Nanoscale Dynamic Readout of a Chemical Redox Process Using Radicals Coupled with Nitrogen-Vacancy Centers in Nanodiamonds
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32790348
DOI
10.1021/acsnano.0c04010
Knihovny.cz E-zdroje
- Klíčová slova
- T1 spin relaxation time, chemical reaction, nanodiamond, nitrogen-vacancy center, quantum sensing, radical,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Biocompatible nanoscale probes for sensitive detection of paramagnetic species and molecules associated with their (bio)chemical transformations would provide a desirable tool for a better understanding of cellular redox processes. Here, we describe an analytical tool based on quantum sensing techniques. We magnetically coupled negatively charged nitrogen-vacancy (NV) centers in nanodiamonds (NDs) with nitroxide radicals present in a bioinert polymer coating of the NDs. We demonstrated that the T1 spin relaxation time of the NV centers is very sensitive to the number of nitroxide radicals, with a resolution down to ∼10 spins per ND (detection of approximately 10-23 mol in a localized volume). The detection is based on T1 shortening upon the radical attachment, and we propose a theoretical model describing this phenomenon. We further show that this colloidally stable, water-soluble system can be used dynamically for spatiotemporal readout of a redox chemical process (oxidation of ascorbic acid) occurring near the ND surface in an aqueous environment under ambient conditions.
IMOMEC Division IMEC Wetenschapspark 1 B 3590 Diepenbeek Belgium
Institute for Advanced Biosciences UMR 5309 Allée des Alpes 38700 la Tronche France
Institute for Materials Research Hasselt University Wetenschapspark 1 B 3590 Diepenbeek Belgium
Institute for Quantum Optics and IQST Ulm University Albert Einstein Allee 11 D 89081 Ulm Germany
Citace poskytuje Crossref.org
Quantum Sensing of Free Radicals in Primary Human Dendritic Cells