CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials

. 2020 Aug 11 ; 11 (8) : . [epub] 20200811

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32796761

Even though chemotherapy and immunotherapy emerged to limit continual and unregulated proliferation of cancer cells, currently available therapeutic agents are associated with high toxicity levels and low success rates. Additionally, ongoing multi-targeted therapies are limited only for few carcinogenesis pathways, due to continually emerging and evolving mutations of proto-oncogenes and tumor-suppressive genes. CRISPR/Cas9, as a specific gene-editing tool, is used to correct causative mutations with minimal toxicity, but is also employed as an adjuvant to immunotherapy to achieve a more robust immunological response. Some of the most critical limitations of the CRISPR/Cas9 technology include off-target mutations, resulting in nonspecific restrictions of DNA upstream of the Protospacer Adjacent Motifs (PAM), ethical agreements, and the lack of a scientific consensus aiming at risk evaluation. Currently, CRISPR/Cas9 is tested on animal models to enhance genome editing specificity and induce a stronger anti-tumor response. Moreover, ongoing clinical trials use the CRISPR/Cas9 system in immune cells to modify genomes in a target-specific manner. Recently, error-free in vitro systems have been engineered to overcome limitations of this gene-editing system. The aim of the article is to present the knowledge concerning the use of CRISPR Cas9 technique in targeting treatment-resistant cancers. Additionally, the use of CRISPR/Cas9 is aided as an emerging supplementation of immunotherapy, currently used in experimental oncology. Demonstrating further, applications and advances of the CRISPR/Cas9 technique are presented in animal models and human clinical trials. Concluding, an overview of the limitations of the gene-editing tool is proffered.

Zobrazit více v PubMed

Cooper G.M., Hausman R.E. The Development and Causes of Cancer. Cell A Mol. Approach. 2007:743.

Prager G.W., Braga S., Bystricky B., Qvortrup C., Criscitiello C., Esin E., Sonke G.S., Martínez G.A., Frenel J.S., Karamouzis M., et al. Global cancer control: Responding to the growing burden, rising costs and inequalities in access. ESMO Open. 2018;3 doi: 10.1136/esmoopen-2017-000285. PubMed DOI PMC

Yamaguchi K., Takagi Y., Aoki S., Futamura M., Saji S. Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Ann. Surg. 2000;232:58–65. doi: 10.1097/00000658-200007000-00009. PubMed DOI PMC

Van Der Bij G.J., Oosterling S.J., Beelen R.H.J., Meijer S., Coffey J.C., Van Egmond M. The perioperative period is an underutilized window of therapeutic opportunity in patients with colorectal cancer. Ann. Surg. 2009;249:727–734. doi: 10.1097/SLA.0b013e3181a3ddbd. PubMed DOI

Oh B.Y., Kim K.H., Chung S.S., Hong K.S., Lee R.A. Role of β1-integrin in colorectal cancer: Case-control study. Ann. Coloproctol. 2014;30:61–70. doi: 10.3393/ac.2014.30.2.61. PubMed DOI PMC

Mansoori B., Mohammadi A., Davudian S., Shirjang S., Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017;7:339–348. doi: 10.15171/apb.2017.041. PubMed DOI PMC

Martinez-Lage M., Puig-Serra P., Menendez P., Torres-Ruiz R., Rodriguez-Perales S. CRISPR/Cas9 for cancer therapy: Hopes and challenges. Biomedicines. 2018;6 doi: 10.3390/biomedicines6040105. PubMed DOI PMC

Rath D., Amlinger L., Rath A., Lundgren M. The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie. 2015;117:119–128. doi: 10.1016/j.biochi.2015.03.025. PubMed DOI

Chylinski K., Le Rhun A., Charpentier E. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. 2013;10:726–737. doi: 10.4161/rna.24321. PubMed DOI PMC

Modell J.W., Jiang W., Marraffini L.A. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature. 2017;544:101–104. doi: 10.1038/nature21719. PubMed DOI PMC

Burmistrz M., Krakowski K., Krawczyk-Balska A. RNA-targeting CRISPR–cas systems and their applications. Int. J. Mol. Sci. 2020;21:1122. doi: 10.3390/ijms21031122. PubMed DOI PMC

