Correlation among the Power Dissipation Efficiency, Flow Stress Course, and Activation Energy Evolution in Cr-Mo Low-Alloyed Steel
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/17_049/0008399
Operational Programme "Research, Development and Education
SP2020/88
Ministry of Education, Youth and Sports of the Czech Republic
SP2020/39
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
32784571
PubMed Central
PMC7476002
DOI
10.3390/ma13163480
PII: ma13163480
Knihovny.cz E-resources
- Keywords
- activation energy maps, artificial neural networks, flow stress maps, processing maps,
- Publication type
- Journal Article MeSH
In the presented research, conventional hot processing maps superimposed over the flow stress maps or activation energy maps are utilized to study a correlation among the efficiency of power dissipation, flow stress, and activation energy evolution in the case of Cr-Mo low-alloyed steel. All maps have been assembled on the basis of two flow curve datasets. The experimental one is the result of series of uniaxial hot compression tests. The predicted one has been calculated on the basis of the subsequent approximation procedure via a well-adapted artificial neural network. It was found that both flow stress and activation energy evolution are capable of expressing changes in the studied steel caused by the hot compression deformation. A direct association with the course of power dissipation efficiency is then evident in the case of both. The connection of the presence of instability districts to the activation energy evolution, flow stress course, and power dissipation efficiency was discussed further. Based on the obtained findings it can be stated that the activation energy processing maps represent another tool for the finding of appropriate forming conditions and can be utilized as a support feature for the conventionally-used processing maps to extend their informative ability.
See more in PubMed
Zhou P., Deng L., Zhang M., Gong P., Wang X.-Y. Characterization of hot workability of 5052 aluminum alloy based on activation energy-processing map. J. Mater. Eng. Perform. 2019;28:6209–6218. doi: 10.1007/s11665-019-04367-7. DOI
Qian P., Tang Z., Wang L., Siyasiya C.W. Hot Deformation characteristics and 3-D processing map of a high-titanium Nb-micro-alloyed steel. Materials. 2020;13:1501. doi: 10.3390/ma13071501. PubMed DOI PMC
Liu D., Ding H., Cai M., Han D. Hot Deformation behavior and processing map of a Fe-11Mn-10Al-0.9C duplex low-density steel susceptible to κ-carbides. J. Mater. Eng. Perform. 2019;28:5116–5126. doi: 10.1007/s11665-019-04200-1. DOI
Quan G.Z., Zhao L., Chen T., Wang Y., Mao Y.P., Lv W.Q., Zhou J. Identification for the optimal working parameters of as-extruded 42CrMo high-strength steel from a large range of strain, strain rate and temperature. Mater. Sci. Eng. A. 2012;538:364–373. doi: 10.1016/j.msea.2012.01.062. DOI
Xu L., Chen L., Chen G., Wang M. Hot deformation behavior and microstructure analysis of 25Cr3Mo3NiNb steel during hot compression tests. Vacuum. 2018;147:8–17. doi: 10.1016/j.vacuum.2017.10.017. DOI
Opěla P., Kawulok P., Kawulok R., Kotásek O., Buček P., Ondrejkovič K. Extension of experimentally assembled processing maps of 10CrMo9-10 steel via a predicted dataset and the influence on overall informative possibilities. Metals. 2019;9:1218. doi: 10.3390/met9111218. DOI
Zhang C., Zhang L., Shen W., Liu C., Xia Y., Li R. Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr–Ni–Mo alloyed steel. Mater. Des. 2016;90:804–814. doi: 10.1016/j.matdes.2015.11.036. DOI
Kliber J., Schindler I., Kawulok P., Sedláček R. Energy dissipation and instability parameter at high temperature forming of middle carbon steel; Proceedings of the 26th International Conference on Metallurgy and Materials; Brno, Czech Republic. 24–26 May 2017; Ostrava, Czech Republic: Tanger Ltd.; 2018. pp. 370–374.
