Microtubule-severing ATPase spastin in glioblastoma: increased expression in human glioblastoma cell lines and inverse roles in cell motility and proliferation
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 NS028785
NINDS NIH HHS - United States
R01 NS028785-24
NINDS NIH HHS - United States
R01 NS28785
NINDS NIH HHS - United States
R01 NS066942A
NINDS NIH HHS - United States
R01 NS066942-01A1
NINDS NIH HHS - United States
R01 NS066942
NINDS NIH HHS - United States
PubMed
21865889
PubMed Central
PMC3400501
DOI
10.1097/nen.0b013e31822c256d
PII: 00005072-201109000-00009
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfatasy genetika metabolismus MeSH
- dítě MeSH
- glioblastom enzymologie patologie MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- mikrotubuly MeSH
- mladý dospělý MeSH
- mozek enzymologie patologie MeSH
- nádorové buněčné linie MeSH
- nádory mozku enzymologie patologie MeSH
- počet buněk metody MeSH
- pohyb buněk fyziologie MeSH
- proliferace buněk * MeSH
- regulace genové exprese u nádorů fyziologie MeSH
- spastin MeSH
- věkové faktory MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- messenger RNA MeSH
- SPAST protein, human MeSH Prohlížeč
- spastin MeSH
We studied the expression and distribution of the microtubule-severing enzyme spastin in 3 human glioblastoma cell lines (U87MG, U138MG, and T98G) and in clinical tissue samples representative of all grades of diffuse astrocytic gliomas (n = 45). In adult human brains, spastin was distributed predominantly in neuronsand neuropil puncta and, to a lesser extent, in glia. Compared with normal mature brain tissues, spastin expression and cellular distribution were increased in neoplastic glial phenotypes, especiallyin glioblastoma (p < 0.05 vs low-grade diffuse astrocytomas). Overlapping punctate and diffuse patterns of localization wereidentified in tumor cells in tissues and in interphase and mitotic cells ofglioblastoma cell lines. There was enrichment of spastin in the leading edges of cells in T98G glioblastoma cell cultures and in neoplastic cell populations in tumor specimens. Real-time polymerase chain reaction and immunoblotting experiments revealed greater levels of spastin messenger RNA and protein expression in theglioblastoma cell lines versus normal human astrocytes. Functional experiments indicated that spastin depletion resulted in reduced cell motility and higher cell proliferation of T98G cells. Toour knowledge, this is the first report of spastin involvement incellmotility. Collectively, our results indicate that spastinexpression in glioblastomas might be linked to tumor cell motility, migration, and invasion.
Zobrazit více v PubMed
Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64:479–89. PubMed
Jordan MA, Wilson L. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol. 1998;10:123–30. PubMed
Pasquier E, Kavallaris M. Microtubules: a dynamic target in cancer therapy. IUBMB Life. 2008;60:165–70. PubMed
Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov. 2010;9:790–803. PubMed PMC
Baas PW, Karabay A, Qiang L. Microtubules cut and run. Trends Cell Biol. 2005;15:518–24. PubMed
Whipple RA, Cheung AM, Martin SS. Detyrosinated microtubule protrusions in suspended mammary epithelial cells promote reattachment. Exp Cell Res. 2007;313:1326–36. PubMed PMC
Schoumacher M, Goldman RD, Louvard D, et al. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J Cell Biol. 2010;189:541–56. PubMed PMC
Liaw TY, Chang MH, Kavallaris M. The cytoskeleton as a therapeutic target in childhood acute leukemia: obstacles and opportunities. Curr Drug Targets. 2007;8:739–49. PubMed
Ferlini C, Raspaglio G, Cicchillitti L, et al. Looking at drug resistance mechanisms for microtubule interacting drugs: does TUBB3 work? Curr Cancer Drug Targets. 2007;7:704–12. PubMed
