Closely related species differ in their traits, but competition induces high intra-specific variability
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39279800
PubMed Central
PMC11393774
DOI
10.1002/ece3.70254
PII: ECE370254
Knihovny.cz E-zdroje
- Klíčová slova
- Carex species, closely related species, competition, functional traits, greenhouse experiment, interspecific trait variability, intraspecific trait variability, water availability,
- Publikační typ
- časopisecké články MeSH
Theories explaining community assembly assume that biotic and abiotic filters sort species into communities based on the values of their traits and are thus based on between-species trait variability (BTV). Nevertheless, these filters act on individuals rather than on species. Consequently, the selection is also influenced by intraspecific trait variability (ITV) and its drivers. These drivers may be abiotic (e.g., water availability) or biotic (e.g., competition). Although closely related species should have similar traits, many of them coexist. We investigated the relative magnitudes of BTV and ITV in coexisting closely related species and how their individual traits differ under different drivers of ITV. We manipulated conditions in a greenhouse pot experiment with four common Carex species, where individuals of each species originated from four source localities. Individuals were grown in factorial combinations of two moisture levels, with and without a competitor (grass species Holcus lanatus, a frequent competitor). We analyzed the variability of six morphological traits on individuals in the greenhouse and three morphological traits in the source localities. Species identity was the main determinant of differences in most traits. Competition exerted a greater effect than water availability. For leaf dry matter content (LDMC) and vegetative height, competition's effect even exceeded the variability among species. On the contrary, for specific leaf area (SLA) and clonal spread, the interspecific differences exceeded ITV induced by experimental treatments. SLA measured in the greenhouse closely correlated with values measured in field populations, while LDMC did not. The variability caused by source locality of ramets in the greenhouse was small, although sometimes significant. Closely related species differ in their traits, but for some traits, ITV can exceed BTV. We can expect that ITV can modify the processes of community assembly, particularly among coexisting closely related species.
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Entomology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Albert, C. H. , Grassein, F. , Schurr, F. M. , Vieilledent, G. , & Violle, C. (2011). When and how should intraspecific variability be considered in trait‐based plant ecology? Perspectives in Plant Ecology, Evolution and Systematics, 13, 217–225. 10.1016/j.ppees.2011.04.003 DOI
Albert, C. H. , Thuiller, W. , Yoccoz, N. G. , Soudant, A. , Boucher, F. , Saccone, P. , & Lavorel, S. (2010). Intraspecific functional variability: Extent, structure and sources of variation. Journal of Ecology, 98, 604–613. 10.1111/j.1365-2745.2010.01651.x DOI
Carboni, M. , de Bello, F. , Janeček, Š. , & Klimešová, J. (2014). Changes in trait divergence and convergence along a productivity gradient in wet meadows. Agriculture Ecosystems & Environment, 182, 96–105. 10.1016/j.agee.2013.12.014 DOI
Chaloupecká, E. , & Lepš, J. (2003). Equivalence of competitor effects and tradeoff between vegetative multiplication and generative reproduction: Case study with Lychnis flos‐cuculi and Myosotis nemorosa . Flora, 199, 157–167. doi:10.1078/0367-2530-00144 DOI
Chytrý, M. , Danihelka, J. , Kaplan, Z. , Wild, J. , Wild, J. , Holubová, D. , Novotný, P. , Řezníčková, M. , Rohn, M. , Dřevojan, P. , Grulich, V. , Klimešová, J. , Lepš, J. , Lososová, Z. , Pergl, J. , Sádlo, J. , Šmarda, P. , Štěpánková, P. , Tichý, L. , … Pyšek, P. (2021). Pladias database of the Czech flora and vegetation. Preslia, 93, 1–87. 10.23855/preslia.2021.001 DOI
Chytrý, M. , Tichý, L. , Dřevojan, P. , Sádlo, J. , & Zelený, D. (2018). Ellenberg‐type indicator values for the Czech flora. Preslia, 90, 83–103. 10.23855/preslia.2018.083 DOI
Clark, J. S. , LaDeau, S. , & Ibanez, I. (2004). Fecundity of trees and the colonization‐competition hypothesis. Ecology Monographs, 74, 415–442. 10.1890/02-4093 DOI
Cornelissen, J. H. C. , Song, Y. , Yu, F. , & Dong, M. (2014). Plant traits and ecosystem effects of clonality: A new research agenda. Annals of Botany, 114, 369–376. 10.1093/aob/mcu113 PubMed DOI PMC
Davies, T. J. , Wolkovich, E. M. , Kraft, N. J. , Salamin, N. , Allen, J. M. , Ault, T. R. , Betancourt, J. L. , Bolmgren, K. , Cleland, E. E. , Cook, B. I. , Crimmins, T. M. , Mazer, S. J. , McCabe, G. J. , Pau, S. , Regetz, J. , Schwarz, M. D. , & Travers, S. E. (2013). Phylogenetic conservatism in plant phenology. Journal of Ecology, 101, 1520–1530. 10.1111/1365-2745.12154 DOI
de Bello, F. , Dias, A. T. C. , Götzenberger, L. , Moretti, M. , & Berg, M. P. (2021). Handbook of trait‐based ecology, from theory to R tools. Cambridge University Press.
