Expanding the Limits of Computer-Assisted Sperm Analysis through the Development of Open Software
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AGL-2017-83799-R, AGL-2017- 85030-R, PID2019-105660RB-C21
Spanish MINECO/AEI/ERDF (EU)
A07_17R and T58_20R
Aragón Government and European Social Fund (ESF)
18-12465Y
Czech Science Foundation (GACR)
BES-2017-079979
Spanish Government
PubMed
32764457
PubMed Central
PMC7464510
DOI
10.3390/biology9080207
PII: biology9080207
Knihovny.cz E-zdroje
- Klíčová slova
- computer-aided sperm analysis, open-source software, sperm chemotaxis, sperm concentration, sperm function, sperm quality,
- Publikační typ
- časopisecké články MeSH
Computer assisted sperm analysis (CASA) systems can reduce errors occurring in manual analysis. However, commercial CASA systems are frequently not applicable at the forefront of challenging research endeavors. The development of open source software may offer important solutions for researchers working in related areas. Here, we present an example of this, with the development of three new modules for the OpenCASA software (hosted at Github). The first is the Chemotactic Sperm Accumulation Module, a powerful tool for studying sperm chemotactic behavior, analyzing the sperm accumulation in the direct vicinity of the stimuli. This module was validated by comparing fish sperm accumulation, with or without the influence of an attractant. The analysis clearly indicated cell accumulation in the treatment group, while the distribution of sperm was random in the control group. The second is the Sperm Functionality Module, based on the ability to recognize five sperm subpopulations according to their fluorescence patterns associated with the plasma membrane and acrosomal status. The last module is the Sperm Concentration Module, which expands the utilities of OpenCASA. These last two modules were validated, using bull sperm, by comparing them with visual counting by an observer. A high level of correlation was achieved in almost all the data, and a good agreement between both methods was obtained. With these newly developed modules, OpenCASA is consolidated as a powerful free and open-source tool that allows different aspects of sperm quality to be evaluated, with many potential applications for researchers.
Zobrazit více v PubMed
Gallagher M.T., Smith D.J., Kirkman-Brown J.C. CASA: Tracking the past and plotting the future. Reprod. Fertil. Dev. 2018;30:867–874. doi: 10.1071/RD17420. PubMed DOI
Baker H.W., Clarke G.N. Sperm morphology: Consistency of assessment of the same sperm by different observers. Clin. Reprod. Fertil. 1987;5:37–43. PubMed
Yaniz J.L., Silvestre M.A., Santolaria P., Soler C. CASA-Mot in mammals: An update. Reprod. Fertil. Dev. 2018;30:799–809. doi: 10.1071/RD17432. PubMed DOI
Amann R.P., Hammerstedt R.H. Validation of a System for Computerized Measurements of Spermatozoal Velocity and Percentage of Motile Sperm. Biol. Reprod. 1980;23:647–656. doi: 10.1095/biolreprod23.3.647. PubMed DOI
Katz D.F., Overstreet J.W. Sperm Motility Assessment by Videomicrography. Fertil. Steril. 1981;35:188–193. doi: 10.1016/S0015-0282(16)45320-3. PubMed DOI
Katz D.F., Davis R.O., Delandmeter B.A., Overstreet J.W. Real-Time Analysis of Sperm Motion Using Automatic Video Image Digitization. Comput. Methods Programs Biomed. 1985;21:173–182. doi: 10.1016/0169-2607(85)90002-1. PubMed DOI
