Quantum Sensing of Free Radicals in Primary Human Dendritic Cells

. 2022 Feb 23 ; 22 (4) : 1818-1825. [epub] 20211220

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34929080

Free radicals are crucial indicators for stress and appear in all kinds of pathogenic conditions, including cancer, cardiovascular diseases, and infection. However, they are difficult to detect due to their reactivity and low abundance. We use relaxometry for the detection of radicals with subcellular resolution. This method is based on a fluorescent defect in a diamond, which changes its optical properties on the basis of the magnetic surroundings. This technique allows nanoscale MRI with unprecedented sensitivity and spatial resolution. Recently, this technique was used inside living cells from a cell line. Cell lines differ in terms of endocytic capability and radical production from primary cells derived from patients. Here we provide the first measurements of phagocytic radical production by the NADPH oxidase (NOX2) in primary dendritic cells from healthy donors. The radical production of these cells differs greatly between donors. We investigated the cell response to stimulation or inhibition.

Zobrazit více v PubMed

Lobo V.; Patil A.; Phatak A.; Chandra N. N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4 (8), 118.10.4103/0973-7847.70902. PubMed DOI PMC

Knight J. A. Review: Free radicals, antioxidants, and the immune system. Annals of Clinical & Laboratory Science. 2000, 30 (2), 145–158. PubMed

Cechim G.; Chies J. A. In vitro generation of human monocyte-derived dendritic cells methodological aspects in a comprehensive review. An. Acad. Bras. Cienc. 2019, 91 (4), 1.10.1590/0001-3765201920190310. DOI

Karlsson A.; Nygren E.; Karlsson J.; Nordström I.; Dahlgren C.; Eriksson K. Ability of Monocyte-Derived Dendritic Cells To Secrete Oxygen Radicals in Response to Formyl Peptide Receptor Family Agonists Compared to That of Myeloid and Plasmacytoid Dendritic Cells. Clin. Vaccine Immunol. 2007, 14 (3), 328–330. 10.1128/CVI.00349-06. PubMed DOI PMC

Hampton M. B.; Kettle A. J.; Winterbourn C. C. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 1998, 92 (9), 3007–3017. 10.1182/blood.V92.9.3007.421k47_3007_3017. PubMed DOI

Hardy M.; Zielonka J.; Karoui H.; Sikora A.; Michalski R.; Podsiadły R.; Lopez M.; Vasquez-Vivar J.; Kalyanaraman B.; Ouari O. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxid. Redox Signaling 2018, 28 (15), 1416–1432. 10.1089/ars.2017.7398. PubMed DOI PMC

Swartz H. M.; Khan N.; Khramtsov V. V. Use of Electron Paramagnetic Resonance Spectroscopy to Evaluate the Redox State In Vivo. Antioxid. Redox Signaling 2007, 9 (10), 1757–1772. 10.1089/ars.2007.1718. PubMed DOI PMC

Wardman P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: Progress, pitfalls, and prospects. Free Radical Biol. Med. 2007, 43 (7), 995–1022. 10.1016/j.freeradbiomed.2007.06.026. PubMed DOI

Wang Z.; Yi K.; Lin Q.; Yang L.; Chen X.; Chen H.; Liu Y.; Wei D. Free radical sensors based on inner-cutting graphene field-effect transistors. Nat. Commun. 2019, 10 (1), 1–10. 10.1038/s41467-019-09573-4. PubMed DOI PMC

Thiel L.; Wang Z.; Tschudin M. A.; Rohner D.; Gutiérrez-Lezama I.; Ubrig N.; Gibertini M.; Giannini E.; Morpurgo A. F.; Maletinsky P. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019, 364 (6444), 973–976. 10.1126/science.aav6926. PubMed DOI

Juraschek D. M.; Meier Q. N.; Trassin M.; Trolier-McKinstry S. E.; Degen C. L.; Spaldin N. A. Dynamical Magnetic Field Accompanying the Motion of Ferroelectric Domain Walls. Phys. Rev. Lett. 2019, 123 (12), 127601.10.1103/PhysRevLett.123.127601. PubMed DOI

Grinolds M. S.; Hong S.; Maletinsky P.; Luan L.; Lukin M. D.; Walsworth R. L.; Yacoby A. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat. Phys. 2013, 9 (4), 215–219. 10.1038/nphys2543. DOI

Cujia K. S.; Boss J. M.; Herb K.; Zopes J.; Degen C. L. Tracking the precession of single nuclear spins by weak measurements. Nature 2019, 571 (7764), 230–233. 10.1038/s41586-019-1334-9. PubMed DOI

Mamin H. J.; Kim M.; Sherwood M. H.; Rettner C. T.; Ohno K.; Awschalom D. D.; Rugar D. Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor. Science 2013, 339 (6119), 557–560. 10.1126/science.1231540. PubMed DOI