Dyda F., Hickman A.B. Mechanism of spacer integration links the CRISPR/Cas system to transposition as a form of mobile DNA. Mob. DNA. 2015;6 doi: 10.1186/s13100-015-0039-3. PubMed DOI PMC

Lone B.A., Karna S.K.L., Ahmad F., Shahi N., Pokharel Y.R. CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering. Genet. Res. Int. 2018;2018 doi: 10.1155/2018/3797214. PubMed DOI PMC

Vakulskas C.A., Behlke M.A. Evaluation and reduction of crispr off-target cleavage events. Nucleic Acid Ther. 2019;29:167–174. doi: 10.1089/nat.2019.0790. PubMed DOI PMC

Wilkinson R.A., Martin C., Nemudryi A.A., Wiedenheft B. CRISPR RNA-guided autonomous delivery of Cas9. Nat. Struct. Mol. Biol. 2019;26:14–24. doi: 10.1038/s41594-018-0173-y. PubMed DOI PMC

Murovec J., Pirc Ž., Yang B. New variants of CRISPR RNA-guided genome editing enzymes. Plant Biotechnol. J. 2017;15:917–926. doi: 10.1111/pbi.12736. PubMed DOI PMC

Jiang F., Doudna J.A. CRISPR–Cas9 Structures and Mechanisms. Annu. Rev. Biophys. 2017;46:505–529. doi: 10.1146/annurev-biophys-062215-010822. PubMed DOI

Ye L., Wang C., Hong L., Sun N., Chen D., Chen S., Han F. Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Cell Discov. 2018;4:46. doi: 10.1038/s41421-018-0049-7. PubMed DOI PMC

Li H., Yang Y., Hong W., Huang M., Wu M., Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduct. Target. Ther. 2020;5:1–23. doi: 10.1038/s41392-019-0089-y. PubMed DOI PMC

Jo N., Sogabe Y., Yamada Y., Ukai T., Kagawa H., Mitsunaga K., Woltjen K., Yamada Y. Platforms of in vivo genome editing with inducible Cas9 for advanced cancer modeling. Cancer Sci. 2019;110:926–938. doi: 10.1111/cas.13924. PubMed DOI PMC

Jacinto F.V., Link W., Ferreira B.I. CRISPR/Cas9-mediated genome editing: From basic research to translational medicine. J. Cell. Mol. Med. 2020:10.1111/jcmm.14916. doi: 10.1111/jcmm.14916. PubMed DOI PMC

Mayrhofer M., Mione M. Advances in Experimental Medicine and Biology. Vol. 916. Springer; New York, NY, USA: 2016. The toolbox for conditional zebrafish cancer models; pp. 21–59. PubMed

Sayin V.I., Papagiannakopoulos T. Application of CRISPR-mediated genome engineering in cancer research. Cancer Lett. 2017;387:10–17. doi: 10.1016/j.canlet.2016.03.029. PubMed DOI

Vijai J., Topka S., Villano D., Ravichandran V., Maxwell K.N., Maria A., Thomas T., Gaddam P., Lincoln A., Kazzaz S., et al. A Recurrent ERCC3 Truncating Mutation Confers Moderate Risk for Breast Cancer. Cancer Discov. 2016;6:1267–1275. doi: 10.1158/2159-8290.CD-16-0487. PubMed DOI PMC

Lok B.H., Gardner E.E., Schneeberger V.E., Ni A., Desmeules P., Rekhtman N., De Stanchina E., Teicher B.A., Riaz N., Powell S.N., et al. PARP Inhibitor activity correlates with slfn11 expression and demonstrates synergy with temozolomide in small cell lung cancer. Clin. Cancer Res. 2017;23:523–535. doi: 10.1158/1078-0432.CCR-16-1040. PubMed DOI PMC

Santoni-Rugiu E., Melchior L.C., Urbanska E.M., Jakobsen J.N., De Stricker K., Grauslund M., Sørensen J.B. Intrinsic resistance to EGFR-tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: Differences and similarities with acquired resistance. Cancers (Basel) 2019;11 doi: 10.3390/cancers11070923. PubMed DOI PMC

