s41598-021-87692-z PubMed DOI PMC

Poirier C, Luo W, Majumder MS, Liu D, Mandl KD, Mooring TA, et al.. The role of environmental factors on transmission rates of the COVID-19 outbreak: an initial assessment in two spatial scales. Scientific reports. 2020;10(1):1–11. doi: 10.1038/s41598-020-74089-7 PubMed DOI PMC

Carlson CJ, Gomez AC, Bansal S, Ryan SJ. Misconceptions about weather and seasonality must not misguide COVID-19 response. Nature Communications. 2020;11(1):1–4. doi: 10.1038/s41467-020-18150-z PubMed DOI PMC

Baker RE, Yang W, Vecchi GA, Metcalf CJE, Grenfell BT. Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic. Science. 2020;369(6501):315–319. doi: 10.1126/science.abc2535 PubMed DOI PMC

McClymont H, Hu W. Weather Variability and COVID-19 Transmission: A Review of Recent Research. International journal of environmental research and public health. 2021;18(2):396. doi: 10.3390/ijerph18020396 PubMed DOI PMC

Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M. Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol. 2010;8(2):e1000316. doi: 10.1371/journal.pbio.1000316 PubMed DOI PMC

Yang W, Elankumaran S, Marr LC. Relationship between humidity and influenza A viability in droplets and implications for influenza’s seasonality. PloS one. 2012;7(10):e46789. doi: 10.1371/journal.pone.0046789 PubMed DOI PMC

Lowen AC, Mubareka S, Steel J, Palese P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007;3(10):e151. doi: 10.1371/journal.ppat.0030151 PubMed DOI PMC

Kudo E, Song E, Yockey LJ, Rakib T, Wong PW, Homer RJ, et al.. Low ambient humidity impairs barrier function and innate resistance against influenza infection. Proceedings of the National Academy of Sciences. 2019;116(22):10905–10910. doi: 10.1073/pnas.1902840116 PubMed DOI PMC

Foxman EF, Storer JA, Vanaja K, Levchenko A, Iwasaki A. Two interferon-independent double-stranded RNA-induced host defense strategies suppress the common cold virus at warm temperature. Proceedings of the National Academy of Sciences. 2016;113(30):8496–8501. doi: 10.1073/pnas.1601942113 PubMed DOI PMC

Lofgren E, Fefferman NH, Naumov YN, Gorski J, Naumova EN. Influenza seasonality: underlying causes and modeling theories. Journal of virology. 2007;81(11):5429–5436. doi: 10.1128/JVI.01680-06 PubMed DOI PMC

Willem L, Van Kerckhove K, Chao DL, Hens N, Beutels P. A nice day for an infection? Weather conditions and social contact patterns relevant to influenza transmission. PloS one. 2012;7(11):e48695. doi: 10.1371/journal.pone.0048695 PubMed DOI PMC

Ewing A, Lee EC, Viboud C, Bansal S. Contact, travel, and transmission: The impact of winter holidays on influenza dynamics in the United States. The Journal of infectious diseases. 2017;215(5):732–739. doi: 10.1093/infdis/jiw642 PubMed DOI PMC

Eames KT, Tilston NL, Brooks-Pollock E, Edmunds WJ. Measured dynamic social contact patterns explain the spread of H1N1v influenza. PLoS Comput Biol. 2012;8(3):e1002425. doi: 10.1371/journal.pcbi.1002425 PubMed DOI PMC

Lipsitch M, Viboud C. Influenza seasonality: lifting the fog. Proceedings of the National Academy of Sciences. 2009;106(10):3645–3646. doi: 10.1073/pnas.0900933106 PubMed DOI PMC

Smith TP, Flaxman S, Gallinat AS, Kinosian SP, Stemkovski M, Unwin HJT, et al.. Temperature and population density influence SARS-CoV-2 transmission in the absence of nonpharmaceutical interventions. Proc Natl Acad Sci USA. 2021;118(25):e2019284118. doi: 10.1073/pnas.2019284118 PubMed DOI PMC

