Toward Detecting Infection Incidence in People With Type 1 Diabetes Using Self-Recorded Data (Part 1): A Novel Framework for a Personalized Digital Infectious Disease Detection System
Jazyk angličtina Země Kanada Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 LM012734
NLM NIH HHS - United States
PubMed
32784178
PubMed Central
PMC7450374
DOI
10.2196/18911
PII: v22i8e18911
Knihovny.cz E-zdroje
- Klíčová slova
- decision making, infection incidence, infectious disease outbreaks, public health surveillance, self-recorded health data, type 1 diabetes,
- MeSH
- diabetes mellitus 1. typu komplikace MeSH
- dospělí MeSH
- incidence MeSH
- individualizovaná medicína metody MeSH
- infekční nemoci etiologie patologie MeSH
- komplikace diabetu diagnóza MeSH
- lidé MeSH
- retrospektivní studie MeSH
- telemedicína metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Type 1 diabetes is a chronic condition of blood glucose metabolic disorder caused by a lack of insulin secretion from pancreas cells. In people with type 1 diabetes, hyperglycemia often occurs upon infection incidences. Despite the fact that patients increasingly gather data about themselves, there are no solid findings that uncover the effect of infection incidences on key parameters of blood glucose dynamics to support the effort toward developing a digital infectious disease detection system. OBJECTIVE: The study aims to retrospectively analyze the effect of infection incidence and pinpoint optimal parameters that can effectively be used as input variables for developing an infection detection algorithm and to provide a general framework regarding how a digital infectious disease detection system can be designed and developed using self-recorded data from people with type 1 diabetes as a secondary source of information. METHODS: We retrospectively analyzed high precision self-recorded data of 10 patient-years captured within the longitudinal records of three people with type 1 diabetes. Obtaining such a rich and large data set from a large number of participants is extremely expensive and difficult to acquire, if not impossible. The data set incorporates blood glucose, insulin, carbohydrate, and self-reported events of infections. We investigated the temporal evolution and probability distribution of the key blood glucose parameters within a specified timeframe (weekly, daily, and hourly). RESULTS: Our analysis demonstrated that upon infection incidence, there is a dramatic shift in the operating point of the individual blood glucose dynamics in all the timeframes (weekly, daily, and hourly), which clearly violates the usual norm of blood glucose dynamics. During regular or normal situations, higher insulin and reduced carbohydrate intake usually results in lower blood glucose levels. However, in all infection cases as opposed to the regular or normal days, blood glucose levels were elevated for a prolonged period despite higher insulin and reduced carbohydrates intake. For instance, compared with the preinfection and postinfection weeks, on average, blood glucose levels were elevated by 6.1% and 16%, insulin (bolus) was increased by 42% and 39.3%, and carbohydrate consumption was reduced by 19% and 28.1%, respectively. CONCLUSIONS: We presented the effect of infection incidence on key parameters of blood glucose dynamics along with the necessary framework to exploit the information for realizing a digital infectious disease detection system. The results demonstrated that compared with regular or normal days, infection incidence substantially alters the norm of blood glucose dynamics, which are quite significant changes that could possibly be detected through personalized modeling, for example, prediction models and anomaly detection algorithms. Generally, we foresee that these findings can benefit the efforts toward building next generation digital infectious disease detection systems and provoke further thoughts in this challenging field.