McFadden D.G., Papagiannakopoulos T., Taylor-Weiner A., Stewart C., Carter S.L., Cibulskis K., Bhutkar A., McKenna A., Dooley A., Vernon A., et al. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell. 2014;156:1298–1311. doi: 10.1016/j.cell.2014.02.031. PubMed DOI PMC

Huang J., Chen M., Xu E.S., Luo L., Ma Y., Huang W., Floyd W., Klann T.S., Kim S.Y., Gersbach C.A., et al. Genome-wide CRISPR Screen to Identify Genes that Suppress Transformation in the Presence of Endogenous Kras G12D. Sci. Rep. 2019;9:17220. doi: 10.1038/s41598-019-53572-w. PubMed DOI PMC

Ouyang Q., Liu Y., Tan J., Li J., Yang D., Zeng F., Huang W., Kong Y., Liu Z., Zhou H., et al. Loss of ZNF587B and SULF1 contributed to cisplatin resistance in ovarian cancer cell lines based on Genome-scale CRISPR/Cas9 screening. Am. J. Cancer Res. 2019;9:988–998. PubMed PMC

BeltCappellino A., Majerciak V., Lobanov A., Lack J., Cam M., Zheng Z.-M. CRISPR/Cas9-Mediated Knockout and In Situ Inversion of the ORF57 Gene from All Copies of the Kaposi’s Sarcoma-Associated Herpesvirus Genome in BCBL-1 Cells. J. Virol. 2019;93 doi: 10.1128/JVI.00628-19. PubMed DOI PMC

Zhang L., Yang Y., Chai L., Bu H., Yang Y., Huang H., Ran J., Zhu Y., Li L., Chen F., et al. FRK plays an oncogenic role in non-small cell lung cancer by enhancing the stemness phenotype via induction of metabolic reprogramming. Int. J. Cancer. 2020;146:208–222. doi: 10.1002/ijc.32530. PubMed DOI

Eun K., Park M.G., Jeong Y.W., Jeong Y.I., Hyun S.H., Hwang W.S., Kim S.H., Kim H. Establishment of TP53-knockout canine cells using optimized CRIPSR/Cas9 vector system for canine cancer research 06 Biological Sciences 0601 Biochemistry and Cell Biology 11 Medical and Health Sciences 1112 Oncology and Carcinogenesis. BMC Biotechnol. 2019;19:1. PubMed PMC

Jo N., Sogabe Y., Yamada Y., Ukai T., Kagawa H., Mitsunaga K., Woltjen K., Yamada Y. Platforms of in vivo genome editing with inducible Cas9 for advanced cancer modeling. Cancer Sci. 2019;110:926–938. doi: 10.1111/cas.13924. PubMed DOI PMC

Can Changes in the Structure of Chromosomes Affect Health and Development? - Genetics Home Reference – NIH. Available online: https://ghr.nlm.nih.gov/primer/mutationsanddisorders/structuralchanges.

Cheong T.C., Blasco R.B., Chiarle R. Advances in Experimental Medicine and Biology. Vol. 1044. Springer; New York, NY, USA: 2018. The CRISPR/Cas9 system as a tool to engineer chromosomal translocation in vivo; pp. 39–48. PubMed

Wang X., Zhang H., Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019 doi: 10.20517/cdr.2019.10. PubMed DOI PMC

Huang C.-Y., Ju D.-T., Chang C.-F., Reddy P.M., Velmurugan B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. BioMedicine. 2017;7 doi: 10.1051/bmdcn/2017070423. PubMed DOI PMC

Song W., Li D., Tao L., Luo Q., Chen L. Solute carrier transporters: The metabolic gatekeepers of immune cells. Acta Pharm. Sin. B. 2020;10:61–78. doi: 10.1016/j.apsb.2019.12.006. PubMed DOI PMC

Mohammad I.S., He W., Yin L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed. Pharmacother. 2018;100:335–348. doi: 10.1016/j.biopha.2018.02.038. PubMed DOI

Rodríguez-Rodríguez D.R., Ramírez-Solís R., Garza-Elizondo M.A., Garza-Rodríguez M.D.L., Barrera-Saldaña H.A. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review) Int. J. Mol. Med. 2019;43:1559–1574. PubMed PMC