Yang Z., Li Y., Li Y., Zhang F., Zhang M. Constitutive modeling for flow behavior of medium-carbon bainitic steel and its processing maps. J. Mater. Eng. Perform. 2016;25:5030–5039. doi: 10.1007/s11665-016-2301-3. DOI
Kumar N., Kumar S., Rajput S.K., Nath S.K. Modelling of flow stress and prediction of workability by processing map for hot compression of 43CrNi steel. ISIJ Int. 2017;57:497–505. doi: 10.2355/isijinternational.ISIJINT-2016-306. DOI
Gao X.J., Jiang Z.Y., Wei D.B., Jiao S.H., Chen D.F. Study on hot-working behavior of high carbon steel/low carbon steel composite material using processing map. Key Eng. Mater. 2014;622–623:330–339. doi: 10.4028/www.scientific.net/KEM.622-623.330. DOI
Zhou Y., Liu Y., Zhou X., Liu C. Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel. J. Mater. Res. 2015;30:2090–2100. doi: 10.1557/jmr.2015.168. DOI
Zhang P., Hu C., Ding C.-G., Zhu Q., Qin H.-Y. Plastic deformation behavior and processing maps of a Ni-based superalloy. Mater. Des. 2015;65:575–584. doi: 10.1016/j.matdes.2014.09.062. DOI
Mingjie Z., Fuguo L., Shuyun W., Chenyi L. Characterization of hot deformation behavior of a P/M Nickel-base superalloy using processing map and activation energy. Mater. Sci. Eng. A. 2010;527:6771–6779. doi: 10.1016/j.msea.2010.07.039. DOI
Srinivasan N., Prasad Y.V.R.K. Microstructural control in hot working of IN-718 superalloy using processing map. Metall. Mater. Trans. A. 1994;25:2275–2284. doi: 10.1007/BF02652327. DOI
Wang Y., Jiang S., Zhang Y. Processing map of NiTiNb shape memory alloy subjected to plastic deformation at high temperatures. Metals. 2017;7:328. doi: 10.3390/met7090328. DOI
Quan G.-Z., Zou Z.-Y., Wang T., Liu B., Li J.-C. Modeling the hot deformation behaviors of as-extruded 7075 aluminum alloy by an artificial neural network with back-propagation algorithm. High. Temp. Mater. Process. 2017;36:1–13. doi: 10.1515/htmp-2015-0108. DOI
Liu R., Wang W., Chen H., Zhang Y., Wan S. Hot deformation and processing maps of B4C/6061Al nanocomposites fabricated by spark plasma sintering. J. Mater. Eng. Perform. 2019;28:6287–6297. doi: 10.1007/s11665-019-04336-0. DOI
Zhang J., Di H., Wang H., Mao K., Ma T., Cao Y. Hot deformation behavior of Ti-15-3 titanium alloy: A study using processing maps, activation energy map, and Zener–Hollomon parameter map. J. Mater. Sci. 2012;47:4000–4011. doi: 10.1007/s10853-012-6253-1. DOI
Prasad Y.V.R.K., Gegel H.L., Doraivelu S.M., Malas J.C., Morgan J.T., Lark K.A., Barker D.R. Modeling of dynamic materials behavior in hot deformation: Forging of Ti-6242. Metall. Trans. A. 1984;15:1883–1892. doi: 10.1007/BF02664902. DOI
Meng Q., Bai C., Xu D. Flow behavior and processing map for hot deformation of ATI425 titanium alloy. J. Mater. Sci. Technol. 2018;34:679–688. doi: 10.1016/j.jmst.2017.07.015. DOI
Zhang S., Liang Y., Xia Q., Ou M. Study on tensile deformation behavior of TC21 titanium alloy. J. Mater. Eng. Perform. 2019;28:1581–1590. doi: 10.1007/s11665-019-03901-x. DOI
Chakravartty J.K., Prasad Y.V.R.K., Asundi M.K. Processing map for hot working of Alpha-Zirconium. Metall. Trans. A. 1991;22A:829–836. doi: 10.1007/BF02658992. DOI
Saxena K.K., Yadav S.D., Sonkar S., Pancholi V., Chaudhari G.P., Srivastava D., Dey G.K., Jha S.K., Saibaba N. Effect of temperature and strain rate on deformation behavior of Zirconium alloy: Zr-2.5Nb. Procedia Mater. Sci. 2014;6:278–283. doi: 10.1016/j.mspro.2014.07.035. DOI
Suresh K., Dharmendra C., Rao K.P., Prasad Y.V.R.K., Gupta M. Processing map of AZ31-1Ca-1.5 vol% nano-alumina composite for hot working. Mater. Manuf. Process. 2015;30:1–7. doi: 10.1080/10426914.2015.1025966. DOI
Zhang Y., Sun H., Volinsky A.A., Tian B., Song K., Chai Z., Liu P., Liu Y. Dynamic recrystallization behavior and processing map of the Cu–Cr–Zr–Nd alloy. Springer Plus. 2016;5:666. doi: 10.1186/s40064-016-2317-z. PubMed DOI PMC
Duan Y., Ma L., Qi H., Li R., Li P. Developed constitutive models, processing maps and microstructural evolution of Pb-Mg-10Al-0.5B alloy. Mater. Charact. 2017;129:353–366. doi: 10.1016/j.matchar.2017.05.026. DOI
Łyszkowski R., Bystrzycki J. Hot deformation and processing maps of an Fe3Al intermetallic alloy. Intermetallics. 2006;14:1231–1237. doi: 10.1016/j.intermet.2005.12.014. DOI
Wang S., Luo J.R., Hou L.G., Zhang J.S., Zhuang L.Z. Identification of the threshold stress and true activation energy for characterizing the deformation mechanisms during hot working. Mater. Des. 2017;113:27–36. doi: 10.1016/j.matdes.2016.10.018. DOI
GLEEBLE: Gleeble®Thermal-Mechanical Simulators. [(accessed on 1 October 2019)]; Available online: https://gleeble.com/
Opěla P., Schindler I., Kawulok P., Kawulok R., Rusz S., Rodak K. Hot flow curve description of CuFe2 alloy via different artificial neural network approaches. J. Mater. Eng. Perform. 2019;28:4863–4870. doi: 10.1007/s11665-019-04199-5. DOI
Opěla P., Schindler I., Rusz S., Navrátil H. A hot flow curve approximation via biology-inspired algorithms; Proceedings of the 28th International Conference on Metallurgy and Materials; Brno, Czech Republic. 22–24 May 2019; Ostrava, Czech Republic: Tanger Ltd.; 2019. pp. 455–460.
Opěla P., Schindler I., Očenášek V., Kawulok P., Kawulok R., Rusz S. Modelling the hot deformation behavior of AlSi1MgMn alloy via flow stress models utilizing intelligent algorithms. Proced. Struct. Integr. 2019;23:221–226. doi: 10.1016/j.prostr.2020.01.090. DOI
McCulloch W.S., Pitts W.H. A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 1943;5:115–133. doi: 10.1007/BF02478259. PubMed DOI
Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958;65:386–408. doi: 10.1037/h0042519. PubMed DOI
Krenker A., Bešter J., Kos A. Introduction to the artificial neural networks. In: Suzuki K., editor. Artificial Neural Networks Methodological Advances and Biomedical Applications. InTech; Rijeka, Croatia: 2011. pp. 3–18.
Debes K., Koenig A., Gross H.M. Transfer Functions in Artificial Neural Networks: A Simulation-based Tutorial. [(accessed on 16 September 2019)]; Available online: https://www.brains-minds-media.org/archive/151/
Gauss J.C.F. Theory of the Combination of Observations Least Subject to Errors. Henricum Dieterich; Göttingen, Germany: 1823. pp. 53–57. (In Latin)
Levenberg K. A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 1944;2:164–168. doi: 10.1090/qam/10666. DOI
Marquardt D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 1963;11:431–441. doi: 10.1137/0111030. DOI
Roweis S. Levenberg-marquardt Optimization. [(accessed on 1 October 2019)]; Available online: https://cs.nyu.edu/~roweis/notes/lm.pdf.