Department of Biomedical Informatics Columbia University New York NY United States
Department of Clinical Research University Hospital of North Norway Tromsø Norway
Department of Computer Science University of Tromsø The Arctic University of Norway Tromsø Norway
Department of Pediatrics Informatics and Data Science University of Colorado Aurora CO United States
Zobrazit více v PubMed
Choi J, Cho Y, Shim E, Woo H. Web-based infectious disease surveillance systems and public health perspectives: a systematic review. BMC Public Health. 2016 Dec 8;16(1):1238. doi: 10.1186/s12889-016-3893-0. PubMed DOI PMC
Hope K, Durrheim DN, d'Espaignet ET, Dalton C. Syndromic Surveillance: is it a useful tool for local outbreak detection? J Epidemiol Community Health. 2006 May;60(5):374–5. doi: 10.1136/jech.2005.035337. PubMed DOI PMC
Banaee H, Ahmed MU, Loutfi A. Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sensors (Basel) 2013 Dec 17;13(12):17472–500. doi: 10.3390/s131217472. PubMed DOI PMC
Woldaregay AZ, Årsand E, Botsis T, Albers D, Mamykina L, Hartvigsen G. Data-driven blood glucose pattern classification and anomalies detection: machine-learning applications in type 1 diabetes. J Med Internet Res. 2019 May 1;21(5):e11030. doi: 10.2196/11030. PubMed DOI PMC
Fawcett T. Mining the quantified self: personal knowledge discovery as a challenge for data science. Big Data. 2015 Dec;3(4):249–66. doi: 10.1089/big.2015.0049. PubMed DOI
Gurrin C, Smeaton AF, Doherty AR. LifeLogging: personal big data. FNT Inf Ret. 2014;8(1):1–125. doi: 10.1561/1500000033. doi: 10.1561/1500000033. DOI
Prince JD. The quantified self: operationalizing the quotidien. J Electron Resour Med Libr. 2014 May 30;11(2):91–9. doi: 10.1080/15424065.2014.909145. doi: 10.1080/15424065.2014.909145. DOI
Rawassizadeh R, Momeni E, Dobbins C, Mirza-Babaei P, Rahnamoun R. Lesson learned from collecting quantified self information via mobile and wearable devices. J Sens Actuator Netw. 2015 Nov 5;4(4):315–35. doi: 10.3390/jsan4040315. doi: 10.3390/jsan4040315. DOI
Bellazzi R, Abu-Hanna A. Data mining technologies for blood glucose and diabetes management. J Diabetes Sci Technol. 2009 May 1;3(3):603–12. doi: 10.1177/193229680900300326. PubMed DOI PMC
Rodríguez-Rodríguez I, Rodríguez JV, Zamora-Izquierdo M. Variables to be monitored via biomedical sensors for complete type 1 diabetes mellitus management: an extension of the 'on-board' concept. J Diabetes Res. 2018;2018:4826984. doi: 10.1155/2018/4826984. doi: 10.1155/2018/4826984. PubMed DOI PMC
Vayena E, Salathé M, Madoff LC, Brownstein JS. Ethical challenges of big data in public health. PLoS Comput Biol. 2015 Feb;11(2):e1003904. doi: 10.1371/journal.pcbi.1003904. PubMed DOI PMC
Denecke K. An ethical assessment model for digital disease detection technologies. Life Sci Soc Policy. 2017 Sep 20;13(1):16. doi: 10.1186/s40504-017-0062-x. PubMed DOI PMC
Tsui F, Espino JU, Dato VM, Gesteland PH, Hutman J, Wagner MM. Technical description of RODS: a real-time public health surveillance system. J Am Med Inform Assoc. 2003;10(5):399–408. doi: 10.1197/jamia.M1345. PubMed DOI PMC
Ogurtsova K, da Rocha Fernandes J, Huang Y, Linnenkamp U, Guariguata L, Cho N, Cavan D, Shaw J, Makaroff L. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017 Jun;128:40–50. doi: 10.1016/j.diabres.2017.03.024. PubMed DOI
Clark M. What is diabetes? In: Ogden J, editor. Understanding Diabetes. New Jersey, United States: John Wiley & Sons Ltd; 2004.
