Biology of Glioblastoma Multiforme-Exploration of Mitotic Catastrophe as a Potential Treatment Modality
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
Q40/01 and SVV 2020
Charles University program PROGRES Q40/01 and SVV 2020
PubMed
32727112
PubMed Central
PMC7432846
DOI
10.3390/ijms21155324
PII: ijms21155324
Knihovny.cz E-resources
- Keywords
- benzimidazole carbamates, cell death, glioblastoma multiforme, microtubule-targeting agents, mitotic catastrophe,
- MeSH
- Glioblastoma * metabolism mortality therapy MeSH
- G2 Phase Cell Cycle Checkpoints * MeSH
- M Phase Cell Cycle Checkpoints * MeSH
- Humans MeSH
- Mitosis * MeSH
- Brain Neoplasms * metabolism mortality pathology therapy MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Glioblastoma multiforme (GBM) represents approximately 60% of all brain tumors in adults. This malignancy shows a high biological and genetic heterogeneity associated with exceptional aggressiveness, leading to a poor survival of patients. This review provides a summary of the basic biology of GBM cells with emphasis on cell cycle and cytoskeletal apparatus of these cells, in particular microtubules. Their involvement in the important oncosuppressive process called mitotic catastrophe will next be discussed along with select examples of microtubule-targeting agents, which are currently explored in this respect such as benzimidazole carbamate compounds. Select microtubule-targeting agents, in particular benzimidazole carbamates, induce G2/M cell cycle arrest and mitotic catastrophe in tumor cells including GBM, resulting in phenotypically variable cell fates such as mitotic death or mitotic slippage with subsequent cell demise or permanent arrest leading to senescence. Their effect is coupled with low toxicity in normal cells and not developed chemoresistance. Given the lack of efficient cytostatics or modern molecular target-specific compounds in the treatment of GBM, drugs inducing mitotic catastrophe might offer a new, efficient alternative to the existing clinical management of this at present incurable malignancy.
See more in PubMed
Louis D.N., Perry A., Reifenberger G., Von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016;131:803–820. doi: 10.1007/s00401-016-1545-1. PubMed DOI
Rock K., McArdle O., Forde P., Dunne M., Fitzpatrick D., O’Neill B., Faul C. A clinical review of treatment outcomes in glioblastoma multiforme—The validation in a non-trial population of the results of a randomised Phase III clinical trial: Has a more radical approach improved survival? Br. J. Radiol. 2012;85:e729–e733. doi: 10.1259/bjr/83796755. PubMed DOI PMC
Verhaak R.G.W., Hoadley K.A., Purdom E., Wang V., Qi Y., Wilkerson M.D., Miller C.R., Ding L., Golub T., Mesirov J.P., et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110. doi: 10.1016/j.ccr.2009.12.020. PubMed DOI PMC
Cloughesy T.F., Cavenee W.K., Mischel P.S. Glioblastoma: From Molecular Pathology to Targeted Treatment. Annu. Rev. Pathol. Mech. Dis. 2014;9:1–25. doi: 10.1146/annurev-pathol-011110-130324. PubMed DOI
Aldape K., Zadeh G., Mansouri S., Reifenberger G., Von Deimling A. Glioblastoma: Pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129:829–848. doi: 10.1007/s00401-015-1432-1. PubMed DOI
Klughammer J., Kiesel B., Roetzer T., Fortelny N., Nemc A., Nenning K.-H., Furtner J., Sheffield N.C., Datlinger P., Peter N., et al. The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space. Nat. Med. 2018;24:1611–1624. doi: 10.1038/s41591-018-0156-x. PubMed DOI PMC