Müller C.; Kong X.; Cai J. M.; Melentijević K.; Stacey A.; Markham M.; Twitchen D.; Isoya J.; Pezzagna S.; Meijer J.; Du J. F.; et al. Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nat. Commun. 2014, 5 (1), 1–6. 10.1038/ncomms5703. PubMed DOI PMC

van der Laan K.; Hasani M.; Zheng T.; Schirhagl R. Nanodiamonds for In Vivo Applications. Small 2018, 14 (19), 1703838.10.1002/smll.201703838. PubMed DOI

Chipaux M.; van der Laan K. J.; Hemelaar S. R.; Hasani M.; Zheng T.; Schirhagl R. Nanodiamonds and Their Applications in Cells. Small 2018, 14 (24), 1704263.10.1002/smll.201704263. PubMed DOI

Faklaris O.; Joshi V.; Irinopoulou T.; Tauc P.; Sennour M.; Girard H.; Gesset C.; Arnault J. C.; Thorel A.; Boudou J. P.; Curmi P. A.; et al. Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 2009, 3 (12), 3955–3962. 10.1021/nn901014j. PubMed DOI

Faklaris O.; Garrot D.; Joshi V.; Druon F.; Boudou J. P.; Sauvage T.; Georges P.; Curmi P. A.; Treussart F. Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small 2008, 4 (12), 2236–2239. 10.1002/smll.200800655. PubMed DOI

Zhang T.; Pramanik G.; Zhang K.; Gulka M.; Wang L.; Jing J.; Chu Z.; et al. Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. ACS sensors. 2021, 6 (6), 2077–2107. 10.1021/acssensors.1c00415. PubMed DOI

Ermakova A.; Pramanik G.; Cai J. M.; Algara-Siller G.; Kaiser U.; Weil T.; Tzeng Y. K.; Chang H. C.; McGuinness L. P.; Plenio M. B.; Naydenov B.; et al. Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano Lett. 2013, 13 (7), 3305–3309. 10.1021/nl4015233. PubMed DOI

Wang P.; Chen S.; Guo M.; Peng S.; Wang M.; Chen M.; Ma W.; Zhang R.; Su J.; Rong X.; Shi F.; et al. Nanoscale magnetic imaging of ferritins in a single cell. Science advances. 2019, 5 (4), eaau803810.1126/sciadv.aau8038. PubMed DOI PMC

Steinert S.; Ziem F.; Hall L. T.; Zappe A.; Schweikert M.; Götz N.; Aird A.; Balasubramanian G.; Hollenberg L.; Wrachtrup J. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 2013, 4 (1), 1–6. 10.1038/ncomms2588. PubMed DOI

Le Sage D.; Arai K.; Glenn D. R.; DeVience S. J.; Pham L. M.; Rahn-Lee L.; Lukin M. D.; Yacoby A.; Komeili A.; Walsworth R. L. Optical magnetic imaging of living cells. Nature 2013, 496 (7446), 486–489. 10.1038/nature12072. PubMed DOI PMC

McGuinness L. P.; Yan Y.; Stacey A.; Simpson D. A.; Hall L. T.; Maclaurin D.; Prawer S.; Mulvaney P.; Wrachtrup J.; Caruso F.; Scholten R. E.; et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 2011, 6 (6), 358–363. 10.1038/nnano.2011.64. PubMed DOI

Kucsko G.; Maurer P. C.; Yao N. Y.; Kubo M.; Noh H. J.; Lo P. K.; Park H.; Lukin M. D. Nanometre-scale thermometry in a living cell. Nature 2013, 500 (7460), 54–58. 10.1038/nature12373. PubMed DOI PMC

Tetienne J. P.; Hingant T.; Rondin L.; Cavaillès A.; Mayer L.; Dantelle G.; Gacoin T.; Wrachtrup J.; Roch J. F.; Jacques V. Spin relaxometry of single nitrogen-vacancy defects in diamond nanocrystals for magnetic noise sensing. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87 (23), 235436.10.1103/PhysRevB.87.235436. DOI

Hopper D. A.; Grote R. R.; Parks S. M.; Bassett L. C. Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds Using All-Optical Charge Readout. ACS Nano 2018, 12 (5), 4678–4686. 10.1021/acsnano.8b01265. PubMed DOI

Pelliccione M.; Myers B. A.; Pascal L. M. A.; Das A.; Jayich A. B. Two-Dimensional Nanoscale Imaging of Gadolinium Spins via Scanning Probe Relaxometry with a Single Spin in Diamond. Physical Review Applied 2014, 2 (5), 054014.10.1103/PhysRevApplied.2.054014. DOI

Barton J.; Gulka M.; Tarabek J.; Mindarava Y.; Wang Z.; Schimer J.; Raabova H.; Bednar J.; Plenio M. B.; Jelezko F.; Nesladek M.; et al. Nanoscale Dynamic Readout of a Chemical Redox Process Using Radicals Coupled with Nitrogen-Vacancy Centers in Nanodiamonds. ACS Nano 2020, 14 (10), 12938–12950. 10.1021/acsnano.0c04010. PubMed DOI

Morita A.; Nusantara A. C.; Martinez F. P.; Hamoh T.; Damle V. G.; van der Laan K. J.; Sigaeva A.; Vedelaar T.; Chang M.; Chipaux M.; Schirhagl R.. Quantum monitoring the metabolism of individual yeast mutant strain cells when aged, stressed or treated with antioxidant. arXiv preprint arXiv:2007.16130. 2020. Jul 31.