Chen Y., Zhang Y. Application of the CRISPR/Cas9 System to Drug Resistance in Breast Cancer. Adv. Sci. 2018;5 doi: 10.1002/advs.201700964. PubMed DOI PMC

Netz U., Carter J.V., Eichenberger M.R., Dryden G.W., Pan J., Rai S.N., Galandiuk S. Genetic polymorphisms predict response to anti-tumor necrosis factor treatment in Crohn’s disease. World J. Gastroenterol. 2017;23:4958–4967. doi: 10.3748/wjg.v23.i27.4958. PubMed DOI PMC

Ko B., Paucar D., Halmos B. EGFR T790M: Revealing the secrets of a gatekeeper. Lung Cancer Targets Ther. 2017;8:147–159. doi: 10.2147/LCTT.S117944. PubMed DOI PMC

Myers S.M., Collins I. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy. Future Med. Chem. 2016;8:463–489. doi: 10.4155/fmc.16.5. PubMed DOI PMC

Kasap C., Elemento O., Kapoor T.M. DrugTargetSeqR: A genomics- and CRISPR-Cas9-based method to analyze drug targets. Nat. Chem. Biol. 2014;10:626–628. doi: 10.1038/nchembio.1551. PubMed DOI PMC

Sturgill E.G., Norris S.R., Guo Y., Ohi R. Kinesin-5 inhibitor resistance is driven by kinesin-12. J. Cell Biol. 2016;213:213–227. doi: 10.1083/jcb.201507036. PubMed DOI PMC

Saeki E., Yasuhira S., Shibazaki M., Tada H., Doita M., Masuda T., Maesawa C. Involvement of C-terminal truncation mutation of kinesin-5 in resistance to kinesin-5 inhibitor. PLoS ONE. 2018;13:e0209296. doi: 10.1371/journal.pone.0209296. PubMed DOI PMC

Tian X., Gu T., Patel S., Bode A.M., Lee M.-H., Dong Z. CRISPR/Cas9 – An evolving biological tool kit for cancer biology and oncology. npj Precis. Oncol. 2019;3 doi: 10.1038/s41698-019-0080-7. PubMed DOI PMC

Maeder M.L., Gersbach C.A. Genome-editing technologies for gene and cell therapy. Mol. Ther. 2016;24:430–446. doi: 10.1038/mt.2016.10. PubMed DOI PMC

Hong A. CRISPR in personalized medicine: Industry perspectives in gene editing. Semin. Perinatol. 2018;42:501–507. doi: 10.1053/j.semperi.2018.09.008. PubMed DOI

Alsibai K.D., Meseure D. Histopathology - An Update. InTech; London, UK: 2018. Significance of Tumor Microenvironment Scoring and Immune Biomarkers in Patient Stratification and Cancer Outcomes.

Tran E., Robbins P.F., Rosenberg S.A. Final common pathway’ of human cancer immunotherapy: Targeting random somatic mutations. Nat. Immunol. 2017;18:255–262. doi: 10.1038/ni.3682. PubMed DOI PMC

Chang Z.N.L., Chen Y.Y. CARs: Synthetic Immunoreceptors for Cancer Therapy and Beyond. Trends Mol. Med. 2017;23:430–450. doi: 10.1016/j.molmed.2017.03.002. PubMed DOI PMC

Pech M.F., Fong L.E., Villalta J.E., Chan L.J.G., Kharbanda S., O’brien J.J., McAllister F.E., Firestone A.J., Jan C.H., Settleman J. Systematic identification of cancer cell vulnerabilities to natural killer cell-mediated immune surveillance. Elife. 2019;8 doi: 10.7554/eLife.47362. PubMed DOI PMC

Zhuang X., Veltri D.P., Long E.O. Genome-Wide CRISPR Screen Reveals Cancer Cell Resistance to NK Cells Induced by NK-Derived IFN-γ. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.02879. PubMed DOI PMC

Castro F., Cardoso A.P., Gonçalves R.M., Serre K., Oliveira M.J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol. 2018;9 doi: 10.3389/fimmu.2018.00847. PubMed DOI PMC