Tandel G.S., Biswas M., Kakde O.G., Tiwari A., Suri H.S., Turk M., Laird J.R., Asare C.K., Ankrah A.A., Khanna N.N., et al. A Review on a Deep Learning Perspective in Brain Cancer Classification. Cancers. 2019;11:111. doi: 10.3390/cancers11010111. PubMed DOI PMC
Bhargava S., Patil V., Mahalingam K., Somasundaram K. Elucidation of the genetic and epigenetic landscape alterations in RNA binding proteins in glioblastoma. Oncotarget. 2017;8:16650–16668. doi: 10.18632/oncotarget.14287. PubMed DOI PMC
Brennan C., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., Zheng S., Chakravarty D., Sanborn J.Z., Berman S.H., et al. The Somatic Genomic Landscape of Glioblastoma. Cell. 2013;155:462–477. doi: 10.1016/j.cell.2013.09.034. PubMed DOI PMC
Pesenti C., Navone S.E., Guarnaccia L., Terrasi A., Costanza J., Silipigni R., Guarneri S., Fusco N., Fontana L., Locatelli M., et al. The Genetic Landscape of Human Glioblastoma and Matched Primary Cancer Stem Cells Reveals Intratumour Similarity and Intertumour Heterogeneity. Stem Cells Int. 2019;2019:2617030. doi: 10.1155/2019/2617030. PubMed DOI PMC
Hohmann T., Dehghani F. The Cytoskeleton-A Complex Interacting Meshwork. Cells. 2019;8:362. doi: 10.3390/cells8040362. PubMed DOI PMC
Hirabayashi Y., Gotoh Y. Stage-dependent fate determination of neural precursor cells in mouse forebrain. Neurosci. Res. 2005;51:331–336. doi: 10.1016/j.neures.2005.01.004. PubMed DOI
Murk K., Blanco-Suarez E.M., Cockbill L.M.R., Banks P., Hanley J.G. The antagonistic modulation of Arp2/3 activity by N-WASP, WAVE2 and PICK1 defines dynamic changes in astrocyte morphology. J. Cell Sci. 2013;126:3873–3883. doi: 10.1242/jcs.125146. PubMed DOI PMC
Racchetti G., D’Alessandro R., Meldolesi J. Astrocyte stellation, a process dependent on Rac1 is sustained by the regulated exocytosis of enlargeosomes. Glia. 2012;60:465–475. doi: 10.1002/glia.22280. PubMed DOI PMC
Sultana S., Sernett S.W., Bellin R.M., Robson R.M., Skalli O. Intermediate filament protein synemin is transiently expressed in a subset of astrocytes during development. Glia. 2000;30:143–153. doi: 10.1002/(SICI)1098-1136(200004)30:2<143::AID-GLIA4>3.0.CO;2-Z. PubMed DOI
Beppu T., Kamada K., Yoshida Y., Arai H., Ogasawara K., Ogawa A. Change of oxygen pressure in glioblastoma tissue under various conditions. J. Neuro Oncol. 2002;58:47–52. doi: 10.1023/A:1015832726054. PubMed DOI
Calabrese C., Poppleton H., Kocak M., Hogg T.L., Fuller C., Hamner B., Oh E.Y., Gaber M.W., Finklestein D., Allen M., et al. A Perivascular Niche for Brain Tumor Stem Cells. Cancer Cell. 2007;11:69–82. doi: 10.1016/j.ccr.2006.11.020. PubMed DOI
Caspani E.M., Echevarria D., Rottner K., Small J.V. Live imaging of glioblastoma cells in brain tissue shows requirement of actin bundles for migration. Neuron Glia Biol. 2006;2:105–114. doi: 10.1017/S1740925X06000111. PubMed DOI
Friedl P., Wolf K. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat. Rev. Cancer. 2003;3:362–374. doi: 10.1038/nrc1075. PubMed DOI
Liu C.J., Shamsan G.A., Akkin T., Odde D.J. Glioma Cell Migration Dynamics in Brain Tissue Assessed by Multimodal Optical Imaging. Biophys. J. 2019;117:1179–1188. doi: 10.1016/j.bpj.2019.08.010. PubMed DOI PMC
Ensign S.P.F., Mathews I.T., Symons M.H., Berens M.E., Tran N.L. Implications of Rho GTPase Signaling in Glioma Cell Invasion and Tumor Progression. Front. Oncol. 2013;3:241. doi: 10.3389/fonc.2013.00241. PubMed DOI PMC
