Expanding the Limits of Computer-Assisted Sperm Analysis through the Development of Open Software

. 2020 Aug 05 ; 9 (8) : . [epub] 20200805

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32764457

Grantová podpora
AGL-2017-83799-R, AGL-2017- 85030-R, PID2019-105660RB-C21 Spanish MINECO/AEI/ERDF (EU)
A07_17R and T58_20R Aragón Government and European Social Fund (ESF)
18-12465Y Czech Science Foundation (GACR)
BES-2017-079979 Spanish Government

Computer assisted sperm analysis (CASA) systems can reduce errors occurring in manual analysis. However, commercial CASA systems are frequently not applicable at the forefront of challenging research endeavors. The development of open source software may offer important solutions for researchers working in related areas. Here, we present an example of this, with the development of three new modules for the OpenCASA software (hosted at Github). The first is the Chemotactic Sperm Accumulation Module, a powerful tool for studying sperm chemotactic behavior, analyzing the sperm accumulation in the direct vicinity of the stimuli. This module was validated by comparing fish sperm accumulation, with or without the influence of an attractant. The analysis clearly indicated cell accumulation in the treatment group, while the distribution of sperm was random in the control group. The second is the Sperm Functionality Module, based on the ability to recognize five sperm subpopulations according to their fluorescence patterns associated with the plasma membrane and acrosomal status. The last module is the Sperm Concentration Module, which expands the utilities of OpenCASA. These last two modules were validated, using bull sperm, by comparing them with visual counting by an observer. A high level of correlation was achieved in almost all the data, and a good agreement between both methods was obtained. With these newly developed modules, OpenCASA is consolidated as a powerful free and open-source tool that allows different aspects of sperm quality to be evaluated, with many potential applications for researchers.

Zobrazit více v PubMed

Gallagher M.T., Smith D.J., Kirkman-Brown J.C. CASA: Tracking the past and plotting the future. Reprod. Fertil. Dev. 2018;30:867–874. doi: 10.1071/RD17420. PubMed DOI

Baker H.W., Clarke G.N. Sperm morphology: Consistency of assessment of the same sperm by different observers. Clin. Reprod. Fertil. 1987;5:37–43. PubMed

Yaniz J.L., Silvestre M.A., Santolaria P., Soler C. CASA-Mot in mammals: An update. Reprod. Fertil. Dev. 2018;30:799–809. doi: 10.1071/RD17432. PubMed DOI

Amann R.P., Hammerstedt R.H. Validation of a System for Computerized Measurements of Spermatozoal Velocity and Percentage of Motile Sperm. Biol. Reprod. 1980;23:647–656. doi: 10.1095/biolreprod23.3.647. PubMed DOI

Katz D.F., Overstreet J.W. Sperm Motility Assessment by Videomicrography. Fertil. Steril. 1981;35:188–193. doi: 10.1016/S0015-0282(16)45320-3. PubMed DOI

Katz D.F., Davis R.O., Delandmeter B.A., Overstreet J.W. Real-Time Analysis of Sperm Motion Using Automatic Video Image Digitization. Comput. Methods Programs Biomed. 1985;21:173–182. doi: 10.1016/0169-2607(85)90002-1. PubMed DOI

Gallagher M.T., Cupples G., Ooi E.H., Kirkman-Brown J.C., Smith D.J. Rapid sperm capture: High-throughput flagellar waveform analysis. Hum. Reprod. 2019;34:1173–1185. doi: 10.1093/humrep/dez056. PubMed DOI PMC

Hansen J.N., Rassmann S., Jikeli J.F., Wachten D. SpermQ(-)A Simple Analysis Software to Comprehensively Study Flagellar Beating and Sperm Steering. Cells. 2018;8:10. doi: 10.3390/cells8010010. PubMed DOI PMC

