Understanding the effectiveness of government interventions against the resurgence of COVID-19 in Europe
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
EP/S024050/1)
RCUK | Engineering and Physical Sciences Research Council (EPSRC)
MC_PC_19012
Medical Research Council - United Kingdom
EP/V002910/1
RCUK | Engineering and Physical Sciences Research Council (EPSRC)
MR/R015600/1
Medical Research Council - United Kingdom
BB/T008784/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
EP/S024050/1
RCUK | Engineering and Physical Sciences Research Council (EPSRC)
MR/V038109/1
Medical Research Council - United Kingdom
PubMed
34611158
PubMed Central
PMC8492703
DOI
10.1038/s41467-021-26013-4
PII: 10.1038/s41467-021-26013-4
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- COVID-19 epidemiologie virologie MeSH
- lidé MeSH
- SARS-CoV-2 fyziologie MeSH
- teoretické modely MeSH
- vláda * MeSH
- základní reprodukční číslo MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
European governments use non-pharmaceutical interventions (NPIs) to control resurging waves of COVID-19. However, they only have outdated estimates for how effective individual NPIs were in the first wave. We estimate the effectiveness of 17 NPIs in Europe's second wave from subnational case and death data by introducing a flexible hierarchical Bayesian transmission model and collecting the largest dataset of NPI implementation dates across Europe. Business closures, educational institution closures, and gathering bans reduced transmission, but reduced it less than they did in the first wave. This difference is likely due to organisational safety measures and individual protective behaviours-such as distancing-which made various areas of public life safer and thereby reduced the effect of closing them. Specifically, we find smaller effects for closing educational institutions, suggesting that stringent safety measures made schools safer compared to the first wave. Second-wave estimates outperform previous estimates at predicting transmission in Europe's third wave.
Department of Computer Science University of Bristol Bristol UK
Department of Engineering Science University of Oxford Oxford UK
Department of Health Policy London School of Economics and Political Science London UK
Department of Mathematics Imperial College London London UK
Department of Statistics University of Oxford Oxford UK
Faculty of Public Health and Policy London School of Hygiene and Tropical Medicine London UK
Future of Humanity Institute University of Oxford Oxford UK
Independent scholar Prague Czech Republic
Manchester University NHS Foundation Trust Manchester UK
Mathematical Physical and Life Sciences Doctoral Training Centre University of Oxford Oxford UK
Medical Research Council Laboratory of Molecular Biology Cambridge UK
Medical Sciences Division University of Oxford Oxford UK
OATML Group Department of Computer Science University of Oxford Oxford UK
School of Life Sciences University of Warwick Coventry UK
Section of Epidemiology Department of Public Health University of Copenhagen Copenhagen Denmark
The Francis Crick Institute London UK
Zobrazit více v PubMed
Flaxman S, et al. Imperial College COVID-19 Response Team, A. C. Ghani, C. A. Donnelly, S. Riley, M. A. C. Vollmer, N. M. Ferguson, L. C. Okell, S. Bhatt, Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. 2020;584:257–261. doi: 10.1038/s41586-020-2405-7. PubMed DOI
Brauner JM, et al. Inferring the effectiveness of government interventions against COVID-19. Science. 2021;371:eabd9338. doi: 10.1126/science.abd9338. PubMed DOI PMC
Hsiang S, et al. The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature. 2020;584:262–267. doi: 10.1038/s41586-020-2404-8. PubMed DOI
Salje H, et al. Estimating the burden of SARS-CoV-2 in France. Science. 2020;369:208–211. doi: 10.1126/science.abc3517. PubMed DOI PMC
Looi M-K. Covid-19: is a second wave hitting Europe? Br. Med. J. 2020;371:m4113. doi: 10.1136/bmj.m4113. PubMed DOI
Griffin S. Covid-19: second wave death rate is doubling fortnightly but is lower and slower than in March. Br. Med. J. 2020;371:m4092. doi: 10.1136/bmj.m4092. PubMed DOI
Moore S, Hill EM, Tildesley MJ, Dyson L, Keeling MJ. Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study. Lancet Infect. Dis. 2021 doi: 10.1016/S1473-3099(21)00143-2. PubMed DOI PMC
Burki, T. K. Challenges in the rollout of COVID-19 vaccines worldwide. Lancet Respir. Med.10.1016/S2213-2600(21)00129-6 (2021). PubMed PMC
He Z, et al. Seroprevalence and humoral immune durability of anti-SARS-CoV-2 antibodies in Wuhan, China: a longitudinal, population-level, cross-sectional study. Lancet. 2021;397:1075–1084. doi: 10.1016/S0140-6736(21)00238-5. PubMed DOI PMC
McCarthy KR, et al. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science. 2021;371:1139–1142. doi: 10.1126/science.abf6950. PubMed DOI PMC
Volz, E. et al. The COVID-19 Genomics UK (COG-UK) consortium, assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature10.1038/s41586-021-03470-x (2021). PubMed
Sabino EC, et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet. 2021;397:452–455. doi: 10.1016/S0140-6736(21)00183-5. PubMed DOI PMC
Banholzer, N. et al. Estimating the effects of non-pharmaceutical interventions on the number of new infections with COVID-19 during the first epidemic wave. Preprint at bioRxiv10.1101/2021.01.15.21249884 (2021). PubMed PMC
Liu, Y., Morgenstern, C., Kelly, J., Lowe, R. CMMID COVID-19 Working Group, Jit, M. The impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territories. BMC Med. 10.1186/s12916-020-01872-8 (2021). PubMed PMC
Haug N, et al. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat. Hum. Behav. 2020;4:1303–1312. doi: 10.1038/s41562-020-01009-0. PubMed DOI
Sharma, M. et al. How robust are the estimated effects of nonpharmaceutical interventions against COVID-19? Preprint at arXivhttp://arxiv.org/abs/2007.13454 (2020).
Li Y, et al. Usher Network for COVID-19 Evidence Reviews (UNCOVER) group, The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number (R) of SARS-CoV-2: a modelling study across 131 countries. Lancet Infect. Dis. 2021;21:193–202. doi: 10.1016/S1473-3099(20)30785-4. PubMed DOI PMC
European Centre for Disease Prevention and Control, COVID-19 in children and the role of school settings in transmission—first update (2020).
YouGov, Personal measures taken to avoid COVID-19. https://yougov.co.uk/topics/international/articles-reports/2020/03/17/personal-measures-taken-avoid-covid-19) (2020).
Laydon DJ, Mishra S, Hinsley WR, et al.Modelling the impact of the tier system on SARS-CoV-2 transmission in the UK between the first and second national lockdowns. BMJ Open. 11, e050346 (2021). 10.1136/bmjopen-2021-050346. PubMed PMC
Davies, N. G. et al. Centre for mathematical modelling of infectious diseases COVID-19 working group, ISARIC4C investigators, association of tiered restrictions and a second lockdown with COVID-19 deaths and hospital admissions in England: a modelling study. Lancet Infect. Dis. 10.1016/S1473-3099(20)30984-1 (2020). PubMed PMC
Manica, M. et al. Impact of tiered restrictions on human activities and the epidemiology of the second wave of COVID-19 in Italy. Preprint at medRxivhttps://www.medrxiv.org/content/10.1101/2021.01.10.21249532v2.full-text (2021). PubMed DOI PMC
Schuessler AA. Ecological inference. Proc. Natl Acad. Sci. USA. 1999;96:10578–10581. doi: 10.1073/pnas.96.19.10578. PubMed DOI PMC
Cheng C, Barceló J, Hartnett AS, Kubinec R, Messerschmidt L. COVID-19 government response event dataset (CoronaNet v.1.0) Nat. Hum. Behav. 2020;4:756–768. doi: 10.1038/s41562-020-0909-7. PubMed DOI
Zheng Q, et al. HIT-COVID collaboration, HIT-COVID, a global database tracking public health interventions to COVID-19. Sci. Data. 2020;7:286. doi: 10.1038/s41597-020-00610-2. PubMed DOI PMC
Desvars-Larrive A, et al. A structured open dataset of government interventions in response to COVID-19. Sci. Data. 2020;7:285. doi: 10.1038/s41597-020-00609-9. PubMed DOI PMC
Hale, T., Petherick, A., Phillips, T., Webster, S., Kira, B. Oxford COVID-19 Government Response Tracker, Blavatnik School of Government. Working Paper (2020). PubMed
Soltesz, K. et al. On the sensitivity of non-pharmaceutical intervention models for SARS-CoV-2 spread estimation. Preprint at medRxiv10.1101/2020.06.10.20127324 (2020).
