Experimental assessment of biotic and abiotic filters driving community composition

. 2020 Jul ; 10 (14) : 7364-7376. [epub] 20200613

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32760534

Species occurrence in a site can be limited by both the abiotic environment and biotic interactions. These two factors operate in concert, but their relative importance is often unclear. By experimentally introducing seeds or plants into competition-free gaps or into the intact vegetation, we can disentangle the biotic and abiotic effects on plant establishment. We established a seed-sowing/transplant experiment in three different meadows. Species were introduced, as seeds and pregrown transplants, into competition-free gaps and the intact vegetation. They included 12 resident plants from the locality and 18 species typical for different habitats. Last two years, gaps were overgrown with vegetation from surrounding plants and we observed the competitive exclusion of our focal plants. We compared plant survival with the expected occurrence in target locality (Beals index). Many of the species with habitat preferences different from our localities were able to successfully establish from seeds and grow in the focal habitat if competition was removed. They included species typical for much drier conditions. These species were thus not limited by the abiotic conditions, but by competition. Pregrown transplants were less sensitive to competition, when compared to seedlings germinated from seeds. Beals index significantly predicted both species success in gaps and the ability to withstand competition. Survival in a community is dependent on the adaptation to both the abiotic environment and biotic interactions. Statistically significant correlation coefficients of the ratio of seedling survival in vegetation and gaps with Beals index suggest the importance of biotic interactions as a determinant of plant community composition. To disentangle the importance of abiotic and biotic effect on plant establishment, it is important to distinguish between species pool as a set of species typically found in given community type (determined by Beals index) and a set of species for which the abiotic conditions are suitable.

Zobrazit více v PubMed

Adler, P. B. , Ellner, S. P. , & Levine, J. M. (2010). Coexistence of perennial plants: An embarrassment of niches. Ecology Letters, 13, 1019–1029. 10.1111/j.1461-0248.2010.01496.x PubMed DOI

Adler, P. B. , Fajardo, A. , Kleinhesselink, A. R. , & Kraft, N. J. B. (2013). Trait‐based tests of coexistence mechanisms. Ecology Letters, 16, 1294–1306. 10.1111/ele.12157 PubMed DOI

Araújo, M. B. , & Rozenfeld, A. (2014). The geographic scaling of biotic interactions. Ecography, 37, 406–415. 10.1111/j.1600-0587.2013.00643.x DOI

Bar‐Massada, A. (2015). Complex relationships between species niches and environmental heterogeneity affect species co‐occurrence patterns in modelled and real communities. Proceedings of the Royal Society B: Biological Sciences, 282, 20150927 10.1098/rspb.2015.0927 PubMed DOI PMC

Beals, E. W. (1984). Bray‐Curtis‐ordination: An effective strategy for analysis of multivariate ecological data. Advances in Ecological Research, 14, 1–55. 10.1016/S0065-2504(08)60168-3 DOI

Bennett, J. A. , Riibak, K. , Kook, E. , Reier, Ü. , Tamme, R. , Bueno, C. G. , & Pärtel, M. (2016). Species pools, community completeness and invasion: Disentangling diversity effects on the establishment of native and alien species. Ecology Letters, 19, 1496–1505. 10.1111/ele.12702 PubMed DOI

Botta‐Dukát, Z. (2012). Co‐occurrence‐based measure of species’ habitat specialization: Robust, unbiased estimation in saturated communities. Journal of Vegetation Science, 23, 201–207. 10.1111/j.1654-1103.2011.01347.x DOI

Boulangeat, I. , Gravel, D. , & Thuiller, W. (2012). Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecology Letters, 15(6), 584–593. 10.1111/j.1461-0248.2012.01772.x PubMed DOI PMC

Brown, J. J. , Mennicken, S. , Massante, J. C. , Dijoux, S. , Telea, A. , Benedek, A. M. , … de Bello, F. (2019). A novel method to predict dark diversity using unconstrained ordination analysis. Journal of Vegetation Science, 30, 610–619. 10.1111/jvs.12757 DOI