de Bello, F. , Price, J. N. , Münkemüller, T. , Liira, J. , Zobel, M. , Thuiller, W. , Gerhold, P. , Götzenberger, L. , Lavergne, S. , Lepš, J. , Zobel, K. , & Pärtel, M. (2012). Functional species pool framework to test for biotic effects on community assembly. Ecology, 93, 2263–2273. 10.1890/11-1394.1 PubMed DOI
de Kroon, H. , & Hutchings, M. J. (1995). Morphological plasticity in clonal plants: The foraging concept reconsidered. Journal of Ecology, 83, 143–152. 10.2307/2261158 DOI
Diáz, S. , Purvis, A. , Cornelissen, J. H. C. , Mace, G. M. , Donoghue, M. J. , Ewers, R. M. , Jordano, P. , & Pearse, W. D. (2013). Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 3, 2958–2975. 10.1002/ece3.601 PubMed DOI PMC
Donovan, L. A. , Maherali, H. , Caruso, C. M. , Huber, H. , & de Kroon, H. (2011). The evolution of the worldwide leaf economics spectrum. Trends in Ecology & Evolution, 26, 88–95. 10.1016/j.tree.2010.11.011 PubMed DOI
Dostál, P. , Fischer, M. , & Prati, D. (2020). Comparing experimental and field‐measured traits and their variability in central European grassland species. Journal of Vegetation Science, 31, 561–570. 10.1111/jvs.12875 DOI
Garnier, E. , Laurent, G. , Bellmann, A. , Debain, S. , Berthelier, P. , Ducout, B. , Roumet, C. , & Navas, M. L. (2001). Consistency of species ranking based on functional leaf traits. New Phytologist, 152, 69–83. 10.1046/j.0028-646x.2001.00239.x PubMed DOI
Gorné, L. D. , Díaz, S. , Minden, V. , Onoda, Y. , Kramer, K. , Muir, C. , Michaletz, S. T. , Lavorel, S. , Sharpe, J. , Jansen, S. , Slot, M. , Chacon, E. , & Boenisch, G. (2021). The acquisitive‐conservative axis of leaf trait variation emerges even in homogeneous environments. Annals of Botany, 129, 709–722. 10.1093/aob/mcaa198 PubMed DOI PMC
Götzenberger, L. , de Bello, F. , Bråthen, K. A. , Davison, J. , Dubuis, A. , Guisan, A. , Lepš, J. , Lindborg, R. , Moora, M. , Pärtel, M. , Pellissier, L. , Pottier, J. , Vittoz, P. , Zobel, K. , & Zobel, M. (2012). Ecological assembly rules in plant communities ‐ approaches, patterns and prospects. Biological Reviews, 87, 111–127. 10.1111/j.1469-185X.2011.00187.x PubMed DOI
Grime, J. P. (1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86, 902–910. 10.1046/j.1365-2745.1998.00306.x DOI
Hao, G. , Yang, N. , Liu, Y. , Shi, X. , Wang, J. , Zhao, N. , Li, H. , Ren, A. , & Gao, Y. (2023). The relative importance of drought stress and neighbor richness on plant‐plant interactions shifts over a short time. Science of the Total Environment, 892, 164534. 10.1016/j.scitotenv.2023.164534 PubMed DOI