Bazaev NA, Pletenev AN, Pozhar KV. Classification of factors affecting blood glucose concentration dynamics. Biomed Eng. 2013 Jul 18;47(2):100–3. doi: 10.1007/s10527-013-9344-7. PubMed DOI
Finan DA, Zisser H, Jovanovič L, Bevier WC, Seborg DE. Automatic detection of stress states in type 1 diabetes subjects in ambulatory conditions. Ind Eng Chem Res. 2010 Sep 1;49(17):7843–8. doi: 10.1021/ie901891c. PubMed DOI PMC
Botsis T, Hejlesen O, Bellika JG, Hartvigsen G. Electronic disease surveillance for sensitive population groups - the diabetics case study. Stud Health Technol Inform. 2008;136:365–70. PubMed
Rayfield EJ, Ault MJ, Keusch GT, Brothers MJ, Nechemias C, Smith H. Infection and diabetes: the case for glucose control. Am J Med. 1982 Mar;72(3):439–50. doi: 10.1016/0002-9343(82)90511-3. PubMed DOI
Simonsen JR, Harjutsalo V, Järvinen A, Kirveskari J, Forsblom C, Groop P, Lehto M, FinnDiane Study Group Bacterial infections in patients with type 1 diabetes: a 14-year follow-up study. BMJ Open Diabetes Res Care. 2015;3(1):e000067. doi: 10.1136/bmjdrc-2014-000067. PubMed DOI PMC
Yki-Järvinen H, Sammalkorpi K, Koivisto VA, Nikkilä EA. Severity, duration, and mechanisms of insulin resistance during acute infections. J Clin Endocrinol Metab. 1989 Aug;69(2):317–23. doi: 10.1210/jcem-69-2-317. PubMed DOI
Botsis T, Lai AM, Hripcsak G, Palmas W, Starren JB, Hartvigsen G. Proof of concept for the role of glycemic control in the early detection of infections in diabetics. Health Informatics J. 2012 Mar;18(1):26–35. doi: 10.1177/1460458211428427. PubMed DOI
Botsis T, Hartvigsen G. Exploring new directions in disease surveillance for people with diabetes: lessons learned and future plans. Stud Health Technol Inform. 2010;160(Pt 1):466–70. PubMed
Arsand E, Walseth OA, Andersson N, Fernando R, Granberg O, Bellika JG, Hartvigsen G. Using blood glucose data as an indicator for epidemic disease outbreaks. Stud Health Technol Inform. 2005;116:217–22. PubMed
Granberg O, Bellika JG, Arsand E, Hartvigsen G. Automatic infection detection system. Stud Health Technol Inform. 2007;129(Pt 1):566–70. PubMed
Woldaregay AZ, Årsand E, Giordanengo A, Albers D, Mamykina L, Botsis T, Hartvigsen G. EDMON-A Wireless Communication Platform for a Real-Time Infectious Disease Outbreak Detection System Using Self-Recorded Data from People with Type 1 Diabetes. The 15th Scandinavian Conference on Health Informatics; CHI'17; August 29, 2017; Kristiansand, Norway. 2017.
Lauritzen JN, Årsand E, Vuurden KV, Bellika JG, Hejlesen OK, Hartvigsen G. Towards a Mobile Solution for Predicting Illness in Type 1 Diabetes Mellitus: Development of a Prediction Model for Detecting Risk of Illness in Type 1 Diabetes Prior to Symptom Onset. 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology; Wireless VITAE; February 28-March 3, 2011; Chennai, India. 2011. DOI
Skrøvseth SO, Bellika JG, Godtliebsen F. Causality in scale space as an approach to change detection. PLoS One. 2012;7(12):e52253. doi: 10.1371/journal.pone.0052253. PubMed DOI PMC
Botsis T, Bellika JG, Hartvigsen G. Disease Surveillance Systems for Sensitive Population Groups. Faculty & Staff Insider - University of Washington. 2007. [2020-07-23]. https://faculty.washington.edu/lober/www.isdsjournal.org/htdocs/articles/2026.pdf.
Botsis T, Hejlesen O, Bellika JG, Hartvigsen G. Blood Glucose Levels as an Indicator for the Early Detection of Infections In Type-1 Diabetics. Faculty & Staff Insider - University of Washington. 2007. [2020-07-23]. http://faculty.washington.edu/lober/www.isdsjournal.org/htdocs/articles/2025.pdf.
Lauritzen J, Årsand E, Van Vuurden K, Hejlesen O, Hartvigsen G. Exploring illness prediction in Type 1 Diabetes Mellitus Pre-Symptom Onset. E-health Research. 2010. [2020-07-23]. https://ehealthresearch.no/en/publications/exploring-illness-prediction-in-type-1-diabetes-mellitus-pre-symptom-onset-1.
Hartvigsen G, Årsand E, Botsis T, van Vuurden K, Johansen M, Bellika JG. Reusing patient data to enhance patient empowerment and electronic disease surveillance. J Inf Technol. 2009;7(1):4–12.
Botsis T, Bellika JG, Hartvigsen G. New Directions in Electronic Disease Surveillance: Detection of Infectious Diseases during the Incubation Period. International Conference on eHealth; EH'09; February 1-7, 2009; Cancun, Mexico. 2009. pp. 176–83. DOI
Botsis T, Hejlesen O, Bellika JG, Hartvigsen G. Blood Glucose Levels as a Censor for Early Detection of Infection in Type-1 Diabetics. Faculty & Staff Insider - University of Washington. 2007. [2020-07-23]. http://faculty.washington.edu/lober/www.isdsjournal.org/htdocs/articles/2025.pdf.