Goodson S.G., White S., Stevans A.M., Bhat S., Kao C.Y., Jaworski S., Marlowe T.R., Kohlmeier M., McMillan L., Zeisel S.H., et al. CASAnova: A multiclass support vector machine model for the classification of human sperm motility patterns. Biol. Reprod. 2017;97:698–708. doi: 10.1093/biolre/iox120. PubMed DOI PMC

Alquezar-Baeta C., Gimeno-Martos S., Miguel-Jimenez S., Santolaria P., Yaniz J., Palacin I., Casao A., Cebrian-Perez J.A., Muino-Blanco T., Perez-Pe R. OpenCASA: A new open-source and scalable tool for sperm quality analysis. PLoS Comput. Biol. 2019;15:e1006691. doi: 10.1371/journal.pcbi.1006691. PubMed DOI PMC

Ortega-Ferrusola C., Gil M.C., Rodriguez-Martinez H., Anel L., Pena F.J., Martin-Munoz P. Flow cytometry in Spermatology: A bright future ahead. Reprod. Domest. Anim. 2017;52:921–931. doi: 10.1111/rda.13043. PubMed DOI

Peña F.J., Rodriguez J.M.O., Gil M.C., Ferrusola C.O. Flow cytometry analysis of spermatozoa: Is it time for flow spermetry? Reprod. Domest. Anim. 2018;53:37–45. doi: 10.1111/rda.13261. PubMed DOI

Boe-Hansen G.B., Satake N. An update on boar semen assessments by flow cytometry and CASA. Theriogenology. 2019;137:93–103. doi: 10.1016/j.theriogenology.2019.05.043. PubMed DOI

Hossain M.S., Johannisson A., Wallgren M., Nagy S., Siqueira A.P., Rodriguez-Martinez H. Flow cytometry for the assessment of animal sperm integrity and functionality: State of the art. Asian J. Androl. 2011;13:406–419. doi: 10.1038/aja.2011.15. PubMed DOI PMC

Gillan L., Evans G., Maxwell W.M. Flow cytometric evaluation of sperm parameters in relation to fertility potential. Theriogenology. 2005;63:445–457. doi: 10.1016/j.theriogenology.2004.09.024. PubMed DOI

Holt W., Watson P., Curry M., Holt C. Reproducibility of computer-aided semen analysis—Comparison of 5 different systems used in a practical workshop. Fertil. Steril. 1994;62:1277–1282. doi: 10.1016/S0015-0282(16)57201-X. PubMed DOI

Lu J.C., Huang Y.F., Lu N.Q. Computer-aided sperm analysis: Past, present and future. Andrologia. 2014;46:329–338. doi: 10.1111/and.12093. PubMed DOI

Boryshpolets S., Kowalski R.K., Dietrich G.J., Dzyuba B., Ciereszko A. Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters. Theriogenology. 2013;80:758–765. doi: 10.1016/j.theriogenology.2013.06.019. PubMed DOI

Ramon M., Martinez-Pastor F. Implementation of novel statistical procedures and other advanced approaches to improve analysis of CASA data. Reprod. Fertil. Dev. 2018 doi: 10.1071/RD17479. PubMed DOI

Wilson-Leedy J.G., Ingermann R.L. Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology. 2007;67:661–672. doi: 10.1016/j.theriogenology.2006.10.003. PubMed DOI

Giaretta E., Munerato M., Yeste M., Galeati G., Spinaci M., Tamanini C., Mari G., Bucci D. Implementing an open-access CASA software for the assessment of stallion sperm motility: Relationship with other sperm quality parameters. Anim. Reprod. Sci. 2017;176:11–19. doi: 10.1016/j.anireprosci.2016.11.003. PubMed DOI

Purchase C.F., Earle P.T. Modifications to the IMAGEJ computer assisted sperm analysis plugin greatly improve efficiency and fundamentally alter the scope of attainable data. J. Appl. Ichthyol. 2012;28:1013–1016. doi: 10.1111/jai.12070. DOI

Armon L., Eisenbach M. Behavioral mechanism during human sperm chemotaxis: Involvement of hyperactivation. PLoS ONE. 2011;6:e28359. doi: 10.1371/journal.pone.0028359. PubMed DOI PMC