Butaye, J. , Jacquemyn, H. , Honnay, O. , & Hermy, M. (2001). The species pool concept applied to forests in a fragmented landscape: Dispersal limitation versus habitat limitation. Journal of Vegetation Science, 13, 27–34. 10.1111/j.1654-1103.2002.tb02020.x DOI

Cadotte, M. W. , & Tucker, C. M. (2017). Should environmental filtering be abandoned? Trends in Ecology and Evolution, 32, 429–437. 10.1016/j.tree.2017.03.004 PubMed DOI

Chytrý, M. , & Rafajová, M. (2003). Czech National Phytosociological Database: Basic statistics of the available vegetation‐plot data. Preslia, 75, 1–15.

Cornelissen, J. H. C. , Lavorel, S. , Garnier, E. , Díaz, S. , Buchmann, N. , Gurvich, D. E. , … Poorter, H. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335–380. 10.1071/BT02124 DOI

Cornell, H. V. , & Harrison, S. P. (2014). What are species pools and when are they important? Annual Reviews, 45, 45–67. 10.1146/annurev-ecolsys-120213-091759 DOI

D'Amen, M. , Mod, H. K. , Gotelli, N. J. , & Guisan, A. (2018). Disentangling biotic interactions, environmental filter, and dispersal limitation as drivers of species co‐occurrence. Ecography, 41, 1233–1244. 10.1111/ecog.03148 DOI

de Bello, F. , Price, J. N. , Münkemüller, T. , Liira, J. , Zobel, M. , Thuiller, W. , … Pärtel, M. (2012). Functional species pool framework to test for biotic effects on community assembly. Ecology, 93, 2263–2273. 10.1890/11-1394.1 PubMed DOI

Ehrlén, J. , Münzbergová, Z. , Diekmann, M. , & Eriksson, O. (2006). Long‐term assessment of seed limitation in plants: Results from an 11‐year experiment. Journal of Ecology, 94, 1224–1232. 10.1111/j.1365-2745.2006.01169.x DOI

Ewald, J. (2002). A probabilistic approach to estimating species pools from large compositional matrices. Journal of Vegetation Science, 13, 191–198. 10.1111/j.1654-1103.2002.tb02039.x DOI

Fibich, P. , Vítová, A. , & Lepš, J. (2018). Interaction between habitat limitation and dispersal limitation is modulated by species life history and external conditions: A stochastic matrix model approach. Community Ecology, 19, 9–20. 10.1556/168.2018.19.1.2 DOI

Frei, E. S. , Scheepens, J. F. , & Stöcklin, J. (2012). Dispersal and microsite limitation of a rare alpine plant. Plant Ecology, 213, 395–406. 10.1007/s11258-011-9984-1 DOI

Grubb, P. J. (1977). The maintenance of species‐richness in plant communities: The importance of the regeneration niche. Biological Reviews, 52, 107–145. 10.1111/j.1469-185X.1977.tb01347.x DOI

Gustafsson, C. , Ehrlén, J. , & Eriksson, O. (2002). Recruitment in Dentaria bulbifera; the roles of dispersal, habitat quality and mollusc herbivory. Journal of Vegetation Science, 13, 719–724. 10.1111/j.1654-1103.2002.tb02099.x DOI

HilleRisLambers, J. , Adler, P. B. , Harpole, W. S. , Levine, J. M. , & Mayfield, M. M. (2012). Rethinking community assembly through the lens of coexistence theory. The Annual Review of Ecology, Evolution, and Systematics, 43, 227–248. 10.1146/annurev-ecolsys-110411-160411 DOI

Houseman, G. R. , & Gross, K. L. (2006). Does ecological filtering across a productivity gradient explain variation in species pool‐richness relationships? Oikos, 115, 148–154. 10.1111/j.2006.0030-1299.14743.x DOI