Ward, H. Antibody prevalence for SARS-CoV-2 in England following first peak of the pandemic: REACT2 study in 100,000 adults. Preprint at medRxiv10.1101/2020.08.12.20173690 (2020).
Wright, L., Steptoe, A., Fancourt, D. Trajectories of compliance with COVID-19 related guidelines: longitudinal analyses of 50,000 UK adults. Preprint at bioRxiv10.1101/2021.04.13.21255336 (2021). PubMed PMC
Mishra, S. et al. A COVID-19 model for local authorities of the United Kingdom. Preprint at medRxiv10.1101/2020.11.24.20236661 (2020).
Russell TW, et al. CMMID COVID-19 working group, reconstructing the early global dynamics of under-ascertained COVID-19 cases and infections. BMC Med. 2020;18:332. doi: 10.1186/s12916-020-01790-9. PubMed DOI PMC
Winship C, Western B. Multicollinearity and model misspecification. Sociol. Sci. 2016;3:627–649. doi: 10.15195/v3.a27. DOI
Dormann CF, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013;36:27–46. doi: 10.1111/j.1600-0587.2012.07348.x. DOI
Fetzer, T. Subsidizing the Spread of Covid19: Evidence From the UK’s Eat-out To-help-out Scheme (University of Warwick, Department of Economics, 2020).
Wong F, Collins JJ. Evidence that coronavirus superspreading is fat-tailed. Proc. Natl Acad. Sci. USA. 2020;117:29416–29418. doi: 10.1073/pnas.2018490117. PubMed DOI PMC
Kwon KS, et al. Evidence of long-distance droplet transmission of SARS-CoV-2 by direct air flow in a restaurant in Korea. J. Korean Med. Sci. 2020;35:e415. doi: 10.3346/jkms.2020.35.e415. PubMed DOI PMC
Hunter, P. R., Brainard, J. S., Grant, A. The effectiveness of the three tier system of local restrictions for control of COVID-19. Preprint at medRxiv10.1101/2020.11.22.20236422 (2020).
Atchison C, et al. Early perceptions and behavioural responses during the COVID-19 pandemic: a cross-sectional survey of UK adults. BMJ Open. 2021;11:e043577. doi: 10.1136/bmjopen-2020-043577. PubMed DOI PMC
Smith, L. E. et al. Adherence to the test, trace and isolate system: results from a time series of 21 nationally representative surveys in the UK (the COVID-19 Rapid Survey of Adherence to Interventions and Responses [CORSAIR] study) 10.1101/2020.09.15.20191957 (2020).
Otte Im Kampe, E., Lehfeld, A.-S., Buda, S., Buchholz, U., Haas, W. Surveillance of COVID-19 school outbreaks, Germany, March to August 2020. Euro Surveill. 10.2807/1560-7917.ES.2020.25.38.2001645 (2020). PubMed PMC
Torres, J. P. et al. Severe acute respiratory syndrome coronavirus 2 antibody prevalence in blood in a large school community subject to a coronavirus disease 2019 outbreak: a cross-sectional study. Clin. Infect. Dis. 955, e458–e465 (2020). PubMed PMC
Stein-Zamir, C. et al. A large COVID-19 outbreak in a high school 10 days after schools’ reopening, Israel, May 2020. Euro Surveill. 10.2807/1560-7917.ES.2020.25.29.2001352 (2020). PubMed PMC
Fontanet, A. et al. SARS-CoV-2 infection in schools in a northern French city: a retrospective serological cohort study in an area of high transmission, France, January to April 2020. Euro Surveill. 26, 10.2807/1560-7917.ES.2021.26.15.2001695 (2021). PubMed PMC
Fontanet A, Grant R, Greve-Isdahl M, Sridhar D. Covid-19: Keeping schools as safe as possible. Br. Med. J. 2021;372:n524. doi: 10.1136/bmj.n524. PubMed DOI
Alyssa, B. et al. Passing the Test: A Model-Based Analysis of Safe School-Reopening Strategies. Ann Intern Med. 174, 1090–1100 (2021). [Epub ahead of print 8 June 2021]. 10.7326/M21-0600 PubMed PMC
Landeros, A. et al. An examination of school reopening strategies during the SARS-CoV-2 pandemic. PLoS ONE. 16(5), e0251242 (2021). 10.1371/journal.pone.0251242. PubMed PMC
Dong, Y. et al. Epidemiology of COVID-19 among children in China. Pediatrics10.1542/peds.2020-0702 (2020). PubMed
Munday, J. D. et al. C. C.-19 W. Group. Estimating the impact of reopening schools on the reproduction number of SARS-CoV-2 in England, using weekly contact survey data. Preprint at medRxiv10.1101/2021.03.06.21252964 (2021). PubMed PMC
Rosenbaum PR, Rubin DB. Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J. R. Stat. Soc. 1983;45:212–218.