Bayes T., Price R. An essay towards solving a problem in the doctrine of chance. By the late Rev. Mr. Bayes, F.R.S. communicated by Mr. Price, in a letter to John Canton, A.M.F.R.S. Phil. Trans. 1763;53:370–418. doi: 10.1098/rstl.1763.0053. DOI
MacKey D.J.C. Bayesian interpolation. Neural Comput. 1992;4:415–447. doi: 10.1162/neco.1992.4.3.415. DOI
Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representations by error propagation. In: Feldman J.A., Hayes P.J., Rumelhart D.E., editors. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1. The MIT Press; Cambridge, MA, USA: 1986. pp. 318–362.
MathWorks MATLAB® Math. Graphics. Programming. [(accessed on 18 September 2019)]; Available online: https://www.mathworks.com/products/matlab.html.
Beale M.H., Hagan M.T., Demuth H.B. Neural Network ToolboxTM 7: User’s Guide. [(accessed on 18 September 2019)]; Available online: https://www2.cs.siu.edu/~rahimi/cs437/slides/nnet.pdf.
Alexander J.M. Mapping dynamic material behaviour. In: Lenard J.G., editor. Modelling Hot Deformation of Steels. Springer; Berlin Heidelberg, Germany: 1989. pp. 101–115.
Gegel H.L., Malas J.C., Doraivelu S.M., Shende V.A. Modeling techniques used in forging process design: Dynamic material modeling. In: Semiatin S.L., editor. ASM Handbook. 9th ed. ASM International; Geauga, OH, USA: 1996. pp. 918–924.
Kumar A.K.S.K. Master’s Thesis. Institute of Science; Bangalore, India: 1987. Criteria for predicting metallurgical instabilities in processing.
Prasad Y.V.R.K. Recent Advances in the Science of Mechanical processing. Indian J. Technol. 1990;28:435–451.
Schindler I., Kawulok P., Kawulok R., Hadasik E., Kuc D. Influence of calculation method on value of activation energy in hot forming. High Temp. Mater. Process. 2013;32:149–155. doi: 10.1515/htmp-2012-0106. DOI
Schindler I., Kawulok P., Hadasik E., Kuc D. Activation energy in hot forming and recrystallization models for magnesium alloy AZ31. J. Mater. Eng. Perform. 2013;22:890–897. doi: 10.1007/s11665-012-0327-8. DOI
Kawulok P., Schindler I., Kawulok R., Opěla P., Sedláček R. Influence of heating parameters on flow stress curves of low-alloy Mn-Ti-B steel. Arch. Metall. Mater. 2018;63:1785–1792. doi: 10.24425/amm.2018.125105. DOI
Schindler I., Kawulok P., Očenášek V., Opěla P., Kawulok R., Rusz S. Flow stress and hot deformation activation energy of 6082 aluminium alloy influenced by initial structural state. Metals. 2019;9:1248. doi: 10.3390/met9121248. DOI
Mohamadizadeh A., Zarei-Hanzaki A., Abedi H.R. Modified constitutive analysis and activation energy evolution of a low-density steel considering the effects of deformation parameters. Mech. Mater. 2016;95:60–70. doi: 10.1016/j.mechmat.2016.01.001. DOI
Liu L., Wu Y.X., Gong H., Wang K. Modification of constitutive model and evolution of activation energy on 2219 aluminum alloy during warm deformation process. Trans. Nonferrous Met. Soc. China. 2019;29:448–459. doi: 10.1016/S1003-6326(19)64954-X. DOI
Garofalo F. An empirical relation defining the stress dependence of minimum creep rate in metals. Trans. Metall. Soc AIME. 1963;227:351–356.
Simpson T. A letter to the Right Honourable George Earl of Macclesfield, President of the Royal Society, On the Advantage of Taking the Mean of a Number of Observations in Practical Astronomy. Philos. Trans. 1755;49:82–93. doi: 10.1098/rstl.1755.0020. DOI
Pearson K. Note on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 1895;58:240–242.
Gnuplot: Portable Command-line Driven Graphing Utility. [(accessed on 18 September 2019)]; Available online: http://www.gnuplot.info/
Hot Deformation and Microstructure Evolution of Metallic Materials