Umezu K., Hara K., Hiradate Y., Numabe T., Tanemura K. Stromal cell-derived factor 1 regulates in vitro sperm migration towards the cumulus-oocyte complex in cattle. PLoS ONE. 2020;15:e0232536. doi: 10.1371/journal.pone.0232536. PubMed DOI PMC

Eisenbach M. Sperm chemotaxis. Rev. Reprod. 1999;4:56–66. doi: 10.1530/ror.0.0040056. PubMed DOI

Yániz J.L., Palacín I., Vicente-Fiel S., Gosálvez J., López-Fernández C., Santolaria P. Comparison of membrane-permeant fluorescent probes for sperm viability assessment in the ram. Reprod. Domest. Anim. 2013;48:598–603. doi: 10.1111/rda.12132. PubMed DOI

Yanagimachi R. In vitro acrosome reaction and capacitation of golden hamster spermatozoa by bovine follicular fluid and its fractions. J. Exp. Zool. 1969;170:269–280. doi: 10.1002/jez.1401700304. DOI

Parrish J.J. Bovine in vitro fertilization: In vitro oocyte maturation and sperm capacitation with heparin. Theriogenology. 2014;81:67–73. doi: 10.1016/j.theriogenology.2013.08.005. PubMed DOI PMC

Yaniz J.L., Soler C., Alquezar-Baeta C., Santolaria P. Toward an integrative and predictive sperm quality analysis in Bos taurus. Anim. Reprod. Sci. 2017;181:108–114. doi: 10.1016/j.anireprosci.2017.03.022. PubMed DOI

Schindelin J., Rueden C.T., Hiner M.C., Eliceiri K.W. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 2015;82:518–529. doi: 10.1002/mrd.22489. PubMed DOI PMC

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Munafo M.R., Nosek B.A., Bishop D.V.M., Button K.S., Chambers C.D., du Sert N.P., Simonsohn U., Wagenmakers E.J., Ware J.J., Ioannidis J.P.A. A manifesto for reproducible science. Nat. Hum. Behav. 2017;1:0021. doi: 10.1038/s41562-016-0021. PubMed DOI PMC

Woelfle M., Olliaro P., Todd M.H. Open science is a research accelerator. Nat. Chem. 2011;3:745–748. doi: 10.1038/nchem.1149. PubMed DOI

Cosson J.J. Flagellar Mechanics and Sperm Guidance. Bentham Science Publishers; Cenakva, Czech Republic: 2015. DOI

Cosson J. Frenetic activation of fish spermatozoa flagella entails short-term motility, portending their precocious decadence. J. Fish Biol. 2010;76:240–279. doi: 10.1111/j.1095-8649.2009.02504.x. PubMed DOI

Yanagimachi R., Harumi T., Matsubara H., Yan W., Yuan S., Hirohashi N., Iida T., Yamaha E., Arai K., Matsubara T., et al. Chemical and physical guidance of fish spermatozoa into the egg through the micropyle. Biol. Reprod. 2017;96:780–799. doi: 10.1093/biolre/iox015. PubMed DOI PMC

Kholodnyy V., Gadelha H., Cosson J., Boryshpolets S. How do freshwater fish sperm find the egg? The physicochemical factors guiding the gamete encounters of externally fertilizing freshwater fish. Rev. Aquacult. 2020;12:1165–1192. doi: 10.1111/raq.12378. DOI

Bahat A., Eisenbach M. Sperm thermotaxis. Mol. Cell. Endocrinol. 2006;252:115–119. doi: 10.1016/j.mce.2006.03.027. PubMed DOI

Miki K., Clapham D.E. Rheotaxis guides mammalian sperm. Curr. Biol. 2013;23:443–452. doi: 10.1016/j.cub.2013.02.007. PubMed DOI PMC

Peña A., Johannisson A., Linde-Forsberg C. Post-thaw evaluation of dog spermatozoa using new triple fluorescent staining and flow cytometry. Theriogenology. 1999;52:965–980. doi: 10.1016/S0093-691X(99)00186-7. PubMed DOI