Bonifant C.L., Jackson H.J., Brentjens R.J., Curran K.J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics. 2016;3:16011. doi: 10.1038/mto.2016.11. PubMed DOI PMC

Legut M., Dolton G., Mian A.A., Ottmann O.G., Sewell A.K. CRISPR-mediated TCR replacement generates superior anticancer transgenic t cells. Blood. 2018;131:311–322. doi: 10.1182/blood-2017-05-787598. PubMed DOI PMC

Stenger D., Stief T.A., Käuferle T., Willier S., Rataj F., Schober K., Vick B., Lotfi R., Wagner B., Grunewald T., et al. Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR. Blood. 2020 doi: 10.1182/blood.2020005185. PubMed DOI PMC

Rotolo R., Leuci V., Donini C., Cykowska A., Gammaitoni L., Medico G., Valabrega G., Aglietta M., Sangiolo D. Car-based strategies beyond t lymphocytes: Integrative opportunities for cancer adoptive immunotherapy. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20112839. PubMed DOI PMC

McGowan E., Lin Q., Ma G., Yin H., Chen S., Lin Y. PD-1 disrupted CAR-T cells in the treatment of solid tumors: Promises and challenges. Biomed. Pharmacother. 2020;121:109625. doi: 10.1016/j.biopha.2019.109625. PubMed DOI

Su S., Hu B., Shao J., Shen B., Du J., Du Y., Zhou J., Yu L., Zhang L., Chen F., et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci. Rep. 2016;6 doi: 10.1038/srep20070. PubMed DOI PMC

Hu W., Zi Z., Jin Y., Li G., Shao K., Cai Q., Ma X., Wei F. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol. Immunother. 2019;68:365–377. doi: 10.1007/s00262-018-2281-2. PubMed DOI PMC

Montaño A., Forero-Castro M., Hernández-Rivas J.M., García-Tuñón I., Benito R. Targeted genome editing in acute lymphoblastic leukemia: A review. BMC Biotechnol. 2018;18 PubMed PMC

Eyquem J., Mansilla-Soto J., Giavridis T., Van Der Stegen S.J.C., Hamieh M., Cunanan K.M., Odak A., Gönen M., Sadelain M. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113–117. doi: 10.1038/nature21405. PubMed DOI PMC

Stoiber S., Cadilha B.L., Benmebarek M.-R., Lesch S., Endres S., Kobold S. Limitations in the Design of Chimeric Antigen Receptors for Cancer Therapy. Cells. 2019;8:472. doi: 10.3390/cells8050472. PubMed DOI PMC

Viaud S., Ma J.S.Y., Hardy I.R., Hampton E.N., Benish B., Sherwood L., Nunez V., Ackerman C.J., Khialeeva E., Weglarz M., et al. Switchable control over in vivo CAR T expansion, B cell depletion, and induction of memory. Proc. Natl. Acad. Sci. USA. 2018;115:E10898–E10906. doi: 10.1073/pnas.1810060115. PubMed DOI PMC

Martinez M., Moon E.K. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.00128. PubMed DOI PMC

Tomuleasa C., Fuji S., Berce C., Onaciu A., Chira S., Petrushev B., Micu W.T., Moisoiu V., Osan C., Constantinescu C., et al. Chimeric antigen receptor T-cells for the treatment of B-cell acute lymphoblastic leukemia. Front. Immunol. 2018;9 doi: 10.3389/fimmu.2018.00239. PubMed DOI PMC

Richards R.M., Sotillo E., Majzner R.G. CAR T cell therapy for neuroblastoma. Front. Immunol. 2018;9 doi: 10.3389/fimmu.2018.02380. PubMed DOI PMC

Han X., Wang Y., Han W.-D. Chimeric antigen receptor modified T-cells for cancer treatment. Chronic Dis. Transl. Med. 2018;4:225–243. doi: 10.1016/j.cdtm.2018.08.002. PubMed DOI PMC

Zhao L., Cao Y.J. Engineered T Cell Therapy for Cancer in the Clinic. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.02250. PubMed DOI PMC