Hirata E., Yukinaga H., Kamioka Y., Arakawa Y., Miyamoto S., Okada T., Sahai E., Matsuda M. In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion. J. Cell Sci. 2012;125:858–868. doi: 10.1242/jcs.089995. PubMed DOI
Yamaguchi H., Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta Mol. Cell Res. 2007;1773:642–652. doi: 10.1016/j.bbamcr.2006.07.001. PubMed DOI PMC
Hoelzinger D.B., Mariani L., Weis J., Woyke T., Berens T.J., McDonough W.S., Sloan A., Coons S.W., Berens M.E. Gene Expression Profile of Glioblastoma Multiforme Invasive Phenotype Points to New Therapeutic Targets. Neoplasia. 2005;7:7–16. doi: 10.1593/neo.04535. PubMed DOI PMC
Tynninen O., Carpén O., Jääskeläinen J., Paavonen T., Paetau A. Ezrin expression in tissue microarray of primary and recurrent gliomas. Neuropathol. Appl. Neurobiol. 2004;30:472–477. doi: 10.1111/j.1365-2990.2004.00562.x. PubMed DOI
Geiger K.D., Stoldt P., Schlote W., Derouiche A. Ezrin Immunoreactivity Is Associated with Increasing Malignancy of Astrocytic Tumors but Is Absent in Oligodendrogliomas. Am. J. Pathol. 2000;157:1785–1793. doi: 10.1016/S0002-9440(10)64816-X. PubMed DOI PMC
Peraud A., Mondal S., Hawkins C., Mastronardi M., Bailey K., Rutka J.T. Expression of fascin, an actin-bundling protein, in astrocytomas of varying grades. Brain Tumor Pathol. 2003;20:53–58. doi: 10.1007/BF02483447. PubMed DOI
Gunnersen J.M., Spirkoska V., Smith P.E., Danks R.A., Tan S.S. Growth and migration markers of rat C6 glioma cells identified by serial analysis of gene expresson. Glia. 2000;32:146–154. doi: 10.1002/1098-1136(200011)32:2<146::AID-GLIA40>3.0.CO;2-3. PubMed DOI
Rickman D.S., Bobek M.P., Misek D.E., Kuick R., Blaivas M., Kurnit D.M., Taylor J., Hanash S.M. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res. 2001;61:6885–6891. PubMed
Weeks A., Okolowsky N., Golbourn B., Ivanchuk S., Smith C., Rutka J.T. ECT2 and RASAL2 Mediate Mesenchymal-Amoeboid Transition in Human Astrocytoma Cells. Am. J. Pathol. 2012;181:662–674. doi: 10.1016/j.ajpath.2012.04.011. PubMed DOI
Oppel F., Müller N., Schackert G., Hendruschk S., Martin D., Geiger K.D., Temme A. SOX2-RNAi attenuates S-phase entry and induces RhoA-dependent switch to protease-independent amoeboid migration in human glioma cells. Mol. Cancer. 2011;10:137. doi: 10.1186/1476-4598-10-137. PubMed DOI PMC
Frankel P., Pellet-Many C., Lehtolainen P., D’Abaco G.M., Tickner M.L., Cheng L., Zachary I.C. Chondroitin sulphate-modified neuropilin 1 is expressed in human tumour cells and modulates 3D invasion in the U87MG human glioblastoma cell line through a p130Cas-mediated pathway. EMBO Rep. 2008;9:983–989. doi: 10.1038/embor.2008.151. PubMed DOI PMC
Koh I., Cha J., Park J., Choi J., Kang S.-G., Kim P. The mode and dynamics of glioblastoma cell invasion into a decellularized tissue-derived extracellular matrix-based three-dimensional tumor model. Sci. Rep. 2018;8:4608. doi: 10.1038/s41598-018-22681-3. PubMed DOI PMC
Iser I.C., Pereira M.B., Lenz G., Wink M. The Epithelial-to-Mesenchymal Transition-Like Process in Glioblastoma: An Updated Systematic Review and in Silico Investigation. Med. Res. Rev. 2016;37:271–313. doi: 10.1002/med.21408. PubMed DOI
Hagemann C., Anacker J., Ernestus R.-I., Vince G. A complete compilation of matrix metalloproteinase expression in human malignant gliomas. World J. Clin. Oncol. 2012;3:67–79. doi: 10.5306/wjco.v3.i5.67. PubMed DOI PMC
Skalli O., Wilhelmsson U., Örndahl C., Fekete B., Malmgren K., Rydenhag B., Pekny M. Astrocytoma grade IV (glioblastoma multiforme) displays 3 subtypes with unique expression profiles of intermediate filament proteins. Hum. Pathol. 2013;44:2081–2088. doi: 10.1016/j.humpath.2013.03.013. PubMed DOI
Paetau A. Glial fibrillary acidic protein, vimentin and fibronectin in primary cultures of human glioma and fetal brain. Acta Neuropathol. 1988;75:448–455. doi: 10.1007/BF00687131. PubMed DOI
Yung W.-K., Luna M., Borit A. Vimentin and glial fibrillary acidic protein in human brain tumors. J. Neuro Oncol. 1985;3:35–38. doi: 10.1007/BF00165169. PubMed DOI
Van Bodegraven E., Van Asperen J.V., Robe P.A., Hol E.M. Importance of GFAP isoform-specific analyses in astrocytoma. Glia. 2019;67:1417–1433. doi: 10.1002/glia.23594. PubMed DOI PMC
Liberski P.P. The ultrastructure of glial tumors of astrocytic lineage: A review. Folia Neuropathol. 1998;36:161–177. PubMed
Lin L., Wang G., Ming J., Meng X., Han B., Sun B., Cai J., Jiang C. Analysis of expression and prognostic significance of vimentin and the response to temozolomide in glioma patients. Tumor Biol. 2016;37:15333–15339. doi: 10.1007/s13277-016-5462-7. PubMed DOI
Zhao J., Zhang L., Dong X., Liu L., Huo L., Chen H. High Expression of Vimentin is Associated with Progression and a Poor Outcome in Glioblastoma. Appl. Immunohistochem. Mol. Morphol. 2018;26:337–344. doi: 10.1097/PAI.0000000000000420. PubMed DOI
Abbassi R.H., Recasens A., Indurthi D.C., Johns T.G., Stringer B.W., Day B.W., Munoz L. Lower Tubulin Expression in Glioblastoma Stem Cells Attenuates Efficacy of Microtubule-Targeting Agents. ACS Pharmacol. Transl. Sci. 2019;2:402–413. doi: 10.1021/acsptsci.9b00045. PubMed DOI PMC
Katsetos C.D., Dráber P. Tubulins as therapeutic targets in cancer: From bench to bedside. Curr. Pharm. Des. 2012;18:2778–2792. doi: 10.2174/138161212800626193. PubMed DOI
Katsetos C.D., Reddy G., Dráberová E., Šmejkalová B., Del Valle L., Ashraf Q., Tadevosyan A., Yelin K., Maraziotis T., Mishra O.P., et al. Altered Cellular Distribution and Subcellular Sorting of γ-Tubulin in Diffuse Astrocytic Gliomas and Human Glioblastoma Cell Lines. J. Neuropathol. Exp. Neurol. 2006;65:465–477. doi: 10.1097/01.jnen.0000229235.20995.6e. PubMed DOI
Katsetos C.D., Reginato M.J., Baas P.W., D’Agostino L., Legido A., Dráberová E., Dráber P., Tuszynski J.A. Emerging Microtubule Targets in Glioma Therapy. Semin. Pediatr. Neurol. 2015;22:49–72. doi: 10.1016/j.spen.2015.03.009. PubMed DOI
Caracciolo V., D’Agostino L., Dráberová E., Sládková V., Crozier-Fitzgerald C., Agamanolis D.P., De Chadarévian J.-P., Legido A., Giordano A., Dráber P., et al. Differential expression and cellular distribution of γ-tubulin and βIII-tubulin in medulloblastomas and human medulloblastoma cell lines. J. Cell. Physiol. 2010;223:519–529. doi: 10.1002/jcp.22077. PubMed DOI
Katsetos C.D., Dráberová E., Šmejkalová B., Reddy G., Bertrand L., De Chadarévian J.-P., Legido A., Nissanov J., Baas P.W., Dráber P. Class III β-Tubulin and γ-Tubulin are Co-expressed and Form Complexes in Human Glioblastoma Cells. Neurochem. Res. 2007;32:1387–1398. doi: 10.1007/s11064-007-9321-1. PubMed DOI
Suzuki S.O., Kitai R., Llena J., Lee S.C., Goldman J.E., Shafit-Zagardo B. MAP-2e, a novel MAP-2 isoform, is expressed in gliomas and delineates tumor architecture and patterns of infiltration. J. Neuropathol. Exp. Neurol. 2002;61:403–412. doi: 10.1093/jnen/61.5.403. PubMed DOI