Gallagher M.T., Cupples G., Ooi E.H., Kirkman-Brown J.C., Smith D.J. Rapid sperm capture: High-throughput flagellar waveform analysis. Hum. Reprod. 2019;34:1173–1185. doi: 10.1093/humrep/dez056. PubMed DOI PMC
Hansen J.N., Rassmann S., Jikeli J.F., Wachten D. SpermQ(-)A Simple Analysis Software to Comprehensively Study Flagellar Beating and Sperm Steering. Cells. 2018;8:10. doi: 10.3390/cells8010010. PubMed DOI PMC
Goodson S.G., White S., Stevans A.M., Bhat S., Kao C.Y., Jaworski S., Marlowe T.R., Kohlmeier M., McMillan L., Zeisel S.H., et al. CASAnova: A multiclass support vector machine model for the classification of human sperm motility patterns. Biol. Reprod. 2017;97:698–708. doi: 10.1093/biolre/iox120. PubMed DOI PMC
Alquezar-Baeta C., Gimeno-Martos S., Miguel-Jimenez S., Santolaria P., Yaniz J., Palacin I., Casao A., Cebrian-Perez J.A., Muino-Blanco T., Perez-Pe R. OpenCASA: A new open-source and scalable tool for sperm quality analysis. PLoS Comput. Biol. 2019;15:e1006691. doi: 10.1371/journal.pcbi.1006691. PubMed DOI PMC
Ortega-Ferrusola C., Gil M.C., Rodriguez-Martinez H., Anel L., Pena F.J., Martin-Munoz P. Flow cytometry in Spermatology: A bright future ahead. Reprod. Domest. Anim. 2017;52:921–931. doi: 10.1111/rda.13043. PubMed DOI
Peña F.J., Rodriguez J.M.O., Gil M.C., Ferrusola C.O. Flow cytometry analysis of spermatozoa: Is it time for flow spermetry? Reprod. Domest. Anim. 2018;53:37–45. doi: 10.1111/rda.13261. PubMed DOI
Boe-Hansen G.B., Satake N. An update on boar semen assessments by flow cytometry and CASA. Theriogenology. 2019;137:93–103. doi: 10.1016/j.theriogenology.2019.05.043. PubMed DOI
Hossain M.S., Johannisson A., Wallgren M., Nagy S., Siqueira A.P., Rodriguez-Martinez H. Flow cytometry for the assessment of animal sperm integrity and functionality: State of the art. Asian J. Androl. 2011;13:406–419. doi: 10.1038/aja.2011.15. PubMed DOI PMC
Gillan L., Evans G., Maxwell W.M. Flow cytometric evaluation of sperm parameters in relation to fertility potential. Theriogenology. 2005;63:445–457. doi: 10.1016/j.theriogenology.2004.09.024. PubMed DOI
Holt W., Watson P., Curry M., Holt C. Reproducibility of computer-aided semen analysis—Comparison of 5 different systems used in a practical workshop. Fertil. Steril. 1994;62:1277–1282. doi: 10.1016/S0015-0282(16)57201-X. PubMed DOI
Lu J.C., Huang Y.F., Lu N.Q. Computer-aided sperm analysis: Past, present and future. Andrologia. 2014;46:329–338. doi: 10.1111/and.12093. PubMed DOI
Boryshpolets S., Kowalski R.K., Dietrich G.J., Dzyuba B., Ciereszko A. Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters. Theriogenology. 2013;80:758–765. doi: 10.1016/j.theriogenology.2013.06.019. PubMed DOI
Ramon M., Martinez-Pastor F. Implementation of novel statistical procedures and other advanced approaches to improve analysis of CASA data. Reprod. Fertil. Dev. 2018 doi: 10.1071/RD17479. PubMed DOI
Wilson-Leedy J.G., Ingermann R.L. Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology. 2007;67:661–672. doi: 10.1016/j.theriogenology.2006.10.003. PubMed DOI
Giaretta E., Munerato M., Yeste M., Galeati G., Spinaci M., Tamanini C., Mari G., Bucci D. Implementing an open-access CASA software for the assessment of stallion sperm motility: Relationship with other sperm quality parameters. Anim. Reprod. Sci. 2017;176:11–19. doi: 10.1016/j.anireprosci.2016.11.003. PubMed DOI