Botsis T, Hejlesen O, Bellika JG, Hartvigsen G. Disease surveillance systems for diabetics. Telemedicine and e-Health; The American Telemedicine Association Annual International Meeting and Exposition; 2008; Seattle. 2008. Mar, pp. 108–108. DOI
Botsis T, Hejlesen O, Bellika JG, Hartvigsen G. Electronic infectious disease surveillance systems for diabetics. International Conference on Advanced Technologies & Treatments for Diabetes; Prague, Czech Republic. 2008.
Brealey D, Singer M. Hyperglycemia in critical illness: a review. J Diabetes Sci Technol. 2009 Nov 1;3(6):1250–60. doi: 10.1177/193229680900300604. PubMed DOI PMC
Marik PE, Bellomo R. Stress hyperglycemia: an essential survival response! Crit Care. 2013 Mar 6;17(2):305. doi: 10.1186/cc12514. PubMed DOI PMC
Årsand E, Muzny M, Bradway M, Muzik J, Hartvigsen G. Performance of the first combined smartwatch and smartphone diabetes diary application study. J Diabetes Sci Technol. 2015 May;9(3):556–63. doi: 10.1177/1932296814567708. PubMed DOI PMC
Features. Spike App. [2019-09-20]. https://spike-app.com/#features1.
Gillespie SJ, Kulkarni KD, Daly AE. Using carbohydrate counting in diabetes clinical practice. J Am Diet Assoc. 1998 Aug;98(8):897–905. doi: 10.1016/S0002-8223(98)00206-5. PubMed DOI
Rasoulzadeh V, Erkus EC, Yogurt TA, Ulusoy I, Zergeroğlu SA. A comparative stationarity analysis of EEG signals. Ann Oper Res. 2016 Apr 26;258(1):133–57. doi: 10.1007/s10479-016-2187-3. doi: 10.1007/s10479-016-2187-3. DOI
Azami H, Mohammadi K, Bozorgtabar B. An improved signal segmentation using moving average and Savitzky-Golay filter. J Signal Inf Process. 2012;03(01):39–44. doi: 10.4236/jsip.2012.31006. DOI
Botev ZI, Grotowski JF, Kroese DP. Kernel density estimation via diffusion. Ann Statist. 2010 Oct;38(5):2916–57. doi: 10.1214/10-aos799. DOI
Gramacki A. Nonparametric Kernel Density Estimation and Its Computational Aspects. Cham, Switzerland: Springer International Publishing; 2018. Nonparametric density estimation; pp. 7–24.
Gramacki A. Nonparametric Kernel Density Estimation and Its Computational Aspects. Cham, Switzerland: Springer International Publishing; 2018. Bandwidth selectors for kernel density estimation; pp. 63–83.
Heidenreich N, Schindler A, Sperlich S. Bandwidth selection for kernel density estimation: a review of fully automatic selectors. AStA Adv Stat Anal. 2013 Jun 2;97(4):403–33. doi: 10.1007/s10182-013-0216-y. doi: 10.1007/s10182-013-0216-y. DOI
Gramacki A. Nonparametric Kernel Density Estimation and Its Computational Aspects. Cham, Switzerland: Springer International Publishing; 2018. Kernel density estimation; pp. 25–62.
Zdravko B. Kernel Density Estimator. MathWorks. 2015. [2019-06-22]. https://www.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator.
Rossini AJ. 'Applied smoothing techniques for data analysis: the kernel approach with s-plus illustrations' by Adrian W Bowman and Adelchi Azzalini. Comput Stat. 2000 Sep 11;15(2):301–2. doi: 10.1007/s001800000033. doi: 10.1007/s001800000033. DOI
Bowman AW, Azzalini A. Applied Smoothing Techniques for Data Analysis: The Kernel Approach With S-Plus Illustrations. Oxford, UK: OUP Oxford; 1997.
Yi C. Bivariant Kernel Density Estimation (V2.1) MathWorks. 2013. [2019-06-22]. https://la.mathworks.com/matlabcentral/fileexchange/19280-bivariant-kernel-density-estimation-v2-1?s_tid=prof_contriblnk.
Yamaguchi M, Kaseda C, Yamazaki K, Kobayashi M. Prediction of blood glucose level of type 1 diabetics using response surface methodology and data mining. Med Biol Eng Comput. 2006 Jun;44(6):451–7. doi: 10.1007/s11517-006-0049-x. PubMed DOI
van Herpe T, Pluymers B, Espinoza M, van den Berghe G, de Moor BA. A minimal model for glycemia control in critically ill patients. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5432–5. doi: 10.1109/IEMBS.2006.260613. PubMed DOI
Waldhäusl WK, Bratusch-Marrain P, Komjati M, Breitenecker F, Troch I. Blood glucose response to stress hormone exposure in healthy man and insulin dependent diabetic patients: prediction by computer modeling. IEEE Trans Biomed Eng. 1992 Aug;39(8):779–90. doi: 10.1109/10.148386. PubMed DOI
O'Shea J. Digital disease detection: a systematic review of event-based internet biosurveillance systems. Int J Med Inform. 2017 May;101:15–22. doi: 10.1016/j.ijmedinf.2017.01.019. PubMed DOI PMC
Mizock BA. Alterations in carbohydrate metabolism during stress: a review of the literature. Am J Med. 1995 Jan;98(1):75–84. doi: 10.1016/S0002-9343(99)80083-7. PubMed DOI
Wagner MM, Moore AW, Aryel RM, editors. Handbook of Biosurveillance. New York, USA: Elsevier; 2006.
Event-Based Surveillance. Centers for Disease Control and Prevention. [2019-06-26]. https://www.cdc.gov/globalhealth/healthprotection/gddopscenter/how.html.
World Health Organization . A Guide to Establishing Event-Based Surveillance. Geneva, Switzerland: World Health Organization; 2008.
Coucheron S, Woldaregay AZ, Årsand E, Botsis T, Hartvigsen G. EDMON - A System Architecture for Real-Time Infection Monitoring and Outbreak Detection Based on Self-Recorded Data from People with Type 1 Diabetes: System Design and Prototype Implementation. The 17th Scandinavian Conference on Health Informatics; CHI'19; November 12, 2019; Oslo, Norway. 2019. pp. 37–44.
Tax DM. One-Class Classification: Concept Learning in the Absence of Counter-Examples. South Holland, Netherlands: Technische Universiteit Delft; 2002.
Mazhelis O. One-class classifiers: a review and analysis of suitability in the context of mobile-masquerader detection. S Afr Comput J. 2006;36:29–48.
Oviedo S, Vehí J, Calm R, Armengol J. A review of personalized blood glucose prediction strategies for T1DM patients. Int J Numer Method Biomed Eng. 2017 Jun;33(6):-–-. doi: 10.1002/cnm.2833. PubMed DOI
Woldaregay AZ, Årsand E, Walderhaug S, Albers D, Mamykina L, Botsis T, Hartvigsen G. Data-driven modeling and prediction of blood glucose dynamics: machine learning applications in type 1 diabetes. Artif Intell Med. 2019 Jul;98:109–34. doi: 10.1016/j.artmed.2019.07.007. PubMed DOI
Dunning T, Friedman E. In: Practical Machine Learning: A New Look at Anomaly Detection. Loukides M, editor. New York, USA: O'Reilly Media Inc; 2018.
Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey. ACM Comput Surv. 2009 Jul;41(3):1–58. doi: 10.1145/1541880.1541882. doi: 10.1145/1541880.1541882. DOI
Pimentel MA, Clifton DA, Clifton L, Tarassenko L. A review of novelty detection. Sig Process. 2014 Jun;99:215–49. doi: 10.1016/j.sigpro.2013.12.026. doi: 10.1016/j.sigpro.2013.12.026. DOI
Haslett J, Haslett SJ. The three basic types of residuals for a linear model. Int Statistical Rev. 2007 Apr;75(1):1–24. doi: 10.1111/j.1751-5823.2006.00001.x. doi: 10.1111/j.1751-5823.2006.00001.x. DOI
Harvey AC, Koopman SJ. Diagnostic checking of unobserved-components time series models. J Bus Econ Stat. 1992 Oct;10(4):377–89. doi: 10.1080/07350015.1992.10509913. DOI
Yu Y, Zhu Y, Li S, Wan D. Time series outlier detection based on sliding window prediction. Math Probl Eng. 2014;2014:1–14. doi: 10.1155/2014/879736. doi: 10.1155/2014/879736. DOI
Woldaregay AZ, Årsand E, Botsis T, Hartvigsen G. An early infectious disease outbreak detection mechanism based on self-recorded data from people with diabetes. Stud Health Technol Inform. 2017;245:619–23. PubMed
Vovk V, Gammerman A, Shafer G. Algorithmic Learning in a Random World. Boston, MA: Springer US; 2005. Conformal prediction; pp. 17–51.
Vovk V. Conformal Prediction for Reliable Machine Learning. New York, USA: Morgan Kaufmann; 2014. The basic conformal prediction framework; pp. 3–19.
Vovk V. Conformal Prediction for Reliable Machine Learning. New York, USA: Morgan Kaufmann; 2014. Beyond the basic conformal prediction framework; pp. 21–46.
James S. The Efficiency of Conformal Predictors for Anomaly Detection. Royal Holloway, University of London: Research. 2016. [2020-07-23]. https://pure.royalholloway.ac.uk/portal/en/publications/the-efficiency-of-conformal-predictors-for-anomaly-detection(d68cdec7-7d84-414b-9498-0c8539bb57b8)/export.html.
Laxhammar R, Falkman G. Inductive conformal anomaly detection for sequential detection of anomalous sub-trajectories. Ann Math Artif Intell. 2013 Sep 20;74(1-2):67–94. doi: 10.1007/s10472-013-9381-7. doi: 10.1007/s10472-013-9381-7. DOI
Shafer G, Vovk V. A tutorial on conformal prediction. J Mach Learn Res. 2008 Jun 1;9(-):371–421. doi: 10.5555/1390681.1390693. DOI
Smith J, Nouretdinov I, Craddock R, Offer C, Gammerman A. Anomaly Detection of Trajectories with Kernel Density Estimation by Conformal Prediction. IFIP International Conference on Artificial Intelligence Applications and Innovations; AIAI'14; September 19-21, 2014; Rhodos, Greece. 2014. DOI
Laxhammar R. Conformal Anomaly Detection: Detecting Abnormal Trajectories in Surveillance Applications. Skövde: School of Informatics, University of Skövde; 2014.
Mehrotra K, Mohan CK, Huang H. Anomaly Detection Principles and Algorithms. New York, USA: Springer; 2017.
Zhao Z, Mehrotra KG, Mohan CK. Ensemble Algorithms for Unsupervised Anomaly Detection. International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems; IEA/AIE'15; June 10-12, 2015; Seoul, Korea (Republic of). 2015. DOI
Breunig MM, Kriegel HP, Ng RT, Sanders J. LOF: Identifying Density-Based Local Outliers. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data; SIGMOD'00; May 16-18, 2000; Dallas, Texas, USA. 2000. DOI
Tang J, Chen Z, Fu AW, Cheung DW. Enhancing Effectiveness of Outlier Detections for Low Density Patterns. Pacific-Asia Conference on Knowledge Discovery and Data Mining; PAKDD'02; May 6-8, 2002; Taipei, Taiwan. 2002. DOI
Nguyen HV, Nguyen TT, Nguyen QU. Sequential Ensemble Method for Unsupervised Anomaly Detection. 9th International Conference on Knowledge and Systems Engineering (KSE); KSE'17; October 19-21, 2017; Hue, Vietnam. 2017. DOI
Goldstein M, Uchida S. A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS One. 2016;11(4):e0152173. doi: 10.1371/journal.pone.0152173. PubMed DOI PMC
Irigoien I, Sierra B, Arenas C. Towards application of one-class classification methods to medical data. ScientificWorldJournal. 2014;2014:730712. doi: 10.1155/2014/730712. doi: 10.1155/2014/730712. PubMed DOI PMC
Tax DM, Duin RP. Support vector data description. Mach Learn. 2004 Jan;54(1):45–66. doi: 10.1023/B:MACH.0000008084.60811.49. doi: 10.1023/b:mach.0000008084.60811.49. DOI
Schölkopf B, Williamson RC, Smola AJ, Shawe-Taylor J, Platt JC. Support Vector Method for Novelty Detection. The 12th International Conference on Neural Information Processing; NIPS'99; November 29-December 4, 1999; Denver, Colorado, USA. 1999. DOI
Juszczak P, Tax DM, Pe kalska E, Duin RP. Minimum spanning tree based one-class classifier. Neurocomputing. 2009 Mar;72(7-9):1859–69. doi: 10.1016/j.neucom.2008.05.003. doi: 10.1016/j.neucom.2008.05.003. DOI
Khan SS, Madden MG. One-class classification: taxonomy of study and review of techniques. Knowl Eng Rev. 2014 Jan 24;29(3):345–74. doi: 10.1017/S026988891300043X. doi: 10.1017/s026988891300043x. DOI
Wang B, Mao Z. One-class classifiers ensemble based anomaly detection scheme for process control systems. T I Meas Control. 2017 Sep 21;40(12):3466–76. doi: 10.1177/0142331217724508. doi: 10.1177/0142331217724508. DOI
Ahmad S, Lavin A, Purdy S, Agha Z. Unsupervised real-time anomaly detection for streaming data. Neurocomputing. 2017 Nov;262:134–47. doi: 10.1016/j.neucom.2017.04.070. doi: 10.1016/j.neucom.2017.04.070. DOI
Yu E, Parekh P. A bayesian ensemble for unsupervised anomaly detection. arXiv. 2016:-. preprint .
Shoemaker L, Hall LO. Anomaly Detection Using Ensembles. International Workshop on Multiple Classifier Systems; MCS'11; June 15-17, 2011; Naples, Italy. 2011. DOI
Yeng PK, Woldaregay AZ, Solvoll T, Hartvigsen G. Cluster detection mechanisms for syndromic surveillance systems: systematic review and framework development. JMIR Public Health Surveill. 2020 May 26;6(2):e11512. doi: 10.2196/11512. PubMed DOI PMC
Shi Z, Pun-Cheng L. Spatiotemporal data clustering: a survey of methods. Int J Geogr Inf Sci. 2019 Feb 28;8(3):112. doi: 10.3390/ijgi8030112. doi: 10.3390/ijgi8030112. DOI
Duangchaemkarn K, Chaovatut V, Wiwatanadate P, Boonchieng E. Symptom-based data preprocessing for the detection of disease outbreak. Conf Proc IEEE Eng Med Biol Soc. 2017 Jul;2017:2614–7. doi: 10.1109/EMBC.2017.8037393. PubMed DOI
Grubesic TH, Matisziw TC. On the use of ZIP codes and ZIP code tabulation areas (ZCTAs) for the spatial analysis of epidemiological data. Int J Health Geogr. 2006 Dec 13;5:58. doi: 10.1186/1476-072X-5-58. PubMed DOI PMC
Glatman-Freedman A, Kaufman Z, Kopel E, Bassal R, Taran D, Valinsky L, Agmon V, Shpriz M, Cohen D, Anis E, Shohat T. Near real-time space-time cluster analysis for detection of enteric disease outbreaks in a community setting. J Infect. 2016 Aug;73(2):99–106. doi: 10.1016/j.jinf.2016.04.038. PubMed DOI
Woldaregay AZ, Issom D, Henriksen A, Marttila H, Mikalsen M, Pfuhl G, Sato K, Lovis C, Hartvigsen G. Motivational factors for user engagement with mhealth apps. Stud Health Technol Inform. 2018;249:151–7. PubMed
Klingler C, Silva DS, Schuermann C, Reis AA, Saxena A, Strech D. Ethical issues in public health surveillance: a systematic qualitative review. BMC Public Health. 2017 Apr 4;17(1):295. doi: 10.1186/s12889-017-4200-4. PubMed DOI PMC
Geneviève LD, Martani A, Wangmo T, Paolotti D, Koppeschaar C, Kjelsø C, Guerrisi C, Hirsch M, Woolley-Meza O, Lukowicz P, Flahault A, Elger BS. Participatory disease surveillance systems: ethical framework. J Med Internet Res. 2019 May 23;21(5):e12273. doi: 10.2196/12273. PubMed DOI PMC
Rumbold JM, Pierscionek B. The effect of the general data protection regulation on medical research. J Med Internet Res. 2017 Feb 24;19(2):e47. doi: 10.2196/jmir.7108. PubMed DOI PMC
Hintze M. Viewing the GDPR through a de-identification lens: a tool for compliance, clarification, and consistency. Int Data Priv Law. 2017;8(1):86–101. doi: 10.1093/idpl/ipx020. DOI
Sun W, Cai Z, Li Y, Liu F, Fang S, Wang G. Security and privacy in the medical internet of things: a review. Secur Commun Netw. 2018;2018:1–9. doi: 10.1155/2018/5978636. doi: 10.1155/2018/5978636. DOI