Kotorová, I. , & Lepš, J. (1999). Comparative ecology of seedling recruitment in an oligotrophic wet meadow. Journal of Vegetation Science, 10, 175–186. 10.2307/3237139 DOI

Kraft, N. J. B. , Adler, P. B. , Godoy, O. , James, E. C. , Fuller, S. , & Levine, J. M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592–599. 10.1111/1365-2435.12345 DOI

Lemke, T. , Janßen, A. , & Porembski, S. (2015). Multiple limitations to the persistence of Trollius europaeus in a fragmented agricultural landscape in the context of metapopulation theory. Plant Ecology, 216, 319–330. 10.1007/s11258-014-0439-3 DOI

Li, D. , Poisot, T. , Waller, D. M. , & Baiser, B. (2018). Homogenization of species composition and species association networks are decoupled. Global Ecology and Biogeography, 27, 1481–1491. 10.1111/geb.12825 DOI

Milden, M. , Münzbergová, Z. , Herben, T. , & Ehrlén, J. (2006). Metapopulation dynamics of a perennial plant, Succisa pratensis, in an agricultural landscape. Ecological Modelling, 199, 464–475. 10.1016/j.ecolmodel.2005.11.047 DOI

Moor, H. , Hylander, K. , & Norberg, J. (2015). Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits. Ambio, 44, 113–126. 10.1007/s13280-014-0593-9 PubMed DOI PMC

Morales‐Castilla, I. , Matias, M. G. , Gravel, D. , & Araújo, M. B. (2015). Inferring biotic interactions from proxies. Trends in Ecology & Evolution, 30(6), 347–356. 10.1016/j.tree.2015.03.014 PubMed DOI

Mudrák, O. , Mládek, J. , Blažek, P. , Lepš, J. , Doležal, J. , Nekvapilová, E. , & Těšitel, J. (2014). Establishment of hemiparasitic Rhinanthus spp. in grassland restoration: Lessons learned from sowing experiments. Applied Vegetation Science, 17, 274–287. 10.1111/avsc.12073 DOI

Münzbergová, Z. , & Herben, T. (2004). Identification of suitable unoccupied habitats in metapopulation studies using co‐occurrence of species. Oikos, 105, 408–414. 10.1111/j.0030-1299.2004.13017.x DOI

Münzbergová, Z. , & Plačková, I. (2010). Seed mass and population characteristics interact to determine performance of Scorzonera hispanica under common garden conditions. Flora, 205, 552–559. 10.1016/j.flora.2010.04.001 DOI

Myers, J. A. , & Harms, K. E. (2011). Seed arrival and ecological filters interact to assemble high‐diversity plant communities. Ecology, 92(3), 676–686. 10.1890/10-1001.1 PubMed DOI

Oksanen, J. , Blanchet, F. G. , Friendly, M. , Kindt, R. , Legendre, P. , McGlinn, D. , & Wagner, H. (2019). vegan: Community Ecology Package. R package version 2.5‐4. Retrieved from https://CRAN.R‐project.org/package=vegan

Palmer, M. (1994). Variation in species richness: Towards a unification of hypotheses. Folia Geobotanica et Phytotaxonomica, 29, 511–530. 10.1007/BF02883148 DOI

Pärtel, M. , Szava‐Kovats, R. , & Zobel, M. (2013). Community completeness: Linking local and dark diversity within the species pool concept. Folia Geobotanica, 48, 307–317. 10.1007/s12224-013-9169-x DOI

Pärtel, M. , Zobel, M. , Zobel, K. , van der Maarel, E. , & Partel, M. (1996). The species pool and its relation to species richness: Evidence from Estonian plant communities. Oikos, 75, 111–117. 10.2307/3546327 DOI

Pollock, L. J. , Tingley, R. , Morris, W. K. , Golding, N. , O'Hara, R. B. , Parris, K. M. , … McCarthy, M. A. (2014). Understanding co‐occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution, 5, 397–406. 10.1111/2041-210X.12180 DOI

Puerta‐Piñero, C. , Muller‐Landau, H. C. , Calderón, O. , & Wright, S. J. (2013). Seed arrival in tropical forest tree fall gaps. Ecology, 94(7), 1552–1562. 10.1890/12-1012.1 PubMed DOI

Sádlo, J. , Chytrý, M. , & Pyšek, P. (2007). Regional species pool of vascular plants in habitats of the Czech Republic. Preslia, 79, 303–321.