Katsetos CD, Dráberová E, Legido A, et al. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. I. Class III β-tubulin. J Cell Physiol. 2009;221:505–13. PubMed
Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer. 2010;10:194–204. PubMed
Régina A, Demeule M, Ché C, et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol. 2008;155:185–97. PubMed PMC
Mielke S, Sparreboom A, Mross K. Peripheral neuropathy: a persisting challenge in paclitaxel-based regimes. Eur J Cancer. 2006;42:24–30. PubMed
Richter-Landsberg C. The cytoskeleton in oligodendrocytes. Microtubule dynamics in health and disease. J Mol Neurosci. 2008;35:55–63. PubMed
Shi J, Orth JD, Mitchison T. Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res. 2008;68:3269–76. PubMed
Hornick JE, Karanjeet K, Collins ES, et al. Kinesins to the core: The role of microtubule-based motor proteins in building the mitotic spindle midzone. Semin Cell Dev Biol. 2010;21:290–9. PubMed PMC
Baas PW, Sudo H. More microtubule severing proteins: More microtubules. Cell Cycle. 2010;9:2271–4. PubMed
Claudiani P, Riano E, Errico A, et al. Spastin subcellular localization is regulated through usage of different translation start sites and active export from the nucleus. Exp Cell Res. 2005;309:358–69. PubMed
White SR, Evans KJ, Lary J, et al. Recognition of C-terminal amino acids in tubulin by pore loops in Spastin is important for microtubule severing. J Cell Biol. 2007;176:995–1005. PubMed PMC
Svenson IK, Ashley-Koch AE, Gaskell PC, et al. Identification and expression analysis of spastin gene mutations in hereditary spastic paraplegia. Am J Hum Genet. 2001;68:1077–85. PubMed PMC
Salinas S, Carazo-Salas RE, Proukakis C, et al. Human spastin has multiple microtubule-related functions. J Neurochem. 2005;95:1411–20. PubMed
Solowska JM, Morfini G, Falnikar A, et al. Quantitative and functional analyses of spastin in the nervous system: implications for hereditary spastic paraplegia. J Neurosci. 2008;28:2147–57. PubMed PMC
Hazan J, Fonknechten N, Mavel D, et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet. 1999;23:296–303. PubMed
Wharton SB, McDermott CJ, Grierson AJ, et al. The cellular and molecular pathology of the motor system in hereditary spastic paraparesis due to mutation of the spastin gene. J Neuropathol Exp Neurol. 2003;62:1166–77. PubMed
Ma DL, Chia SC, Tang YC, et al. Spastin in the human and mouse central nervous system with special reference to its expression in the hippocampus of mouse pilocarpine model of status epilepticus and temporal lobe epilepsy. Neurochem Int. 2006;49:651–64. PubMed
Encinas M, Iglesias M, Liu Y, et al. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem. 2000;75:991–1003. PubMed
Dráberová E, Del Valle L, Gordon J, et al. Class III β-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity. J Neuropathol Exp Neurol. 2008;67:341–54. PubMed
Viklický V, Dráber P, Hasek J, et al. Production and characterization of a monoclonal antitubulin antibody. Cell Biol Int Rep. 1982;6:725–31. PubMed
Dráber P, Dráberová E, Zicconi D, et al. Heterogeneity of microtubules recognized by monoclonal antibodies to α-tubulin. Eur J Cell Biol. 1986;41:82–8. PubMed
Dráber P, Dráberová E, Viklický V. Immunostaining of human spermatozoa with tubulin domain-specific monoclonal antibodies. Recognition of a unique β-tubulin epitope in the sperm head. Histochemistry. 1991;95:519–24. PubMed
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5. PubMed
Dráber P, Lagunowich LA, Dráberová E, et al. Heterogeneity of tubulin epitopes in mouse fetal tissues. Histochemistry. 1988;89:485–92. PubMed
Dráberová E, Dráber P. A microtubule-interacting protein involved in coalignment of vimentin intermediate filaments with microtubules. J Cell Sci. 1993;106:1263–73. PubMed
Soile P. Morphological Image Analysis. 2. Berlin: Springer; 2003.