Rich J.N., Hans C., Jones B., Iversen E.S., McLendon R.E., Rasheed B.A., Dobra A., Dressman H.K., Bigner D.D., Nevins J.R., et al. Gene Expression Profiling and Genetic Markers in Glioblastoma Survival. Cancer Res. 2005;65:4051–4058. doi: 10.1158/0008-5472.CAN-04-3936. PubMed DOI
Zhou R., Wu X., Skalli O. The hyaluronan receptor RHAMM/IHABP in astrocytoma cells: Expression of a tumor-specific variant and association with microtubules. J. Neuro Oncol. 2002;59:15–26. doi: 10.1023/A:1016373015569. PubMed DOI
Suzuki S.O., McKenney R.J., Mawatari S.-Y., Mizuguchi M., Mikami A., Iwaki T., Goldman J.E., Canoll P., Vallee R.B. Expression patterns of LIS1, dynein and their interaction partners dynactin, NudE, NudEL and NudC in human gliomas suggest roles in invasion and proliferation. Acta Neuropathol. 2007;113:591–599. doi: 10.1007/s00401-006-0180-7. PubMed DOI
Dráberová E., Vinopal S., Morfini G., Liu P.S., Sládková V., Sulimenko T., Burns M.A., Solowska J., Kulandaivel K., De Chadarévian J.-P., et al. Microtubule-Severing ATPase Spastin in Glioblastoma: Increased Expression in Human Glioblastoma Cell Lines and Inverse Roles in Cell Motility and Proliferation. J. Neuropathol. Exp. Neurol. 2011;70:811–826. doi: 10.1097/NEN.0b013e31822c256d. PubMed DOI PMC
Katsetos C.D. Emerging Molecularly—Targeted Therapeutic Strategies in Brain Cancer. Introduction. Semin. Pediatr. Neurol. 2015;22:2–4. doi: 10.1016/j.spen.2015.04.002. PubMed DOI
Visconti R., Della Monica R., Grieco D. Cell cycle checkpoint in cancer: A therapeutically targetable double-edged sword. J. Exp. Clin. Cancer Res. 2016;35:153. doi: 10.1186/s13046-016-0433-9. PubMed DOI PMC
Barnum K.J., O’Connell M.J. Cell Cycle Regulation by Checkpoints. Methods Mol. Biol. 2014;1170:29–40. doi: 10.1007/978-1-4939-0888-2_2. PubMed DOI PMC
Musacchio A. The Molecular Biology of Spindle Assembly Checkpoint Signaling Dynamics. Curr. Biol. 2015;25:R1002–R1018. doi: 10.1016/j.cub.2015.08.051. PubMed DOI
Wick W., Kessler T. New glioblastoma heterogeneity atlas—A shared resource. Nat. Rev. Neurol. 2018;14:453–454. doi: 10.1038/s41582-018-0038-3. PubMed DOI
Chen S., Le T., Harley B.A.C., Imoukhuede P.I. Characterizing Glioblastoma Heterogeneity via Single-Cell Receptor Quantification. Front. Bioeng. Biotechnol. 2018;6:92. doi: 10.3389/fbioe.2018.00092. PubMed DOI PMC
Ranjit M., Motomura K., Ohka F., Wakabayashi T., Natsume A. Applicable advances in the molecular pathology of glioblastoma. Brain Tumor Pathol. 2015;32:153–162. doi: 10.1007/s10014-015-0224-6. PubMed DOI
Puduvalli V.K., Kyritsis A.P., Hess K.R., Bondy M.L., Fuller G.N., Kouraklis G.P., Levin V.A., Bruner J.M. Patterns of expression of Rb and p16 in astrocytic gliomas, and correlation with survival. Int. J. Oncol. 2000;17:963–969. doi: 10.3892/ijo.17.5.963. PubMed DOI
Ueki K., Ono Y., Henson J.W., Efird J.T., von Deimling A., Louis D.N. CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res. 1996;56:150–153. PubMed
Donaires F.S., Godoy P.R., Leandro G.S., Puthier D., Hojo E.T.S. E2F transcription factors associated with up-regulated genes in glioblastoma. Cancer Biomark. 2017;18:199–208. doi: 10.3233/CBM-161628. PubMed DOI
Ohgaki H. Genetic pathways to glioblastomas. Neuropathology. 2005;25:1–7. doi: 10.1111/j.1440-1789.2004.00600.x. PubMed DOI
Ohgaki H. Genetic Pathways to Glioblastoma: A Population-Based Study. Cancer Res. 2004;64:6892–6899. doi: 10.1158/0008-5472.CAN-04-1337. PubMed DOI