George EP. Box, Sampling and Bayes’ Inference in Scientific Modelling and Robustness. J. R. Stat. Soc. Ser. A. 1980;143:383–430. doi: 10.2307/2982063. DOI
Mishra S, et al. COVID-19 genomics UK (COG-UK) consortium, changing composition of SARS-CoV-2 lineages and rise of delta variant in England. EClinicalMedicine. 2021;39:101064. doi: 10.1016/j.eclinm.2021.101064. PubMed DOI PMC
Keeling, M. J., Dyson, L., Hill, E., Moore, S., Tildesley, M. (2020) Road map scenarios and sensitivity: steps 3 and 4. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/984533/S1229_Warwick_Road_Map_Scenarios_and_Sensitivity_Steps_3_and_4.pdf.
Sharma, M. et al. MrinankSharma/COVID19NPISecondWave: understanding the effectiveness of government interventions against the resurgence of COVID-19 in Europe.https://zenodo.org/record/5215823 (2021). PubMed PMC
Manica, M. et al. Effectiveness of regional restrictions in reducing SARS-CoV-2 transmission during the second wave of COVID-19, Italy. Preprint at medRxiv10.1101/2021.01.10.21249532 (2021).
Gandy, A., Mishra, S. ImperialCollegeLondon/covid19local: Website Release for Wednesday 11th March 2021, new doi for the week. https://zenodo.org/record/4609660 (2021).
COVID-19 Austria. https://www.covid19model.at/.
Fraser C. Estimating individual and household reproduction numbers in an emerging epidemic. PLoS ONE. 2007;2:e758. doi: 10.1371/journal.pone.0000758. PubMed DOI PMC
Bellman R, Harris T. On age-dependent binary branching processes. Ann. Math. 1952;55:280–295. doi: 10.2307/1969779. DOI
Champredon D, Dushoff J, Earn DJD. Equivalence of the Erlang-distributed SEIR epidemic model and the renewal equation. SIAM J. Appl. Math. 2018;78:3258–3278. doi: 10.1137/18M1186411. DOI
Davies, K. S. A. Coronavirus (COVID-19) Infection Survey, UK—Office for National Statistics https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/16april2021 (2021).
Riley S, et al. Resurgence of SARS-CoV-2: detection by community viral surveillance. Science. 2021;372:990–995. doi: 10.1126/science.abf0874. PubMed DOI PMC
Phan, D., Pradhan, N., Jankowiak, M. Composable effects for flexible and accelerated probabilistic programming in NumPyro. Preprint at arXivhttp://arxiv.org/abs/1912.11554 (2019).
Hoffman MD, Gelman A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 2014;15:1593–1623.
Banholzer N, et al. Estimating the effects of non-pharmaceutical interventions on the number of new infections with COVID-19 during the first epidemic wave. PLoS ONE. 2021;16:e0252827. doi: 10.1371/journal.pone.0252827. PubMed DOI PMC
Challen, R., Brooks-Pollock, E., Tsaneva-Atanasova, K., Danon, L. Meta-analysis of the SARS-CoV-2 serial interval and the impact of parameter uncertainty on the COVID-19 reproduction number. Preprint at medRxivhttps://www.medrxiv.org/content/10.1101/2020.11.17.20231548v1.abstract (2020). PubMed DOI PMC
Vehtari A, Gelman A, Gabry J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 2017;27:1413–1432. doi: 10.1007/s11222-016-9696-4. DOI