Springuel L., Lonez C., Alexandre B., Van Cutsem E., Machiels J.P.H., Van Den Eynde M., Prenen H., Hendlisz A., Shaza L., Carrasco J., et al. Chimeric Antigen Receptor-T Cells for Targeting Solid Tumors: Current Challenges and Existing Strategies. BioDrugs. 2019;33:515–537. doi: 10.1007/s40259-019-00368-z. PubMed DOI PMC

Ravanpay A.C., Gust J., Johnson A.J., Rolczynski L.S., Cecchini M., Chang C.A., Hoglund V.J., Mukherjee R., Vitanza N.A., Orentas R.J., et al. EGFR806-CAR T cells selectively target a tumor-restricted EGFR epitope in glioblastoma. Oncotarget. 2019;10:7080–7095. doi: 10.18632/oncotarget.27389. PubMed DOI PMC

Bailey S.R., Maus M.V. Gene editing for immune cell therapies. Nat. Biotechnol. 2019;37:1425–1434. doi: 10.1038/s41587-019-0137-8. PubMed DOI

Choi B.D., Yu X., Castano A.P., Darr H., Henderson D.B., Bouffard A.A., Larson R.C., Scarfò I., Bailey S.R., Gerhard G.M., et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J. Immunother. Cancer. 2019;7:304. doi: 10.1186/s40425-019-0806-7. PubMed DOI PMC

Zgodzinski W., Grywalska E., Zinkiewicz K., Surdacka A., Majewski M., Zakoscielny A., Bury P., Rolinski J., Wallner G.T. Peripheral blood T lymphocytes are downregulated by the PD-1/PD-L1 axis in advanced gastric cancer. Arch. Med. Sci. 2019;15:774–783. doi: 10.5114/aoms.2018.75092. PubMed DOI PMC

Watanabe S., Shimada S., Akiyama Y., Ishikawa Y., Ogura T., Ogawa K., Ono H., Mitsunori Y., Ban D., Kudo A., et al. Loss of KDM6A characterizes a poor prognostic subtype of human pancreatic cancer and potentiates HDAC inhibitor lethality. Int. J. Cancer. 2019;145:192–205. doi: 10.1002/ijc.32072. PubMed DOI

Van Treuren T., Vishwanatha J.K. CRISPR deletion of MIEN1 in breast cancer cells. PLoS ONE. 2018;13:e0204976. doi: 10.1371/journal.pone.0204976. PubMed DOI PMC

Ng S.R. Ph.D. Thesis. Department of Biology, Massachusetts Institute of Technology; Cambridge, MA, USA: 2018. CRISPR-mediated interrogation of small cell lung cancer.

Ye R., Pi M., Cox J.V., Nishimoto S.K., Quarles L.D. CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model. J. Exp. Clin. Cancer Res. 2017;36:90. doi: 10.1186/s13046-017-0561-x. PubMed DOI PMC

Engel B.J., Bowser J.L., Broaddus R.R., Carson D.D. MUC1 stimulates EGFR expression and function in endometrial cancer. Oncotarget. 2016;7:32796–32809. doi: 10.18632/oncotarget.8743. PubMed DOI PMC

Raza U., Saatci Ö., Uhlmann S., Ansari S.A., Eyüpoglu E., Yurdusev E., Mutlu M., Ersan P.G., Altundag M.K., Zhang J.D., et al. The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelialmesenchymal transition in breast cancer. Oncotarget. 2016;7:49859–49877. doi: 10.18632/oncotarget.10489. PubMed DOI PMC

Kawamura N., Nimura K., Nagano H., Yamaguchi S., Nonomura N., Kaneda Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget. 2015;6:22361–22374. doi: 10.18632/oncotarget.4293. PubMed DOI PMC

Wang D., Zhang C., Wang B., Li B., Wang Q., Liu D., Wang H., Zhou Y., Shi L., Lan F., et al. Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning. Nat. Commun. 2019;10:1–14. doi: 10.1038/s41467-019-12281-8. PubMed DOI PMC

Lino C.A., Harper J.C., Carney J.P., Timlin J.A. Delivering crispr: A review of the challenges and approaches. Drug Deliv. 2018;25:1234–1257. doi: 10.1080/10717544.2018.1474964. PubMed DOI PMC