Szerlip N.J., Pedraza A., Chakravarty D., Azim M., McGuire J., Fang Y., Ozawa T., Holland E.C., Huse J.T., Jhanwar S., et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc. Natl. Acad. Sci. USA. 2012;109:3041–3046. doi: 10.1073/pnas.1114033109. PubMed DOI PMC
Ding Y., Hubert C.G., Herman J., Corrin P., Toledo C.M., Skutt-Kakaria K., Vazquez J., Basom R., Zhang B., Risler J.K., et al. Cancer-Specific Requirement for BUB1B/BUBR1 in Human Brain Tumor Isolates and Genetically Transformed Cells. Cancer Discov. 2012;3:198–211. doi: 10.1158/2159-8290.CD-12-0353. PubMed DOI PMC
Goidts V., Bageritz J., Puccio L., Nakata S., Zapatka M., Barbus S., Toedt G., Campos B., Korshunov A., Momma S., et al. RNAi screening in glioma stem-like cells identifies PFKFB4 as a key molecule important for cancer cell survival. Oncogene. 2011;31:3235–3243. doi: 10.1038/onc.2011.490. PubMed DOI
Weaver B.A., Cleveland D.W. Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell. 2005;8:7–12. doi: 10.1016/j.ccr.2005.06.011. PubMed DOI
Dominguez-Brauer C., Thu K.L., Mason J.M., Blaser H., Bray M.R., Mak T.W. Targeting Mitosis in Cancer: Emerging Strategies. Mol. Cell. 2015;60:524–536. doi: 10.1016/j.molcel.2015.11.006. PubMed DOI
Angel M.C.-G., Julia A.P., María S.B., Luiz G.T., Castro-Gamero A., Pezuk J.A., Brassesco M.S., Tone L.G. G2/M inhibitors as pharmacotherapeutic opportunities for glioblastoma: The old, the new, and the future. Cancer Biol. Med. 2018;15:354–374. doi: 10.20892/j.issn.2095-3941.2018.0030. PubMed DOI PMC
Dumontet C., Jordan M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 2010;9:790–803. doi: 10.1038/nrd3253. PubMed DOI PMC
Patties I., Kallendrusch S., Böhme L., Kendzia E., Oppermann H., Gaunitz F., Kortmann R.-D., Glasow A. The Chk1 inhibitor SAR-020106 sensitizes human glioblastoma cells to irradiation, to temozolomide, and to decitabine treatment. J. Exp. Clin. Cancer Res. 2019;38:420. doi: 10.1186/s13046-019-1434-2. PubMed DOI PMC
Liu N., Hu G., Wang H., Li Z., Guo Z. PLK1 inhibitor facilitates the suppressing effect of temozolomide on human brain glioma stem cells. J. Cell. Mol. Med. 2018;22:5300–5310. doi: 10.1111/jcmm.13793. PubMed DOI PMC
Suzuki K., Ojima M., Kodama S., Watanabe M. Radiation-induced DNA damage and delayed induced genomic instability. Oncogene. 2003;22:6988–6993. doi: 10.1038/sj.onc.1206881. PubMed DOI
Eom Y.-W., Kim M.A., Park S.S., Goo M.J., Kwon H.J., Sohn S., Kim W.-H., Yoon G., Choi K.S. Two distinct modes of cell death induced by doxorubicin: Apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene. 2005;24:4765–4777. doi: 10.1038/sj.onc.1208627. PubMed DOI
Nakayama Y., Inoue T. Antiproliferative Fate of the Tetraploid Formed after Mitotic Slippage and Its Promotion; A Novel Target for Cancer Therapy Based on Microtubule Poisons. Molecules. 2016;21:663. doi: 10.3390/molecules21050663. PubMed DOI PMC
Bojko A., Czarnecka-Herok J., Charzynska A., Dabrowski M., Sikora E. Diversity of the Senescence Phenotype of Cancer Cells Treated with Chemotherapeutic Agents. Cells. 2019;8:1501. doi: 10.3390/cells8121501. PubMed DOI PMC
Sikora E., Mosieniak G., Śliwińska M.A. Morphological and Functional Characteristic of Senescent Cancer Cells. Curr. Drug Targets. 2016;17:377–387. doi: 10.2174/1389450116666151019094724. PubMed DOI
Lin S., Yang L., Yao Y., Xu L., Xiang Y., Zhao H., Wang L., Zuo Z., Huang X., Zhao C. Flubendazole demonstrates valid antitumor effects by inhibiting STAT3 and activating autophagy. J. Exp. Clin. Cancer Res. 2019;38:293. doi: 10.1186/s13046-019-1303-z. PubMed DOI PMC
