Quantum Sensing of Free Radicals in Primary Human Dendritic Cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34929080
PubMed Central
PMC8880378
DOI
10.1021/acs.nanolett.1c03021
Knihovny.cz E-zdroje
- Klíčová slova
- NV centers, magnetometry, nanodiamonds, relaxometry measurements (T1),
- MeSH
- dendritické buňky MeSH
- diamant MeSH
- lidé MeSH
- magnetismus MeSH
- nanodiamanty * chemie MeSH
- volné radikály MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- diamant MeSH
- nanodiamanty * MeSH
- volné radikály MeSH
Free radicals are crucial indicators for stress and appear in all kinds of pathogenic conditions, including cancer, cardiovascular diseases, and infection. However, they are difficult to detect due to their reactivity and low abundance. We use relaxometry for the detection of radicals with subcellular resolution. This method is based on a fluorescent defect in a diamond, which changes its optical properties on the basis of the magnetic surroundings. This technique allows nanoscale MRI with unprecedented sensitivity and spatial resolution. Recently, this technique was used inside living cells from a cell line. Cell lines differ in terms of endocytic capability and radical production from primary cells derived from patients. Here we provide the first measurements of phagocytic radical production by the NADPH oxidase (NOX2) in primary dendritic cells from healthy donors. The radical production of these cells differs greatly between donors. We investigated the cell response to stimulation or inhibition.
Zobrazit více v PubMed
Lobo V.; Patil A.; Phatak A.; Chandra N. N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4 (8), 118.10.4103/0973-7847.70902. PubMed DOI PMC
Knight J. A. Review: Free radicals, antioxidants, and the immune system. Annals of Clinical & Laboratory Science. 2000, 30 (2), 145–158. PubMed
Cechim G.; Chies J. A. In vitro generation of human monocyte-derived dendritic cells methodological aspects in a comprehensive review. An. Acad. Bras. Cienc. 2019, 91 (4), 1.10.1590/0001-3765201920190310. DOI
Karlsson A.; Nygren E.; Karlsson J.; Nordström I.; Dahlgren C.; Eriksson K. Ability of Monocyte-Derived Dendritic Cells To Secrete Oxygen Radicals in Response to Formyl Peptide Receptor Family Agonists Compared to That of Myeloid and Plasmacytoid Dendritic Cells. Clin. Vaccine Immunol. 2007, 14 (3), 328–330. 10.1128/CVI.00349-06. PubMed DOI PMC
Hampton M. B.; Kettle A. J.; Winterbourn C. C. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 1998, 92 (9), 3007–3017. 10.1182/blood.V92.9.3007.421k47_3007_3017. PubMed DOI
Hardy M.; Zielonka J.; Karoui H.; Sikora A.; Michalski R.; Podsiadły R.; Lopez M.; Vasquez-Vivar J.; Kalyanaraman B.; Ouari O. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxid. Redox Signaling 2018, 28 (15), 1416–1432. 10.1089/ars.2017.7398. PubMed DOI PMC
Swartz H. M.; Khan N.; Khramtsov V. V. Use of Electron Paramagnetic Resonance Spectroscopy to Evaluate the Redox State In Vivo. Antioxid. Redox Signaling 2007, 9 (10), 1757–1772. 10.1089/ars.2007.1718. PubMed DOI PMC
Wardman P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: Progress, pitfalls, and prospects. Free Radical Biol. Med. 2007, 43 (7), 995–1022. 10.1016/j.freeradbiomed.2007.06.026. PubMed DOI
Wang Z.; Yi K.; Lin Q.; Yang L.; Chen X.; Chen H.; Liu Y.; Wei D. Free radical sensors based on inner-cutting graphene field-effect transistors. Nat. Commun. 2019, 10 (1), 1–10. 10.1038/s41467-019-09573-4. PubMed DOI PMC
Thiel L.; Wang Z.; Tschudin M. A.; Rohner D.; Gutiérrez-Lezama I.; Ubrig N.; Gibertini M.; Giannini E.; Morpurgo A. F.; Maletinsky P. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019, 364 (6444), 973–976. 10.1126/science.aav6926. PubMed DOI
Juraschek D. M.; Meier Q. N.; Trassin M.; Trolier-McKinstry S. E.; Degen C. L.; Spaldin N. A. Dynamical Magnetic Field Accompanying the Motion of Ferroelectric Domain Walls. Phys. Rev. Lett. 2019, 123 (12), 127601.10.1103/PhysRevLett.123.127601. PubMed DOI
Grinolds M. S.; Hong S.; Maletinsky P.; Luan L.; Lukin M. D.; Walsworth R. L.; Yacoby A. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat. Phys. 2013, 9 (4), 215–219. 10.1038/nphys2543. DOI
Cujia K. S.; Boss J. M.; Herb K.; Zopes J.; Degen C. L. Tracking the precession of single nuclear spins by weak measurements. Nature 2019, 571 (7764), 230–233. 10.1038/s41586-019-1334-9. PubMed DOI
Mamin H. J.; Kim M.; Sherwood M. H.; Rettner C. T.; Ohno K.; Awschalom D. D.; Rugar D. Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor. Science 2013, 339 (6119), 557–560. 10.1126/science.1231540. PubMed DOI
Müller C.; Kong X.; Cai J. M.; Melentijević K.; Stacey A.; Markham M.; Twitchen D.; Isoya J.; Pezzagna S.; Meijer J.; Du J. F.; et al. Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nat. Commun. 2014, 5 (1), 1–6. 10.1038/ncomms5703. PubMed DOI PMC
van der Laan K.; Hasani M.; Zheng T.; Schirhagl R. Nanodiamonds for In Vivo Applications. Small 2018, 14 (19), 1703838.10.1002/smll.201703838. PubMed DOI
Chipaux M.; van der Laan K. J.; Hemelaar S. R.; Hasani M.; Zheng T.; Schirhagl R. Nanodiamonds and Their Applications in Cells. Small 2018, 14 (24), 1704263.10.1002/smll.201704263. PubMed DOI
Faklaris O.; Joshi V.; Irinopoulou T.; Tauc P.; Sennour M.; Girard H.; Gesset C.; Arnault J. C.; Thorel A.; Boudou J. P.; Curmi P. A.; et al. Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 2009, 3 (12), 3955–3962. 10.1021/nn901014j. PubMed DOI
Faklaris O.; Garrot D.; Joshi V.; Druon F.; Boudou J. P.; Sauvage T.; Georges P.; Curmi P. A.; Treussart F. Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small 2008, 4 (12), 2236–2239. 10.1002/smll.200800655. PubMed DOI
Zhang T.; Pramanik G.; Zhang K.; Gulka M.; Wang L.; Jing J.; Chu Z.; et al. Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. ACS sensors. 2021, 6 (6), 2077–2107. 10.1021/acssensors.1c00415. PubMed DOI
Ermakova A.; Pramanik G.; Cai J. M.; Algara-Siller G.; Kaiser U.; Weil T.; Tzeng Y. K.; Chang H. C.; McGuinness L. P.; Plenio M. B.; Naydenov B.; et al. Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano Lett. 2013, 13 (7), 3305–3309. 10.1021/nl4015233. PubMed DOI
Wang P.; Chen S.; Guo M.; Peng S.; Wang M.; Chen M.; Ma W.; Zhang R.; Su J.; Rong X.; Shi F.; et al. Nanoscale magnetic imaging of ferritins in a single cell. Science advances. 2019, 5 (4), eaau803810.1126/sciadv.aau8038. PubMed DOI PMC
Steinert S.; Ziem F.; Hall L. T.; Zappe A.; Schweikert M.; Götz N.; Aird A.; Balasubramanian G.; Hollenberg L.; Wrachtrup J. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 2013, 4 (1), 1–6. 10.1038/ncomms2588. PubMed DOI
Le Sage D.; Arai K.; Glenn D. R.; DeVience S. J.; Pham L. M.; Rahn-Lee L.; Lukin M. D.; Yacoby A.; Komeili A.; Walsworth R. L. Optical magnetic imaging of living cells. Nature 2013, 496 (7446), 486–489. 10.1038/nature12072. PubMed DOI PMC
McGuinness L. P.; Yan Y.; Stacey A.; Simpson D. A.; Hall L. T.; Maclaurin D.; Prawer S.; Mulvaney P.; Wrachtrup J.; Caruso F.; Scholten R. E.; et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 2011, 6 (6), 358–363. 10.1038/nnano.2011.64. PubMed DOI
Kucsko G.; Maurer P. C.; Yao N. Y.; Kubo M.; Noh H. J.; Lo P. K.; Park H.; Lukin M. D. Nanometre-scale thermometry in a living cell. Nature 2013, 500 (7460), 54–58. 10.1038/nature12373. PubMed DOI PMC
Tetienne J. P.; Hingant T.; Rondin L.; Cavaillès A.; Mayer L.; Dantelle G.; Gacoin T.; Wrachtrup J.; Roch J. F.; Jacques V. Spin relaxometry of single nitrogen-vacancy defects in diamond nanocrystals for magnetic noise sensing. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87 (23), 235436.10.1103/PhysRevB.87.235436. DOI
Hopper D. A.; Grote R. R.; Parks S. M.; Bassett L. C. Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds Using All-Optical Charge Readout. ACS Nano 2018, 12 (5), 4678–4686. 10.1021/acsnano.8b01265. PubMed DOI
Pelliccione M.; Myers B. A.; Pascal L. M. A.; Das A.; Jayich A. B. Two-Dimensional Nanoscale Imaging of Gadolinium Spins via Scanning Probe Relaxometry with a Single Spin in Diamond. Physical Review Applied 2014, 2 (5), 054014.10.1103/PhysRevApplied.2.054014. DOI
Barton J.; Gulka M.; Tarabek J.; Mindarava Y.; Wang Z.; Schimer J.; Raabova H.; Bednar J.; Plenio M. B.; Jelezko F.; Nesladek M.; et al. Nanoscale Dynamic Readout of a Chemical Redox Process Using Radicals Coupled with Nitrogen-Vacancy Centers in Nanodiamonds. ACS Nano 2020, 14 (10), 12938–12950. 10.1021/acsnano.0c04010. PubMed DOI
Morita A.; Nusantara A. C.; Martinez F. P.; Hamoh T.; Damle V. G.; van der Laan K. J.; Sigaeva A.; Vedelaar T.; Chang M.; Chipaux M.; Schirhagl R.. Quantum monitoring the metabolism of individual yeast mutant strain cells when aged, stressed or treated with antioxidant. arXiv preprint arXiv:2007.16130. 2020. Jul 31.
Deffert C.; Carnesecchi S.; Yuan H.; Rougemont A. L.; Kelkka T.; Holmdahl R.; Krause K. H.; Schäppi M. G. Hyperinflammation of chronic granulomatous disease is abolished by NOX2 reconstitution in macrophages and dendritic cells†. Journal of pathology 2012, 228 (3), 341–350. 10.1002/path.4061. PubMed DOI
Olagnier D.; Peri S.; Steel C.; van Montfoort N.; Chiang C.; Beljanski V.; Slifker M.; He Z.; Nichols C. N.; Lin R.; Balachandran S.; et al. Cellular Oxidative Stress Response Controls the Antiviral and Apoptotic Programs in Dengue Virus-Infected Dendritic Cells. PLoS Pathog. 2014, 10 (12), e100456610.1371/journal.ppat.1004566. PubMed DOI PMC
Xiao Y.; Shi M.; Qiu Q.; Huang M.; Zeng S.; Zou Y.; Zhan Z.; Liang L.; Yang X.; Xu H. Piperlongumine Suppresses Dendritic Cell Maturation by Reducing Production of Reactive Oxygen Species and Has Therapeutic Potential for Rheumatoid Arthritis. J. Immunol. 2016, 196 (12), 4925–4934. 10.4049/jimmunol.1501281. PubMed DOI
Grassi F.; Tell G.; Robbie-Ryan M.; Gao Y.; Terauchi M.; Yang X.; Romanello M.; Jones D. P.; Weitzmann M. N.; Pacifici R. Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (38), 15087–15092. 10.1073/pnas.0703610104. PubMed DOI PMC
Mantegazza A. R.; Savina A.; Vermeulen M.; Pérez L.; Geffner J.; Hermine O.; Rosenzweig S. D.; Faure F.; Amigorena S. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood 2008, 112 (12), 4712–4722. 10.1182/blood-2008-01-134791. PubMed DOI PMC
Paardekooper L. M.; Dingjan I.; Linders P. T.; Staal A. H.; Cristescu S. M.; Verberk W. C.; van den Bogaart G. Human Mono-cyte-Derived Dendritic Cells Produce Millimolar Concentra-tions of ROS in Phagosomes Per Second. Front. Immunol. 2019, 10, 1216.10.3389/fimmu.2019.01216. PubMed DOI PMC
Morita A.; Martinez F. P. P.; Chipaux M.; Jamot N.; Hemelaar S. R.; van der Laan K. J.; Schirhagl R. Cell Uptake of Lipid-Coated Diamond. Part. Part. Syst. Charact. 2019, 36 (8), 1900116.10.1002/ppsc.201900116. DOI
Pike J. A.; Styles I. B.; Rappoport J. Z.; Heath J. K. Quantifying receptor trafficking and colocalization with confocal microscopy. Methods 2017, 115, 42–54. 10.1016/j.ymeth.2017.01.005. PubMed DOI
McDonald J. H.; Dunn K. W. Statistical tests for measures of colocalization in biological microscopy. J. Microsc. 2013, 252 (3), 295–302. 10.1111/jmi.12093. PubMed DOI PMC
Paardekooper L. M.; Dingjan I.; Linders P. T.; Staal A. H.; Cristescu S. M.; Verberk W. C.; van den Bogaart G. Human Monocyte-Derived Dendritic Cells Produce Millimolar Concentrations of ROS in Phagosomes Per Second. Front. Immunol. 2019, 10, 1216.10.3389/fimmu.2019.01216. PubMed DOI PMC
Kim J. Y.; Park J.; Lee J. E.; Yenari M. A. NOX inhibitors - A promising avenue for ischemic stroke. Experimental neurobiology 2017, 26 (4), 195–205. 10.5607/en.2017.26.4.195. PubMed DOI PMC
Singel K. L.; Segal B. H. NOX2-dependent regulation of inflammation. Clin. Sci. 2016, 130 (7), 479–490. 10.1042/CS20150660. PubMed DOI PMC
Herb M.; Schramm M. Functions of ROS in macrophages and antimicrobial immunity.. Antioxidants 2021, 10 (2), 313.10.3390/antiox10020313. PubMed DOI PMC
Perona Martínez F.; Nusantara A. C.; Chipaux M.; Padamati S. K.; Schirhagl R. Nanodiamond relaxometry-based detection of free-radical species when produced in chemical reactions in biologically relevant conditions. ACS sensors 2020, 5 (12), 3862–3869. 10.1021/acssensors.0c01037. PubMed DOI PMC
Sies H.; Jones D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21 (7), 363–383. 10.1038/s41580-020-0230-3. PubMed DOI
Dinarello C. A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunological reviews 2018, 281 (1), 8–27. 10.1111/imr.12621. PubMed DOI PMC
Lopez-Castejon G.; Brough D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011, 22 (4), 189–195. 10.1016/j.cytogfr.2011.10.001. PubMed DOI PMC