He, D. , Biswas, S. R. , Xu, M. , Yang, T. , You, W. , & Yan, E. (2021). The importance of intraspecific trait variability in promoting functional niche dimensionality. Ecography, 44, 380–390. 10.1111/ecog.05254 DOI
Janíková, E. , & Lepš, J. (2023). Methods of species pool determination as predictors of survival in seeding and transplanting experiments. Functional Ecology, 37, 1870–1883. 10.1111/1365-2435.14357 DOI
Jessen, M. T. , Kaarlejärvi, E. , Olofsson, J. , & Eskelinen, A. (2020). Mammalian herbivory shapes intraspecific trait responses to warmer climate and nutrient enrichment. Global Change Biology, 26, 6742–6752. 10.1111/gcb.15378 PubMed DOI
Ji, W. , LaZerte, S. E. , Waterway, M. J. , & Lechowicz, M. J. (2020). Functional ecology of congeneric variation in the leaf economics spectrum. New Phytologist, 225, 196–208. 10.1111/nph.16109 PubMed DOI
Jiménez‐Mejías, P. , Hahn, M. , Lueders, K. , Starr, J. R. , Brown, B. H. , Chouinard, B. , Chung, K.‐S. , Escudero, M. , Ford, B. , Ford, K. , Gebauer, S. , Gehrke, B. , Hoffmann, M. , Jin, X.‐F. , Jung, J. , Kim, S. , Garcés, M. , Maguilla, E. , Martín‐Bravo, S. , & Roalson, E. (2016). Megaphylogenetic specimen‐level approaches to the Carex (Cyperaceae) phylogeny using ITS, ETS, and matK sequences: Implications for classification. Systematic Botany, 41, 500–518. 10.1600/036364416X692497 DOI
Jung, V. , Albert, C. H. , Violle, C. , Kunstler, G. , Loucougaray, G. , & Spiegelberger, T. (2014). Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. Journal of Ecology, 102, 45–53. 10.1111/1365-2745.12177 DOI
Kaplan, Z. , Danihelka, J. , Chrtek, J. , Kirschner, J. , Kubát, K. , Stech, M. , & Stepanek, J. (2019). Klíč ke květeně České republiky. [The key to flora of the Czech Republic]. Academia.
Klimešová, J. , Mudrák, O. , Martínková, J. , Lisner, A. , Lepš, J. , Filartiga, A. L. , & Ottaviani, G. (2021). Are belowground clonal traits good predictors of ecosystem functioning in temperate grasslands? Functional Ecology, 35, 787–795. 10.1111/1365-2435.13755 DOI
Kuznetsova, A. , Brockhoff, P. B. , Christensen, R. H. B. , & Jensen, S. P. (2017). lmerTest Package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. 10.18637/jss.v082.i13 DOI
Latzel, V. , Zhang, Y. , Moritz, K. K. , Fischer, M. , & Bossdorf, O. (2012). Epigenetic variation in plant responses to defence hormones. Annals of Botany, 110, 1423–1428. 10.1093/aob/mcs088 PubMed DOI PMC
Lavorel, S. , & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the holy grail. Functional Ecology, 16, 545–556. 10.1046/j.1365-2435.2002.00664.x DOI
Legendre, P. (2018). lmodel2: Model II regression . R package v. 1.7‐3.