Králova V., Hanusova V., Rudolf E., Čáňová K., Skálová L. Flubendazole induces mitotic catastrophe and senescence in colon cancer cellsin vitro. J. Pharm. Pharmacol. 2016;68:208–218. doi: 10.1111/jphp.12503. PubMed DOI
Zhou X., Liu J., Zhang J., Wei Y., Li H. Flubendazole inhibits glioma proliferation by G2/M cell cycle arrest and pro-apoptosis. Cell Death Discov. 2018;4:18. doi: 10.1038/s41420-017-0017-2. PubMed DOI PMC
Vitale I., Galluzzi L., Castedo M., Kroemer G. Mitotic catastrophe: A mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 2011;12:385–392. doi: 10.1038/nrm3115. PubMed DOI
Wäsch R., Engelbert D. Anaphase-promoting complex-dependent proteolysis of cell cycle regulators and genomic instability of cancer cells. Oncogene. 2005;24:1–10. doi: 10.1038/sj.onc.1208017. PubMed DOI
Haschka M., Karbon G., Fava L.L., Villunger A. Perturbing mitosis for anti-cancer therapy: Is cell death the only answer? EMBO Rep. 2018;19:e45440. doi: 10.15252/embr.201745440. PubMed DOI PMC
Prokhorova E., Egorshina A.Y., Zhivotovsky B., Kopeina G.S. The DNA-damage response and nuclear events as regulators of nonapoptotic forms of cell death. Oncogene. 2020;39:1–16. doi: 10.1038/s41388-019-0980-6. PubMed DOI
Ianzini F., Domann F.E., Kosmacek E.A., Phillips S.L., Mackey M.A. Human glioblastoma U87MG cells transduced with a dominant negative p53 (TP53) adenovirus construct undergo radiation-induced mitotic catastrophe. Radiat. Res. 2007;168:183–192. doi: 10.1667/0033-7587(2007)168[183:HGUCTW]2.0.CO;2. PubMed DOI
Chang B.-D., Swift M.E., Shen M., Fang J., Broude E.V., Roninson I.B. Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proc. Natl. Acad. Sci. USA. 2002;99:389–394. doi: 10.1073/pnas.012602599. PubMed DOI PMC
Sorokina I.V., Denisenko T.V., Imreh G., Tyurin-Kuzmin P.A., Kaminskyy V., Gogvadze V., Zhivotovsky B. Involvement of autophagy in the outcome of mitotic catastrophe. Sci. Rep. 2017;7:14571. doi: 10.1038/s41598-017-14901-z. PubMed DOI PMC
Sharma K., Le N., Alotaibi M., Gewirtz D.A. Cytotoxic Autophagy in Cancer Therapy. Int. J. Mol. Sci. 2014;15:10034–10051. doi: 10.3390/ijms150610034. PubMed DOI PMC
Altinoz M.A., Bilir A., Del Maestro R.F., Tuna S., Ozcan E., Gedikoglu G. Noscapine and diltiazem augment taxol and radiation-induced S-phase arrest and clonogenic death of C6 glioma in vitro. Surg. Neurol. 2006;65:478–484. doi: 10.1016/j.surneu.2005.06.024. PubMed DOI
Landen J.W. Noscapine Crosses the Blood-Brain Barrier and Inhibits Glioblastoma Growth. Clin. Cancer Res. 2004;10:5187–5201. doi: 10.1158/1078-0432.CCR-04-0360. PubMed DOI
Newcomb E.W., Lukyanov Y., Schnee T., Ali M.A., Lan L., Zagzag D. Noscapine inhbits hypoxia-mediated HIF-1alpha expression and angiogenesis in vitro: A novel function for an old drug. Int. J. Oncol. 2006;28:1121–1130. PubMed
Newcomb E.W., Lukyanov Y., Smirnova I., Schnee T., Zagzag D. Noscapine induces apoptosis in human glioma cells by an apoptosis-inducing factor-dependent pathway. Anti-Cancer Drugs. 2008;19:553–563. doi: 10.1097/CAD.0b013e3282ffd68d. PubMed DOI
Jhaveri N., Cho H., Torres S., Wang W., Schonthal A.H., Petasis N.A., Louie S.G., Hofman F.M., Chen T.C. Noscapine inhibits tumor growth in TMZ-resistant gliomas. Cancer Lett. 2011;312:245–252. doi: 10.1016/j.canlet.2011.08.015. PubMed DOI