Brauner JM, Mindermann S, Sharma M, Johnston D, Salvatier J, Gavenčiak T, et al.. Inferring the effectiveness of government interventions against COVID-19. Science. 2021;371 (6531). doi: 10.1126/science.abd9338 PubMed DOI PMC

Sharma M, Mindermann S, Rogers-Smith C, Leech G, Snodin B, Ahuja J, et al.. Understanding the effectiveness of government interventions against the resurgence of COVID-19 in Europe. Nature communications. 2021;12(1):1–13. doi: 10.1038/s41467-021-26013-4 PubMed DOI PMC

Stolwijk A, Straatman H, Zielhuis G. Studying seasonality by using sine and cosine functions in regression analysis. Journal of Epidemiology & Community Health. 1999;53(4):235–238. doi: 10.1136/jech.53.4.235 PubMed DOI PMC

Allen LJ, Brauer F, Van den Driessche P, Wu J. Mathematical epidemiology. vol. 1945. Springer; 2008.

Sharma M, Mindermann S, Brauner J, Leech G, Stephenson A, Gavenčiak T, et al.. How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? In: Advances in Neural Information Processing Systems. vol. 33; 2020. p. 12175–12186. Available from: https://proceedings.neurips.cc/paper/2020/file/8e3308c853e47411c761429193511819-Paper.pdf.

Jódar L, Villanueva RJ, Arenas A. Modeling the spread of seasonal epidemiological diseases: theory and applications. Mathematical and Computer Modelling. 2008;48(3-4):548–557. doi: 10.1016/j.mcm.2007.08.017 DOI

White L, Mandl J, Gomes M, Bodley-Tickell A, Cane P, Perez-Brena P, et al.. Understanding the transmission dynamics of respiratory syncytial virus using multiple time series and nested models. Mathematical biosciences. 2007;209(1):222–239. doi: 10.1016/j.mbs.2006.08.018 PubMed DOI PMC

Weber A, Weber M, Milligan P. Modeling epidemics caused by respiratory syncytial virus (RSV). Mathematical biosciences. 2001;172(2):95–113. doi: 10.1016/S0025-5564(01)00066-9 PubMed DOI

Hoffman MD, Gelman A, et al.. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res. 2014;15(1):1593–1623.

Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. The Lancet infectious diseases. 2020;20(5):533–534. doi: 10.1016/S1473-3099(20)30120-1 PubMed DOI PMC

Neher RA, Dyrdak R, Druelle V, Hodcroft EB, Albert J. Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss medical weekly. 2020;150 (1112). PubMed

Mishra S, Mindermann S, Sharma M, Whittaker C, Mellan TA, Wilton T, et al.. Changing composition of SARS-CoV-2 lineages and rise of Delta variant in England. EClinicalMedicine. 2021;39:101064. doi: 10.1016/j.eclinm.2021.101064 PubMed DOI PMC

Price RHM, Graham C, Ramalingam S. Association between viral seasonality and meteorological factors. Scientific Reports. 2019;9(1). doi: 10.1038/s41598-018-37481-y PubMed DOI PMC

Chao DL, Halloran ME, Longini IM. School opening dates predict pandemic influenza A (H1N1) outbreaks in the United States. The Journal of infectious diseases. 2010;202(6):877–880. doi: 10.1086/655810 PubMed DOI PMC

Grenfell BT, Pybus OG, Gog JR, Wood JL, Daly JM, Mumford JA, et al.. Unifying the epidemiological and evolutionary dynamics of pathogens. science. 2004;303(5656):327–332. doi: 10.1126/science.1090727 PubMed DOI

Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;. doi: 10.1016/j.cell.2021.01.007 PubMed DOI PMC

Okell LC, Verity R, Watson OJ, Mishra S, Walker P, Whittaker C, et al.. Have deaths from COVID-19 in Europe plateaued due to herd immunity? The Lancet. 2020;395(10241):e110–e111. doi: 10.1016/S0140-6736(20)31357-X PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...