Soussi T., Wiman K.G. TP53: An oncogene in disguise. Cell Death Differ. 2015;22:1239–1249. doi: 10.1038/cdd.2015.53. PubMed DOI PMC

Moon S.B., Kim D.Y., Ko J.H., Kim Y.S. Recent advances in the CRISPR genome editing tool set. Exp. Mol. Med. 2019;51:1–11. doi: 10.1038/s12276-019-0339-7. PubMed DOI PMC

Han H.A., Pang J.K.S., Soh B.-S. Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J. Mol. Med. 2020:1–18. doi: 10.1007/s00109-020-01893-z. PubMed DOI PMC

Bin Moon S., Lee J.M., Kang J.G., Lee N.E., Ha D.I., Kim D.Y., Kim S.H., Yoo K., Kim D., Ko J.H., et al. Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang. Nat. Commun. 2018;9:1–11. doi: 10.1038/s41467-018-06129-w. PubMed DOI PMC

Thurtle-Schmidt D.M., Lo T.W. Molecular biology at the cutting edge: A review on CRISPR/CAS9 gene editing for undergraduates. Biochem. Mol. Biol. Educ. 2018;46:195–205. doi: 10.1002/bmb.21108. PubMed DOI PMC

Matson A.W., Hosny N., Swanson Z.A., Hering B.J., Burlak C. Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system. PLoS ONE. 2019;14:e0226107. doi: 10.1371/journal.pone.0226107. PubMed DOI PMC

Araki M., Ishii T. Providing appropriate risk information on genome editing for patients. Trends Biotechnol. 2016;34:86–90. doi: 10.1016/j.tibtech.2015.12.002. PubMed DOI

Joung J.K. Standards needed for gene-editing errors. Nature. 2015;523:158. doi: 10.1038/523158a. PubMed DOI

Tang X., Ren Q., Yang L., Bao Y., Zhong Z., He Y., Liu S., Qi C., Liu B., Wang Y., et al. Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnol. J. 2019;17:1431–1445. doi: 10.1111/pbi.13068. PubMed DOI PMC

Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. Programmable base editing of T to G C in genomic DNA without DNA cleavage. Nature. 2017;551:464–471. doi: 10.1038/nature24644. PubMed DOI PMC

Suzuki T., Asami M., Perry A.C.F. Asymmetric parental genome engineering by Cas9 during mouse meiotic exit. Sci. Rep. 2014;4:1–6. doi: 10.1038/srep07621. PubMed DOI PMC

Yen S.T., Zhang M., Deng J.M., Usman S.J., Smith C.N., Parker-Thornburg J., Swinton P.G., Martin J.F., Behringer R.R. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Dev. Biol. 2014;393:3–9. doi: 10.1016/j.ydbio.2014.06.017. PubMed DOI PMC

Ma D., Xu Z., Zhang Z., Chen X., Zeng X., Zhang Y., Deng T., Ren M., Sun Z., Jiang R., et al. Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. Nat. Commun. 2019;10:1–9. doi: 10.1038/s41467-019-08395-8. PubMed DOI PMC

Raitskin O., Schudoma C., West A., Patron N.J. Comparison of efficiency and specificity of CRISPR-associated (Cas) nucleases in plants: An expanded toolkit for precision genome engineering. PLoS ONE. 2019;14:e0211598. doi: 10.1371/journal.pone.0211598. PubMed DOI PMC

Safari F., Zare K., Negahdaripour M., Barekati-Mowahed M., Ghasemi Y. CRISPR Cpf1 proteins: Structure, function and implications for genome editing. Cell Biosci. 2019;9 doi: 10.1186/s13578-019-0298-7. PubMed DOI PMC

Wan T., Chen Y., Pan Q., Xu X., Kang Y., Gao X., Huang F., Wu C., Ping Y. Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy. J. Control. Release. 2020;322:236–247. doi: 10.1016/j.jconrel.2020.03.015. PubMed DOI

Kimmelman J. The ethics of human gene transfer. Nat. Rev. Genet. 2008;9:239–244. doi: 10.1038/nrg2317. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...