Shen W., Liang B., Yin J., Li X., Cheng J. Noscapine Increases the Sensitivity of Drug-Resistant Ovarian Cancer Cell Line SKOV3/DDP to Cisplatin by Regulating Cell Cycle and Activating Apoptotic Pathways. Cell Biochem. Biophys. 2015;72:203–213. doi: 10.1007/s12013-014-0438-y. PubMed DOI
Chougule M.B., Patel A.R., Jackson T., Singh M. Antitumor Activity of Noscapine in Combination with Doxorubicin in Triple Negative Breast Cancer. PLoS ONE. 2011;6:e17733. doi: 10.1371/journal.pone.0017733. PubMed DOI PMC
Newcomb E.W., Lukyanov Y., Alonso-Basanta M., Esencay M., Smirnova I., Schnee T., Shao Y., Devitt M.L., Zagzag D., McBride W., et al. Antiangiogenic Effects of Noscapine Enhance Radioresponse for GL261 Tumors. Int. J. Radiat. Oncol. Biol. Phys. 2008;71:1477–1484. doi: 10.1016/j.ijrobp.2008.04.020. PubMed DOI PMC
Ajeawung N.F., Joshi H.C., Kamnasaran D. The microtubule binding drug EM011 inhibits the growth of paediatric low grade gliomas. Cancer Lett. 2013;335:109–118. doi: 10.1016/j.canlet.2013.02.004. PubMed DOI
Debono A., Capuano B., Scammells P.J. Progress Toward the Development of Noscapine and Derivatives as Anticancer Agents. J. Med. Chem. 2015;58:5699–5727. doi: 10.1021/jm501180v. PubMed DOI
Aneja R., Vangapandu S.N., Joshi H.C. Synthesis and biological evaluation of a cyclic ether fluorinated noscapine analog. Bioorgan. Med. Chem. 2006;14:8352–8358. doi: 10.1016/j.bmc.2006.09.012. PubMed DOI
Verma A.K., Bansal S., Singh J., Tiwari R.K., Sankar V.K., Tandon V., Chandra R. Synthesis and in vitro cytotoxicity of haloderivatives of noscapine. Bioorgan. Med. Chem. 2006;14:6733–6736. doi: 10.1016/j.bmc.2006.05.069. PubMed DOI
Kamnasaran D. Investigation of Targetin, a Microtubule Binding Agent which Regresses the Growth of Pediatric High and Low Grade Gliomas. J. Pediatr. Oncol. 2013;1:32–40. doi: 10.14205/2309-3021.2013.01.01.5. PubMed DOI PMC
Cumino A.C., Elissondo M.C., Denegri G.M. Flubendazole interferes with a wide spectrum of cell homeostatic mechanisms in Echinococcus granulosus protoscoleces. Parasitol. Int. 2009;58:270–277. doi: 10.1016/j.parint.2009.03.005. PubMed DOI
Lacey E. Mode of action of benzimidazoles. Parasitol. Today. 1990;6:112–115. doi: 10.1016/0169-4758(90)90227-U. PubMed DOI
Pourgholami M.H., Akhter J., Wang L., Lu Y., Morris D.L. Antitumor activity of albendazole against the human colorectal cancer cell line HT-29: In vitro and in a xenograft model of peritoneal carcinomatosis. Cancer Chemother. Pharmacol. 2005;55:425–432. doi: 10.1007/s00280-004-0927-6. PubMed DOI
Sasaki J., Ramesh R., Chada S., Gomyo Y., Roth J.A., Mukhopadhyay T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol. Cancer Ther. 2002;1:1201–1209. PubMed
Nygren P., Fryknäs M., Ågerup B., Larsson R. Repositioning of the anthelmintic drug mebendazole for the treatment for colon cancer. J. Cancer Res. Clin. Oncol. 2013;139:2133–2140. doi: 10.1007/s00432-013-1539-5. PubMed DOI PMC
Nygren P., Larsson R. Drug repositioning from bench to bedside: Tumour remission by the antihelmintic drug mebendazole in refractory metastatic colon cancer. Acta Oncol. 2013;53:427–428. doi: 10.3109/0284186X.2013.844359. PubMed DOI
Hou Z.-J., Luo X., Zhang W., Peng F., Cui B., Wu S.-J., Zheng F.-M., Xu J., Xu L.-Z., Long Z.-J., et al. Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells. Oncotarget. 2015;6:6326–6340. doi: 10.18632/oncotarget.3436. PubMed DOI PMC
Bai R.-Y., Staedtke V., Aprhys C.M., Gallia G.L., Riggins G.J. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro-Oncology. 2011;13:974–982. doi: 10.1093/neuonc/nor077. PubMed DOI PMC