Deffert C.; Carnesecchi S.; Yuan H.; Rougemont A. L.; Kelkka T.; Holmdahl R.; Krause K. H.; Schäppi M. G. Hyperinflammation of chronic granulomatous disease is abolished by NOX2 reconstitution in macrophages and dendritic cells†. Journal of pathology 2012, 228 (3), 341–350. 10.1002/path.4061. PubMed DOI

Olagnier D.; Peri S.; Steel C.; van Montfoort N.; Chiang C.; Beljanski V.; Slifker M.; He Z.; Nichols C. N.; Lin R.; Balachandran S.; et al. Cellular Oxidative Stress Response Controls the Antiviral and Apoptotic Programs in Dengue Virus-Infected Dendritic Cells. PLoS Pathog. 2014, 10 (12), e100456610.1371/journal.ppat.1004566. PubMed DOI PMC

Xiao Y.; Shi M.; Qiu Q.; Huang M.; Zeng S.; Zou Y.; Zhan Z.; Liang L.; Yang X.; Xu H. Piperlongumine Suppresses Dendritic Cell Maturation by Reducing Production of Reactive Oxygen Species and Has Therapeutic Potential for Rheumatoid Arthritis. J. Immunol. 2016, 196 (12), 4925–4934. 10.4049/jimmunol.1501281. PubMed DOI

Grassi F.; Tell G.; Robbie-Ryan M.; Gao Y.; Terauchi M.; Yang X.; Romanello M.; Jones D. P.; Weitzmann M. N.; Pacifici R. Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (38), 15087–15092. 10.1073/pnas.0703610104. PubMed DOI PMC

Mantegazza A. R.; Savina A.; Vermeulen M.; Pérez L.; Geffner J.; Hermine O.; Rosenzweig S. D.; Faure F.; Amigorena S. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood 2008, 112 (12), 4712–4722. 10.1182/blood-2008-01-134791. PubMed DOI PMC

Paardekooper L. M.; Dingjan I.; Linders P. T.; Staal A. H.; Cristescu S. M.; Verberk W. C.; van den Bogaart G. Human Mono-cyte-Derived Dendritic Cells Produce Millimolar Concentra-tions of ROS in Phagosomes Per Second. Front. Immunol. 2019, 10, 1216.10.3389/fimmu.2019.01216. PubMed DOI PMC

Morita A.; Martinez F. P. P.; Chipaux M.; Jamot N.; Hemelaar S. R.; van der Laan K. J.; Schirhagl R. Cell Uptake of Lipid-Coated Diamond. Part. Part. Syst. Charact. 2019, 36 (8), 1900116.10.1002/ppsc.201900116. DOI

Pike J. A.; Styles I. B.; Rappoport J. Z.; Heath J. K. Quantifying receptor trafficking and colocalization with confocal microscopy. Methods 2017, 115, 42–54. 10.1016/j.ymeth.2017.01.005. PubMed DOI

McDonald J. H.; Dunn K. W. Statistical tests for measures of colocalization in biological microscopy. J. Microsc. 2013, 252 (3), 295–302. 10.1111/jmi.12093. PubMed DOI PMC

Paardekooper L. M.; Dingjan I.; Linders P. T.; Staal A. H.; Cristescu S. M.; Verberk W. C.; van den Bogaart G. Human Monocyte-Derived Dendritic Cells Produce Millimolar Concentrations of ROS in Phagosomes Per Second. Front. Immunol. 2019, 10, 1216.10.3389/fimmu.2019.01216. PubMed DOI PMC

Kim J. Y.; Park J.; Lee J. E.; Yenari M. A. NOX inhibitors - A promising avenue for ischemic stroke. Experimental neurobiology 2017, 26 (4), 195–205. 10.5607/en.2017.26.4.195. PubMed DOI PMC

Singel K. L.; Segal B. H. NOX2-dependent regulation of inflammation. Clin. Sci. 2016, 130 (7), 479–490. 10.1042/CS20150660. PubMed DOI PMC

Herb M.; Schramm M. Functions of ROS in macrophages and antimicrobial immunity.. Antioxidants 2021, 10 (2), 313.10.3390/antiox10020313. PubMed DOI PMC

Perona Martínez F.; Nusantara A. C.; Chipaux M.; Padamati S. K.; Schirhagl R. Nanodiamond relaxometry-based detection of free-radical species when produced in chemical reactions in biologically relevant conditions. ACS sensors 2020, 5 (12), 3862–3869. 10.1021/acssensors.0c01037. PubMed DOI PMC

Sies H.; Jones D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21 (7), 363–383. 10.1038/s41580-020-0230-3. PubMed DOI

Dinarello C. A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunological reviews 2018, 281 (1), 8–27. 10.1111/imr.12621. PubMed DOI PMC

Lopez-Castejon G.; Brough D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011, 22 (4), 189–195. 10.1016/j.cytogfr.2011.10.001. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...