Lepš, J. , de Bello, F. , Šmilauer, P. , & Doležal, J. (2011). Community trait response to environment: Disentangling species turnover vs intraspecific trait variability effects. Ecography, 34, 856–863. 10.1111/j.1600-0587.2010.06904.x DOI
Lepš, J. , Majeková, M. , Vítová, A. , Doležal, J. , & de Bello, F. (2018). Stabilizing effects in temporal fluctuations: Management, traits and species richness in high‐diversity communities. Ecology, 99, 360–371. 10.1002/ecy.2065 PubMed DOI
Leyer, I. (2005). Predicting plant species' responses to river regulation: The role of water level fluctuations. Journal of Applied Ecology, 42, 239–250. 10.1111/j.1654-1103.2012.01481.x DOI
Li, H. , Li, X. , & Zhou, X. (2020). Trait means predict performance under water limitation better than plasticity for seedlings of Poaceae species on the eastern Tibetan plateau. Ecology and Evolution, 10, 2944–2955. 10.1002/ece3.6108 PubMed DOI PMC
Lisner, A. , Pärtel, M. , Helm, A. , Prangel, E. , & Lepš, J. (2021). Traits as determinants of species abundance in a grassland community. Journal of Vegetation Science, 32, e13041. 10.1111/jvs.13041 DOI
Liu, M. , Wang, Z. , Li, S. , Lü, X. , Wang, X. , & Hanl, X. (2017). Changes in specific leaf area of dominant plants in temperate grasslands along a 2500‐km transect in northern China. Scientific Reports, 7, 10780. 10.1038/s41598-017-11133-z PubMed DOI PMC
MacArthur, R. , & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377–385. 10.1086/282505 DOI
Macek, P. , & Lepš, J. (2003). The effect of environmental heterogeneity on clonal behaviour of Prunella vulgaris L. Plant Ecology, 168, 31–43. 10.1023/A:1024460525317 DOI
March‐Salas, M. , Fandos, G. , & Fitze, P. S. (2020). Effects of intrinsic environmental predictability on intra‐individual and intra‐population variability of plant reproductive traits and eco‐evolutionary consequences. Annals of Botany, 127, 413–423. 10.1093/aob/mcaa096 PubMed DOI PMC
Martín‐Bravo, S. , Escudero, M. , Míguez, M. , Jiménez‐Mejías, P. , & Luceño, M. (2013). Molecular and morphological evidence for a new species from South Africa: Carex rainbowii (Cyperaceae). South African Journal of Botany, 87, 85–91. 10.1016/j.sajb.2013.03.014 DOI
Mayfield, M. M. , & Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085–1093. 10.1111/j.1461-0248.2010.01509.x PubMed DOI
McGill, B. J. , Enquist, B. J. , Weiher, E. , & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178–185. 10.1016/j.tree.2006.02.002 PubMed DOI
Messier, J. , McGill, B. J. , & Lechowicz, M. J. (2010). How do traits vary across ecological scales? A case for trait‐based ecology. Ecology Letters, 13, 838–848. 10.1111/j.1461-0248.2010.01476.x PubMed DOI
Mudrák, O. , Doležal, J. , Vítová, A. , & Lepš, J. (2019). Variation in plant functional traits is best explained by the species identity: Stability of trait‐based species ranking across meadow management regimes. Functional Ecology, 33, 746–755. 10.1111/1365-2435.13287 DOI
Pérez‐Harguindeguy, N. , Díaz, S. , Garnier, E. , Lavorel, S. , Poorter, H. , Jaureguiberry, P. , Bret‐Harte, M. S. , Cornwell, W. K. , Craine, J. M. , Gurvich, D. E. , Urcelay, C. , Veneklaas, E. J. , Reich, P. B. , Poorter, L. , Wright, I. J. , Ray, P. , Enrico, L. , Pausas, J. G. , de Vos, A. C. , … Cornelissen, J. H. C. (2016). Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64, 715–716. 10.1071/BT12225_CO DOI
Puy, J. , Carmona, C. P. , Dvořáková, H. , Latzel, V. , & de Bello, F. (2021). Diversity of parental environments increases phenotypic variation in Arabidopsis populations more than genetic diversity but similarly affects productivity. Annals of Botany, 127, 425–436. 10.1093/aob/mcaa100 PubMed DOI PMC
R Core Team . (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
Revelle, W. (2024). Psych: Procedures for psychological, psychometric, and personality research . Northwestern University, Evanston, Illinois. R package version 2.4.1. https://CRAN.R‐project.org/package=psych
Reznicek, A. A. (2001). Sectional names in Carex (Cyperaceae) for the Flora of North America. Novon, 11, 454–459. 10.2307/3393160 DOI