Sonnier, G. , Shipley, B. , & Navas, M. (2010). Plant traits, species pools and the prediction of relative abundance in plant communities: A maximum entropy approach. Journal of Vegetation Science, 21, 318–331. 10.1111/j.1654-1103.2009.01145.x DOI

StatSoft . (2015). STATISTICA (data analysis software system), version 13. – StatSoft Inc. Retrieved from www.statsoft.com

Švamberková, E. , Vítová, A. , & Lepš, J. (2017). The role of biotic interactions in plant community assembly: What is the community species pool? Acta Oecologica, 85, 150–156. 10.1016/j.actao.2017.10.011 DOI

Těšitel, J. , Fibich, P. , de Bello, F. , Chytrý, M. , & Lepš, J. (2015). Habitats and ecological niches of root‐hemiparasitic plants: An assessment based on a large database of vegetation plots. Preslia, 87, 87–108.

Tofts, R. , & Silvertown, J. (2002). Community assembly from the local species pool: An experimental study using congeneric species pairs. Journal of Ecology, 90, 385–393. 10.1046/j.1365-2745.2001.00673.x DOI

Turnbull, L. A. , Crawley, M. J. , & Rees, M. (2000). Are plant populations seed‐limited? A review of seed sowing experiments. Oikos, 88, 225–238. 10.1034/j.1600-0706.2000.880201.x DOI

Vítová, A. , & Lepš, J. (2011). Experimental assessment of dispersal and habitat limitation in an oligotrophic wet meadow. Plant Ecology, 212, 1231–1242. 10.1007/s11258-011-9900-8 DOI

Vítová, A. , Macek, P. , & Lepš, J. (2017). Disentangling the interplay of generative and vegetative propagation among different functional groups during gap colonization in meadows. Functional Ecology, 31, 458–468. 10.1111/1365-2435.12731 DOI

Wellstein, C. , Campetellab, G. , Spadac, F. , Chelli, S. , Mucinad, L. , Canullob, R. , & Barthae, S. (2014). Context‐dependent assembly rules and the role of dominating grasses in semi‐natural abandoned sub‐Mediterranean grasslands. Agriculture, Ecosystems and Environment, 182, 113–122. 10.1016/j.agee.2013.12.016 DOI

Wisz, M. S. , Pottier, J. , Kissling, W. D. , Pellissier, L. , Lenoir, J. , Damgaard, C. F. , … Svenning, J.‐C. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. Biological Reviews, 88, 15–30. 10.1111/j.1469-185X.2012.00235.x PubMed DOI PMC

Zobel, M. (1997). The relative role of species pool in determining plant species richness: An alternative explanation of species coexistence? Trends in Ecology & Evolution, 12, 266–269. 10.1016/S0169-5347(97)01096-3 PubMed DOI

Zobel, M. , & Kalamees, R. (2005). Diversity and dispersal — Can the link be approached experimentally? Folia Geobotanica, 40, 3–11. 10.1007/BF02803040 DOI

Zobel, M. , van der Maarel, E. , & Dupré, C. (1998). Species pool: The concept, its determination and significance for community restoration. Applied Vegetation Science, 1, 55–66. 10.2307/1479085 DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Closely related species differ in their traits, but competition induces high intra-specific variability

. 2024 Sep ; 14 (9) : e70254. [epub] 20240913

Zobrazit více v PubMed

Dryad
10.5061/dryad.fqz612jq9

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace