The Uptake of Ivermectin and Its Effects in Roots, Leaves and Seeds of Soybean (Glycine max)

. 2020 Aug 11 ; 25 (16) : . [epub] 20200811

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32796616

Grantová podpora
18-08452S Czech Science Foundation
SVV260550 Grantová Agentura, Univerzita Karlova
CZ.02.1.01/0.0/0.0/16_019/0000841 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministerstvo Školství, Mládeže a Tělovýchovy

In recent years interest has grown in the occurrence and the effects of pharmaceuticals in the environment. The aim of this work is to evaluate the risk of fertilizing crops with manure from livestock treated with anthelmintics. The present study was designed to follow the fate of the commonly used anthelmintic drug, ivermectin (IVM) and its metabolites in soybeans (Glycine max (L.) Merr.), a plant that is grown and consumed world-wide for its high content of nutritional and health-beneficial substances. In vitro plantlets and soybean plants, cultivated in a greenhouse, were used for this purpose. Our results showed the uptake of IVM and its translocation to the leaves, but not in the pods and the beans. Four IVM metabolites were detected in the roots, and one in the leaves. IVM exposure decreased slightly the number and weight of the beans and induced changes in the activities of antioxidant enzymes. In addition, the presence of IVM affected the proportion of individual isoflavones and reduced the content of isoflavones aglycones, which might decrease the therapeutic value of soybeans. Fertilization of soybean fields with manure from IVM-treated animals appears to be safe for humans, due to the absence of IVM in beans, the food part of plants. On the other hand, it could negatively affect soybean plants and herbivorous invertebrates.

Zobrazit více v PubMed

Bártíková H., Podlipna R., Skálová L. Veterinary drugs in the environment and their toxicity to plants. Chemosphere. 2016;144:2290–2301. doi: 10.1016/j.chemosphere.2015.10.137. PubMed DOI

Low Greenhouse Gas Agriculture. [(accessed on 10 August 2020)]; Available online: https://orgprints.org/15690/1/niggli-etal-2009-lowgreenhouse.pdf.

Hamscher G., Bachour G. Veterinary Drugs in the Environment: Current Knowledge and Challenges for the Future. J. Agric. Food Chem. 2018;66:751–752. doi: 10.1021/acs.jafc.7b05601. PubMed DOI

Carvalho P.N., Basto M.C.P., Almeida C.M.R., Brix H. A review of plant–pharmaceutical interactions: From uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ. Sci. Pollut. Res. 2014;21:11729–11763. doi: 10.1007/s11356-014-2550-3. PubMed DOI

Madikizela L.M., Ncube S., Chimuka L. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review. Sci. Total Environ. 2018;636:477–486. doi: 10.1016/j.scitotenv.2018.04.297. PubMed DOI

Marsik P., Podlipna R., Vaněk T. Study of praziquantel phytoremediation and transformation and its removal in constructed wetland. J. Hazard. Mater. 2017;323:394–399. doi: 10.1016/j.jhazmat.2016.05.045. PubMed DOI

Raisová L.S., Podlipná R., Szotáková B., Syslová E., Skálová L. Evaluation of drug uptake and deactivation in plant: Fate of albendazole in ribwort plantain (Plantago laceolata) cells and regenerants. Ecotoxicol. Environ. Saf. 2017;141:37–42. doi: 10.1016/j.ecoenv.2017.03.014. PubMed DOI

Chitescu C.L., Nicolau A.I., Römkens P., Van Der Fels-Klerx H.J. Quantitative modelling to estimate the transfer of pharmaceuticals through the food production system. J. Environ. Sci. Heal. Part B. 2014;49:457–467. doi: 10.1080/03601234.2014.896659. PubMed DOI

Iglesias L.E., Saumell C., Sagüés F., Sallovitz J.M., Lifschitz A. Ivermectin dissipation and movement from feces to soil under field conditions. J. Environ. Sci. Heal. Part B. 2017;53:42–48. doi: 10.1080/03601234.2017.1371554. PubMed DOI

Vokral I., Michaela Š., Radka P., Jiří L., Lukáš P., Dominika S., Kateřina L., Barbora S., Lenka S. Ivermectin environmental impact: Excretion profile in sheep and phytotoxic effect in Sinapis alba. Ecotoxicol. Environ. Saf. 2019;169:944–949. doi: 10.1016/j.ecoenv.2018.11.097. PubMed DOI

Syslová E., Landa P., Navrátilová M., Stuchlíková L.R., Matoušková P., Skálová L., Szotáková B., Vaněk T., Podlipná R. Ivermectin biotransformation and impact on transcriptome in Arabidopsis thaliana. Chemosphere. 2019;234:528–535. doi: 10.1016/j.chemosphere.2019.06.102. PubMed DOI

Horvat A., Babic S., Pavlović D.M., Ašperger D., Pelko S., Kaštelan-Macan M., Petrovic M., Mance A. Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. TrAC Trends Anal. Chem. 2012;31:61–84. doi: 10.1016/j.trac.2011.06.023. DOI

Jaeger L.H., Carvalho-Costa F.A. Status of benzimidazole resistance in intestinal nematode populations of livestock in Brazil: A systematic review. BMC Veter Res. 2017;13:358. doi: 10.1186/s12917-017-1282-2. PubMed DOI PMC

Geerts S., Gryseels B. Drug resistance in human helminths: Current situation and lessons from livestock. Clin. Microbiol. Rev. 2000;13:207–222. doi: 10.1128/CMR.13.2.207. PubMed DOI PMC

Ismail M., William S., Day T.A., Botros S., Tao L.F., Bennett J.L., Farghally A., Metwally A. Resistance to praziquantel: Direct evidence from Schistosoma mansoni isolated from Egyptian villagers. Am. J. Trop. Med. Hyg. 1999;60:932–935. doi: 10.4269/ajtmh.1999.60.932. PubMed DOI

Vamanu E., Gatea F. Correlations between Microbiota Bioactivity and Bioavailability of Functional Compounds: A Mini-Review. Biomedicines. 2020;8:39. doi: 10.3390/biomedicines8020039. PubMed DOI PMC

Svobodníková L., Kummerová M., Zezulka Š., Babula P. Possible use of a Nicotiana tabacum ‘Bright Yellow 2′ cell suspension as a model to assess phytotoxicity of pharmaceuticals (diclofenac) Ecotoxicol. Environ. Saf. 2019;182:109369. doi: 10.1016/j.ecoenv.2019.109369. PubMed DOI

Singh V., Pandey B., Suthar S. Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system. Ecotoxicol. Environ. Saf. 2019;179:88–95. doi: 10.1016/j.ecoenv.2019.04.018. PubMed DOI

Singh V., Pandey B., Suthar S. Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Chemosphere. 2018;201:492–502. doi: 10.1016/j.chemosphere.2018.03.010. PubMed DOI

Riaz L., Mahmood T., Coyne M., Khalid A., Rashid A., Hayat M.T., Gulzar A., Amjad M. Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics. Chemosphere. 2017;177:250–257. doi: 10.1016/j.chemosphere.2017.03.033. PubMed DOI

Stuchlíková L.R., Skálová L., Szotáková B., Syslová E., Vokral I., Vaněk T., Podlipná R. Biotransformation of flubendazole and fenbendazole and their effects in the ribwort plantain (Plantago lanceolata) Ecotoxicol. Environ. Saf. 2018;147:681–687. doi: 10.1016/j.ecoenv.2017.09.020. PubMed DOI

Gutierrez-Gonzalez J.J., Guttikonda S.K., Tran S.P.-L., Aldrich D.L., Zhong R., Yu O., Nguyen H.T., Sleper D.A. Differential Expression of Isoflavone Biosynthetic Genes in Soybean During Water Deficits. Plant Cell Physiol. 2010;51:936–948. doi: 10.1093/pcp/pcq065. PubMed DOI

Lozovaya V.V., Lygin A.V., Ulanov A.V., Nelson R.L., Dayde J., Widholm J.M. Effect of Temperature and Soil Moisture Status during Seed Development on Soybean Seed Isoflavone Concentration and Composition. Crop. Sci. 2005;45:1934–1940. doi: 10.2135/cropsci2004.0567. DOI

Syslová E., Landa P., Stuchlíková L.R., Matoušková P., Skálová L., Szotáková B., Navrátilová M., Vaněk T., Podlipná R. Metabolism of the anthelmintic drug fenbendazole in Arabidopsis thaliana and its effect on transcriptome and proteome. Chemosphere. 2019;218:662–669. doi: 10.1016/j.chemosphere.2018.11.135. PubMed DOI

Jeong Y.J., An C.H., Park S.-C., Pyun J.W., Lee J.-Y., Kim S.W., Kim H.-S., Kim H., Jeong J.C., Kim C.Y. Methyl Jasmonate Increases Isoflavone Production in Soybean Cell Cultures by Activating Structural Genes Involved in Isoflavonoid Biosynthesis. J. Agric. Food Chem. 2018;66:4099–4105. doi: 10.1021/acs.jafc.8b00350. PubMed DOI

Kawakami Y., Tsurugasaki W., Nakamura S., Osada K. Comparison of regulative functions between dietary soy isoflavones aglycone and glucoside on lipid metabolism in rats fed cholesterol. J. Nutr. Biochem. 2005;16:205–212. doi: 10.1016/j.jnutbio.2004.11.005. PubMed DOI

Gamborg O., Miller R., Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968;50:151–158. doi: 10.1016/0014-4827(68)90403-5. PubMed DOI

Lee Y.-W., Kim J.-D., Zheng J., Row K.H. Comparisons of isoflavones from Korean and Chinese soybean and processed products. Biochem. Eng. J. 2007;36:49–53. doi: 10.1016/j.bej.2006.06.009. DOI

Liu J., Hu B., Liu W., Qin W., Wu H., Zhang J., Yang C., Deng J., Shu K., Du J., et al. Metabolomic tool to identify soybean [Glycine max (L.) Merrill] germplasms with a high level of shade tolerance at the seedling stage. Sci. Rep. 2017;7:42478. doi: 10.1038/srep42478. PubMed DOI PMC

Szymczak G., Wójciak M., Sowa I., Zapała K., Strzemski M., Kocjan R. Evaluation of isoflavone content and antioxidant activity of selected soy taxa. J. Food Compos. Anal. 2017;57:40–48. doi: 10.1016/j.jfca.2016.12.015. DOI

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Carlberg I., Mannervik B. Methods in Enzymology. Vol. 113. Academic Press; New York, NY, USA: 1985. Glutathione-Reductase; pp. 484–490. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...