Katsetos CD, Del Valle L, Geddes JF, et al. Aberrant localization of the neuronal class III β-tubulin in astrocytomas. Arch Pathol Lab Med. 2001;125:613–24. PubMed
Katsetos CD, Reddy G, Dráberová E, et al. Altered cellular distribution and subcellular sorting of γ-tubulin in diffuse astrocytic gliomas and human glioblastoma cell lines. J Neuropathol Exp Neurol. 2006;65:465–77. PubMed
Katsetos CD, Dráberová E, Šmejkalová B, et al. Class III β-tubulin and γ-tubulin are co-expressed and form complexes in human glioblastoma cells. Neurochem Res. 2007;32:1387–98. PubMed
Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109. PubMed PMC
Fleiss JG. Statistical Methods for Rates and Proportions. New York, NY: Wiley; 1981. pp. 225–32.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74. PubMed
Trotta N, Orso G, Rossetto MG, et al. The hereditary spastic paraplegia gene, spastin, regulates microtubule stability to modulate synaptic structure and function. Curr Biol. 2004;14:1135–47. PubMed
Quick Q, Skalli O. α-Actinin 1 and α-actinin 4: Contrasting roles in the survival, motility, and RhoA signaling of astrocytoma cells. Exp Cell Res. 2010;316:1137–47. PubMed
Pan Y, Jing R, Pitre A, et al. Intermediate filament protein synemin contributes to the migratory properties of astrocytoma cells by influencing the dynamics of the actin cytoskeleton. FASEB J. 2008;22:3196–3206. PubMed PMC
Berens ME, Beaudry C. Radial monolayer cell migration assay. Methods Mol Med. 2004:219–24. PubMed
Zhang D, Grode KD, Stewman SF, et al. Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration. Nature Cell Biol. 2011;13:361–70. PubMed PMC
Giese A, Bjerkvig R, Berens ME, et al. Cost of migration: Invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21:1624–36. PubMed
Berens ME, Giese A. …those left behind. Biology and oncology of invasive glioma cells. Neoplasia. 1999;1:208–19. PubMed PMC
Nigg EA. Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer. 2002;2:815–25. PubMed
Ahmad FJ, Yu W, McNally FJ, et al. An essential role for katanin in severing microtubules in the neuron. J Cell Biol. 1999;145:305–15. PubMed PMC
Yu W, Ahmad FJ, Baas PW. Microtubule fragmentation and partitioning in the axon during collateral branch formation. J Neurosci. 1994;14:5872–84. PubMed PMC
Dent EW, Callaway JL, Szebenyi G, et al. Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J Neurosci. 1999;19:8894–8908. PubMed PMC
Errico A, Claudiani P, D’Addio M, et al. Spastin interacts with the centrosomal protein NA14, and is enriched in the spindle pole, the midbody and the distal axon. Hum Mol Genet. 2004;13:2121–32. PubMed
Roll-Mecak A, Vale RD. Making more microtubules by severing: a common theme of noncentrosomal microtubule arrays? J Cell Biol. 2006;175:849–51. PubMed PMC
Roll-Mecak A, McNally FJ. Microtubule-severing enzymes. Curr Opin Cell Biol. 2010;22:96–103. PubMed PMC
Katsetos CD, Dráberová E, Legido A, et al. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. II. γ-Tubulin. J Cell Physiol. 2009;221:514–20. PubMed
Cho EH, Whipple RA, Matrone MA, et al. Delocalization of γ-tubulin due to increased solubility in human breast cancer cell lines. Cancer Biol Ther. 2010;9:66–76. PubMed PMC
Joshi HC, Palacios MJ, McNamara L, et al. γ-Tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature. 1992;356:80–3. PubMed
Zheng Y, Wong ML, Alberts B, et al. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature. 1995;378:578–83. PubMed
Chabin-Brion K, Marceiller J, Perez F, et al. The Golgi complex is a microtubule- organizing organelle. Mol Biol Cell. 2001;12:2047–60. PubMed PMC
Macurek L, Dráberová E, Richterová V, et al. Regulation of microtubule nucleation in differentiating embryonal carcinoma cells by complexes of membrane-bound γ-tubulin with Fyn kinase and phosphoinositide 3-kinase. Biochem J. 2008;416:421–30. PubMed