Schmidt, L. , Schmid, B. , Oja, T. , & Fischer, M. (2018). Genetic differentiation, phenotypic plasticity and adaptation in a hybridizing pair of a more common and a less common Carex species. Alpine Botany, 128, 149–167. 10.1007/s00035-018-0211-8 DOI
Schneider, C. A. , Rasband, W. S. , & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. 10.1038/nmeth.2089 PubMed DOI PMC
Shipley, B. , de Bello, F. , Cornelissen, J. H. C. , Laliberte, E. , Laughlin, D. C. , & Reich, P. B. (2016). Reinforcing loose foundation stones in trait‐based plant ecology. Oecologia, 180, 923–931. 10.1007/s00442-016-3549-x PubMed DOI
Siefert, A. , Violle, C. , Chalmandrier, L. , Albert, C. H. , Taudiere, A. , Fajardo, A. , Aarssen, L. W. , Baraloto, C. , Carlucci, M. B. , Cianciaruso, M. V. , de L. Dantas, V. , de Bello, F. , Duarte, L. D. S. , Fonseca, C. R. , Freschet, G. T. , Gaucherand, S. , Gross, N. , Hikosaka, K. , Jackson, B. , … Wardle, D. A. (2015). A global meta‐analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406–1419. doi:10.1111/ele.12508 PubMed DOI
Švamberková, E. , & Lepš, J. (2020). Experimental assessment of biotic and abiotic filters driving community composition. Ecology and Evolution, 10, 7364–7376. 10.1002/ece3.6461 PubMed DOI PMC
Tammaru, K. , Košnar, J. , Abbas, A. F. , Barta, K. A. , de Bello, F. , Harrison, S. , Degli, E. I. , Kiss, R. , Lukács, K. , Neumann, S. M. , Wagia, H. , Puy, J. , & Lepš, J. (2021). Ecological differentiation of Carex species coexisting in a wet meadow: Comparison of pot and field experiments. Acta Oecologica, 110, 103692. 10.1016/j.actao.2020.103692 DOI
Taseski, G. M. , Keith, D. A. , Dalrymple, R. L. , & Cornwell, W. K. (2021). Shifts in fine root traits within and among species along a fine‐scale hydrological gradient. Annals of Botany, 127, 473–481. 10.1093/aob/mcaa175 PubMed DOI PMC
Toogood, S. E. , Joyce, C. B. , & Waite, S. (2008). Response of floodplain grassland plant communities to altered water regimes. Plant Ecology, 197, 285–298. 10.1007/s11258-007-9378-6 DOI
Valladares, F. , Gianoli, E. , & Gómez, J. M. (2007). Ecological limits to plant phenotypic plasticity. New Phytologist, 176, 749–763. 10.1111/j.1469-8137.2007.02275.x PubMed DOI
Violle, C. , Enquist, B. J. , McGill, B. J. , Jiang, L. , Albert, C. H. , Hulshof, C. , Jung, V. , & Messier, J. (2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244–252. 10.1016/j.tree.2011.11.014 PubMed DOI
Westerband, A. C. , Funk, J. L. , & Barton, K. E. (2021). Review: Intraspecific trait variation in plants: A renewed focus on its role in ecological processes. Annals of Botany, 127, 397–410. 10.1093/aob/mcab011 PubMed DOI PMC
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer‐Verlag. https://ggplot2.tidyverse.org
Wild, J. , Kaplan, Z. , Danihelka, J. , Petřík, P. , Chytrý, M. , Novotný, P. , Rohn, M. , Šulc, V. , Brůna, J. , Chobot, K. , Ekrt, L. , Holubová, D. , Knollová, I. , Kocián, P. , Štech, M. , Štěpánek, J. , & Zouhar, V. (2019). Plant distribution data for The Czech Republic integrated in the Pladias database. Preslia, 91, 1–24. 10.23855/preslia.2019.001 DOI
Wilson, P. J. , Thompson, K. , & Hodgson, J. G. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155–162. 10.1046/j.1469-8137.1999.00427.x DOI
Wright, I. , Reich, P. , Westoby, M. , Ackerly, D. D. , Baruch, Z. , Bongers, F. , Cavender‐Bares, J. , Chapin, T. , Cornelissen, J. H. , Diemer, M. , Flexas, J. , Garnier, E. , Groom, P. K. , Gulias, J. , Hikosaka, K. , Lamont, B. B. , Lee, T. , Lee, W. , Lusk, C. , … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827. 10.1038/nature02403 PubMed DOI
Zanzottera, M. , Fratte, M. D. , Caccianiga, M. , Pierce, S. , & Cerabolini, B. E. L. (2020). Community‐level variation in plant functional traits and ecological strategies shapes habitat structure along succession gradients in alpine environment. Community Ecology, 21, 55–65. 10.1007/s42974-020-00012-9 DOI
Zhang, H. , Chen, S. , Bonser, S. P. , Hitchcock, T. , & Moles, A. T. (2023). Factors that shape large‐scale gradients in clonality. Journal of Biogeography, 50, 827–837. 10.1111/jbi.14577 DOI