Purchase C.F., Earle P.T. Modifications to the IMAGEJ computer assisted sperm analysis plugin greatly improve efficiency and fundamentally alter the scope of attainable data. J. Appl. Ichthyol. 2012;28:1013–1016. doi: 10.1111/jai.12070. DOI
Armon L., Eisenbach M. Behavioral mechanism during human sperm chemotaxis: Involvement of hyperactivation. PLoS ONE. 2011;6:e28359. doi: 10.1371/journal.pone.0028359. PubMed DOI PMC
Umezu K., Hara K., Hiradate Y., Numabe T., Tanemura K. Stromal cell-derived factor 1 regulates in vitro sperm migration towards the cumulus-oocyte complex in cattle. PLoS ONE. 2020;15:e0232536. doi: 10.1371/journal.pone.0232536. PubMed DOI PMC
Eisenbach M. Sperm chemotaxis. Rev. Reprod. 1999;4:56–66. doi: 10.1530/ror.0.0040056. PubMed DOI
Yániz J.L., Palacín I., Vicente-Fiel S., Gosálvez J., López-Fernández C., Santolaria P. Comparison of membrane-permeant fluorescent probes for sperm viability assessment in the ram. Reprod. Domest. Anim. 2013;48:598–603. doi: 10.1111/rda.12132. PubMed DOI
Yanagimachi R. In vitro acrosome reaction and capacitation of golden hamster spermatozoa by bovine follicular fluid and its fractions. J. Exp. Zool. 1969;170:269–280. doi: 10.1002/jez.1401700304. DOI
Parrish J.J. Bovine in vitro fertilization: In vitro oocyte maturation and sperm capacitation with heparin. Theriogenology. 2014;81:67–73. doi: 10.1016/j.theriogenology.2013.08.005. PubMed DOI PMC
Yaniz J.L., Soler C., Alquezar-Baeta C., Santolaria P. Toward an integrative and predictive sperm quality analysis in Bos taurus. Anim. Reprod. Sci. 2017;181:108–114. doi: 10.1016/j.anireprosci.2017.03.022. PubMed DOI
Schindelin J., Rueden C.T., Hiner M.C., Eliceiri K.W. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 2015;82:518–529. doi: 10.1002/mrd.22489. PubMed DOI PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Munafo M.R., Nosek B.A., Bishop D.V.M., Button K.S., Chambers C.D., du Sert N.P., Simonsohn U., Wagenmakers E.J., Ware J.J., Ioannidis J.P.A. A manifesto for reproducible science. Nat. Hum. Behav. 2017;1:0021. doi: 10.1038/s41562-016-0021. PubMed DOI PMC
Woelfle M., Olliaro P., Todd M.H. Open science is a research accelerator. Nat. Chem. 2011;3:745–748. doi: 10.1038/nchem.1149. PubMed DOI
Cosson J.J. Flagellar Mechanics and Sperm Guidance. Bentham Science Publishers; Cenakva, Czech Republic: 2015. DOI
Cosson J. Frenetic activation of fish spermatozoa flagella entails short-term motility, portending their precocious decadence. J. Fish Biol. 2010;76:240–279. doi: 10.1111/j.1095-8649.2009.02504.x. PubMed DOI
Yanagimachi R., Harumi T., Matsubara H., Yan W., Yuan S., Hirohashi N., Iida T., Yamaha E., Arai K., Matsubara T., et al. Chemical and physical guidance of fish spermatozoa into the egg through the micropyle. Biol. Reprod. 2017;96:780–799. doi: 10.1093/biolre/iox015. PubMed DOI PMC
Kholodnyy V., Gadelha H., Cosson J., Boryshpolets S. How do freshwater fish sperm find the egg? The physicochemical factors guiding the gamete encounters of externally fertilizing freshwater fish. Rev. Aquacult. 2020;12:1165–1192. doi: 10.1111/raq.12378. DOI
Bahat A., Eisenbach M. Sperm thermotaxis. Mol. Cell. Endocrinol. 2006;252:115–119. doi: 10.1016/j.mce.2006.03.027. PubMed DOI
Miki K., Clapham D.E. Rheotaxis guides mammalian sperm. Curr. Biol. 2013;23:443–452. doi: 10.1016/j.cub.2013.02.007. PubMed DOI PMC
Peña A., Johannisson A., Linde-Forsberg C. Post-thaw evaluation of dog spermatozoa using new triple fluorescent staining and flow cytometry. Theriogenology. 1999;52:965–980. doi: 10.1016/S0093-691X(99)00186-7. PubMed DOI
Nagy S., Jansen J., Topper E.K., Gadella B.M. A triple-stain flow cytometric method to assess plasma- and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol. Reprod. 2003;68:1828–1835. doi: 10.1095/biolreprod.102.011445. PubMed DOI
Bussalleu E., Pinart E., Yeste M., Briz M., Sancho S., Garcia-Gil N., Badia E., Bassols J., Pruneda A., Casas I., et al. Development of a protocol for multiple staining with fluorochromes to assess the functional status of boar spermatozoa. Microsc. Res. Tech. 2005;68:277–283. doi: 10.1002/jemt.20246. PubMed DOI
Graham J.K., Kunze E., Hammerstedt R.H. Analysis of sperm cell viability, acrosomal integrity, and mitochondrial function using flow cytometry. Biol. Reprod. 1990;43:55–64. doi: 10.1095/biolreprod43.1.55. PubMed DOI
Gimeno-Martos S., Gonzalez-Arto M., Casao A., Gallego M., Cebrian-Perez J.A., Muino-Blanco T., Perez-Pe R. Steroid hormone receptors and direct effects of steroid hormones on ram spermatozoa. Reproduction. 2017;154:469–481. doi: 10.1530/REP-17-0177. PubMed DOI
Fernandez S., Sestelo A., Rivolta M., Cordoba M. Capacitation and Acrosome Reaction Induction on Thawed Dama dama Deer Spermatozoa: Glycine Effect as Cryopreservation Diluent Supplement. Zoolog. Sci. 2013;30:1110–1116. doi: 10.2108/zsj.30.1110. PubMed DOI
Seify M., Zarabadipour M., Ghaleno L.R., Alizadeh A., Valojerdi M.R. The anti-oxidant roles of Taurine and Hypotaurine on acrosome integrity, HBA and HSPA2 of the human sperm during vitrification and post warming in two different temperature. Cryobiology. 2019;90:89–95. doi: 10.1016/j.cryobiol.2019.07.004. PubMed DOI
Lee Y.S., Lee S., Lee S.H., Yang B.K., Park C.K. Effect of cholesterol-loaded-cyclodextrin on sperm viability and acrosome reaction in boar semen cryopreservation. Anim. Reprod. Sci. 2015;159:124–130. doi: 10.1016/j.anireprosci.2015.06.006. PubMed DOI
Pons-Rejraji H., Bailey J.L., Leclerc P. Cryopreservation affects bovine sperm intracellular parameters associated with capacitation and acrosome exocytosis. Reprod. Fertil. Dev. 2009;21:525–537. doi: 10.1071/RD07170. PubMed DOI
Kumar A., Prasad J.K., Srivastava N., Ghosh S.K. Strategies to Minimize Various Stress-Related Freeze-Thaw Damages During Conventional Cryopreservation of Mammalian Spermatozoa. Biopreserv. Biobank. 2019;17:603–612. doi: 10.1089/bio.2019.0037. PubMed DOI
Pini T., Leahy T., de Graaf S.P. Sublethal sperm freezing damage: Manifestations and solutions. Theriogenology. 2018;118:172–181. doi: 10.1016/j.theriogenology.2018.06.006. PubMed DOI
Guidobaldi H.A., Hirohashi N., Cubilla M., Buffone M.G., Giojalas L.C. An intact acrosome is required for the chemotactic response to progesterone in mouse spermatozoa. Mol. Reprod. Dev. 2017;84:310–315. doi: 10.1002/mrd.22782. PubMed DOI PMC
Cooper T.G., Noonan E., von Eckardstein S., Auger J., Baker H.W., Behre H.M., Haugen T.B., Kruger T., Wang C., Mbizvo M.T., et al. World Health Organization reference values for human semen characteristics. Hum. Reprod. Update. 2010;16:231–245. doi: 10.1093/humupd/dmp048. PubMed DOI