Nagy S., Jansen J., Topper E.K., Gadella B.M. A triple-stain flow cytometric method to assess plasma- and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol. Reprod. 2003;68:1828–1835. doi: 10.1095/biolreprod.102.011445. PubMed DOI

Bussalleu E., Pinart E., Yeste M., Briz M., Sancho S., Garcia-Gil N., Badia E., Bassols J., Pruneda A., Casas I., et al. Development of a protocol for multiple staining with fluorochromes to assess the functional status of boar spermatozoa. Microsc. Res. Tech. 2005;68:277–283. doi: 10.1002/jemt.20246. PubMed DOI

Graham J.K., Kunze E., Hammerstedt R.H. Analysis of sperm cell viability, acrosomal integrity, and mitochondrial function using flow cytometry. Biol. Reprod. 1990;43:55–64. doi: 10.1095/biolreprod43.1.55. PubMed DOI

Gimeno-Martos S., Gonzalez-Arto M., Casao A., Gallego M., Cebrian-Perez J.A., Muino-Blanco T., Perez-Pe R. Steroid hormone receptors and direct effects of steroid hormones on ram spermatozoa. Reproduction. 2017;154:469–481. doi: 10.1530/REP-17-0177. PubMed DOI

Fernandez S., Sestelo A., Rivolta M., Cordoba M. Capacitation and Acrosome Reaction Induction on Thawed Dama dama Deer Spermatozoa: Glycine Effect as Cryopreservation Diluent Supplement. Zoolog. Sci. 2013;30:1110–1116. doi: 10.2108/zsj.30.1110. PubMed DOI

Seify M., Zarabadipour M., Ghaleno L.R., Alizadeh A., Valojerdi M.R. The anti-oxidant roles of Taurine and Hypotaurine on acrosome integrity, HBA and HSPA2 of the human sperm during vitrification and post warming in two different temperature. Cryobiology. 2019;90:89–95. doi: 10.1016/j.cryobiol.2019.07.004. PubMed DOI

Lee Y.S., Lee S., Lee S.H., Yang B.K., Park C.K. Effect of cholesterol-loaded-cyclodextrin on sperm viability and acrosome reaction in boar semen cryopreservation. Anim. Reprod. Sci. 2015;159:124–130. doi: 10.1016/j.anireprosci.2015.06.006. PubMed DOI

Pons-Rejraji H., Bailey J.L., Leclerc P. Cryopreservation affects bovine sperm intracellular parameters associated with capacitation and acrosome exocytosis. Reprod. Fertil. Dev. 2009;21:525–537. doi: 10.1071/RD07170. PubMed DOI

Kumar A., Prasad J.K., Srivastava N., Ghosh S.K. Strategies to Minimize Various Stress-Related Freeze-Thaw Damages During Conventional Cryopreservation of Mammalian Spermatozoa. Biopreserv. Biobank. 2019;17:603–612. doi: 10.1089/bio.2019.0037. PubMed DOI

Pini T., Leahy T., de Graaf S.P. Sublethal sperm freezing damage: Manifestations and solutions. Theriogenology. 2018;118:172–181. doi: 10.1016/j.theriogenology.2018.06.006. PubMed DOI

Guidobaldi H.A., Hirohashi N., Cubilla M., Buffone M.G., Giojalas L.C. An intact acrosome is required for the chemotactic response to progesterone in mouse spermatozoa. Mol. Reprod. Dev. 2017;84:310–315. doi: 10.1002/mrd.22782. PubMed DOI PMC

Cooper T.G., Noonan E., von Eckardstein S., Auger J., Baker H.W., Behre H.M., Haugen T.B., Kruger T., Wang C., Mbizvo M.T., et al. World Health Organization reference values for human semen characteristics. Hum. Reprod. Update. 2010;16:231–245. doi: 10.1093/humupd/dmp048. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace