Temperature Behavior of Aqueous Solutions of Poly(2-oxazoline) Homopolymer and Block Copolymers Investigated by NMR Spectroscopy and Dynamic Light Scattering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
15-13853S
Grantová Agentura České Republiky
18-12925S
Grantová Agentura České Republiky
PubMed
32825475
PubMed Central
PMC7565327
DOI
10.3390/polym12091879
PII: polym12091879
Knihovny.cz E-zdroje
- Klíčová slova
- DLS, LCST, NMR, NOESY, aqueous solution, block copolymers, poly(2-ethyl-2-oxazoline), poly(2-isopropyl-2-oxazoline), spin–spin relaxation time, thermoresponsive polymer,
- Publikační typ
- časopisecké články MeSH
1H NMR methods in combination with dynamic light scattering were applied to study temperature behavior of poly(2-isopropyl-2-oxazoline) (PIPOx) homopolymer as well as PIPOx-b-poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx)-b-PMeOx diblock copolymers in aqueous solutions. 1H NMR spectra showed a different way of phase transition for the main and side chains in PIPOx-based solutions. Additionally, the phase transition is irreversible for PIPOx homopolymer and partially reversible for PIPOx-b-PMeOx copolymer. As revealed by NMR, the phase transition in PEtOx-based copolymers solutions exists despite the absence of solution turbidity. It is very broad, virtually independent of the copolymer composition and reversible with some hysteresis. Two types of water molecules were detected in solutions of the diblock copolymers above the phase transition-"free" with long and "bound" with short spin-spin relaxation times T2. NOESY spectra revealed information about conformational changes observed already in the pre-transition region of PIPOx-b-PMeOx copolymer solution.
Zobrazit více v PubMed
Zarrintaj P., Jouyandeh M., Ganjali M.R., Hadavand B.S., Mozafari M., Sheiko S.S., Vatankhah-Varnoosfaderani M., Gutiérrez T.J., Saeb M.R. Thermo-sensitive polymers in medicine: A review. Eur. Polym. J. 2019;117:402–423.
Liu F., Urban M.W. Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 2010;35:3–23. doi: 10.1016/j.progpolymsci.2009.10.002. DOI
Hruby M., Štěpánek P., Pánek J., Papadakis C.M. Crosstalk between responsivities to various stimuli in multiresponsive polymers: Change in polymer chain and external environment polarity as the key factor. Colloid Polym. Sci. 2019;297:1383–1401. doi: 10.1007/s00396-019-04576-5. DOI
Manouras T., Vamvakaki M. Field responsive materials: Photo-, electro-, magnetic-and ultrasound-sensitive polymers. Polym. Chem. 2017;8:74–96. doi: 10.1039/C6PY01455K. DOI
Saravanakumar G., Kim J., Kim W.J. Reactive-oxygen-species-responsive drug delivery systems: Promises and challenges. Adv. Sci. 2017;4:1600124. doi: 10.1002/advs.201600124. PubMed DOI PMC
Roy S.G., De P. PH responsive polymers with amino acids in the side chains and their potential applications. J. Appl. Polym. Sci. 2014;131:41084. doi: 10.1002/app.41084. DOI
Wells C.M., Harris M., Choi L., Murali V.P., Guerra F.D., Jennings J.A. Stimuli-responsive drug release from smart polymers. J. Funct. Biomater. 2019;10:34. doi: 10.3390/jfb10030034. PubMed DOI PMC
Xu Q., He C., Xiao C., Chen X. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol. Biosci. 2016;16:635–646. PubMed
Sedlacek O., Hoogenboom R. Drug delivery systems based on poly(2-oxazoline)s and poly(2-oxazine)s. Adv. Ther. 2020;3:1900168. doi: 10.1002/adtp.201900168. DOI
Zhang C., Sanchez R.J.P., Fu C., Clayden-Zabik R., Peng H., Kempe K., Whittaker A.K. Importance of thermally induced aggregation on 19 f magnetic resonance imaging of perfluoropolyether-based comb-shaped poly(2-oxazoline)s. Biomacromolecules. 2019;20:365–374. doi: 10.1021/acs.biomac.8b01549. PubMed DOI
Fu C., Herbst S., Zhang C., Whittaker A.K. Polymeric 19F MRI agents responsive to reactive oxygen species. Polym. Chem. 2017;8:4585–4595. doi: 10.1039/c7py00986k. DOI
Sedlacek O., de la Rosa V.R., Hoogenboom R. Poly(2-oxazoline)-protein conjugates. Eur. Polym. J. 2019;120:109246. doi: 10.1016/j.eurpolymj.2019.109246. DOI
Aseyev V., Tenhu H., Winnik F.M. Non-ionic thermoresponsive polymers in water. Adv. Polym. Sci. 2010;242:29–89. doi: 10.1007/12_2010_57. DOI
Dimitrov I., Trzebicka B., Mu A.H.E., Dworak A. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog. Polym. Sci. 2007;32:1275–1343. doi: 10.1016/j.progpolymsci.2007.07.001. DOI
Ward M.A., Georgiou T.K. Thermoresponsive polymers for biomedical applications. Polymers. 2011;3:1215–1242. doi: 10.3390/polym3031215. DOI
Jana S., Uchman M. Poly(2-oxazoline)-based stimulus-responsive (Co)polymers: An overview of their design, solution properties, surface-chemistries and applications. Prog. Polym. Sci. 2020;106:101252. doi: 10.1016/j.progpolymsci.2020.101252. DOI
Dworak A., Trzebicka B., Kowalczuk A., Tsvetanov C., Rangelov S. Polyoxazolines—mechanism of synthesis and solution properties. Polimery. 2014;59:88–94. doi: 10.14314/polimery.2014.088. DOI
Kowalczuk A., Kronek J., Bosowska K., Trzebicka B., Dworak A. Star poly(2-ethyl-2-oxazoline)s-synthesis and thermosensitivity. Polym. Int. 2011;60:1001–1009. doi: 10.1002/pi.3103. DOI
Hoogenboom R., Thijs H.M.L., Jochems M.J.H.C., van Lankvelt B.M., Fijten M.W.M., Schubert U.S. Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: Alternatives to poly(N-isopropylacrylamide)? Chem. Commun. Camb. 2008:5758–5760. doi: 10.1039/b813140f. PubMed DOI
Hijazi M., Schmidt M., Xia H., Storkmann J., Plothe R., Santos D.D., Bednarzick U., Krumm C., Tiller J.C. Investigations on the thermoresponsive behavior of copoly(2-oxazoline)s in water. Polym. Guildf. 2019;175:294–301. doi: 10.1016/j.polymer.2019.05.040. DOI
Hoogenboom R., Schlaad H. Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. Polym. Chem. 2017;8:24–40.
Bloksma M.M., Weber C., Perevyazko I.Y., Kuse A., Baumgärtel A., Vollrath A., Hoogenboom R., Schubert U.S. Poly(2-cyclopropyl-2-oxazoline): From rate acceleration by cyclopropyl to thermoresponsive properties. Macromolecules. 2011;44:4057–4064. doi: 10.1021/ma200514n. DOI
Diab C., Akiyama Y., Kataoka K., Winnik F.M. microcalorimetric study of the temperature-induced phase separation in aqueous solutions of poly(2-isopropyl-2-oxazolines) Macromolecules. 2004;37:2556–2562. doi: 10.1021/ma0358733. DOI
Sezonenko T., Qiu X.P., Winnik F.M., Sato T. Dehydration, micellization, and phase separation of thermosensitive polyoxazoline star block copolymers in aqueous solution. Macromolecules. 2019;52:935–944. doi: 10.1021/acs.macromol.8b02528. DOI
Schild H.G. Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992;17:163–249. doi: 10.1016/0079-6700(92)90023-R. DOI
Maeda Y. IR Spectroscopic study on the hydration and the phase transition of poly(vinyl methyl ether) in water. Langmuir. 2001;17:1737–1742. doi: 10.1021/la001346q. DOI
Spěváček J. Application of NMR spectroscopy to study thermoresponsive polymers. In: Khutoryanskiy V.V., Georgiou T.K., editors. Temperature-Responsive Polymers: Chemistry, Properties, and Applications. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2018. pp. 225–247.
Che L.T., Hiorth M., Hoogenboom R., Kjøniksen A.L. Complex temperature and concentration dependent self-assembly of poly(2-oxazoline) block copolymers. Polymers. 2020;12:1495. doi: 10.3390/polym12071495. PubMed DOI PMC
Loukotová L., Bogomolova A., Konefal R., Špírková M., Štěpánek P., Hrubý M. Hybrid κ-carrageenan-based polymers showing “schizophrenic” lower and upper critical solution temperatures and potassium responsiveness. Carbohydr. Polym. 2019;210:26–37. doi: 10.1016/j.carbpol.2019.01.050. PubMed DOI
Konefał R., Spěváček J., Mužíková G., Laga R. Thermoresponsive behavior of poly(DEGMA)-based copolymers. NMR and dynamic light scattering study of aqueous solutions. Eur. Polym. J. 2020;124:109488. doi: 10.1016/j.eurpolymj.2020.109488. DOI
Hiller W., Engelhardt N., Kampmann A.L., Degen P., Weberskirch R. Micellization and mobility of amphiphilic poly(2-oxazoline) based block copolymers characterized by 1H nmr spectroscopy. Macromolecules. 2015;48:4032–4045. doi: 10.1021/acs.macromol.5b00149. DOI
Yoo M.K., Jang M.K., Nah J.W., Park M.R., Cho C.S. Effect of temperature on the mobility of core-shell-type nanoparticles composed of poly(γ-benzyl-l-glutamate) and poly(n-isopropylacrylamide) Macromol. Chem. Phys. 2006;207:528–535. doi: 10.1002/macp.200500442. DOI
Rusu M., Wohlrab S., Kuckling D., Möhwald H., Schönhoff M. Coil-to-globule transition of PNIPAM graft copolymers with charged side chains: A 1H and 2H NMR and spin relaxation study. Macromolecules. 2006;39:7358–7363. doi: 10.1021/ma060831a. DOI
Kronek J., Kroneková Z., Lustoň J., Paulovičová E., Paulovičová L., Mendrek B. In vitro bio-immunological and cytotoxicity studies of poly(2-oxazolines) J. Mater. Sci. Mater. Med. 2011;22:1725–1734. doi: 10.1007/s10856-011-4346-z. PubMed DOI
Bauer M., Schroeder S., Tauhardt L., Kempe K., Schubert U.S., Fischer D. In vitro hemocompatibility and cytotoxicity study of poly(2-methyl-2- oxazoline) for biomedical applications. J. Polym. Sci. Part A Polym. Chem. 2013;51:1816–1821. doi: 10.1002/pola.26564. DOI
Schlaad H., Diehl C., Gress A., Meyer M., Demirel A.L., Nur Y., Bertin A. Poly(2-oxazoline)s as Smart Bioinspired Polymers. Macromol. Rapid Commun. 2010;31:511–525. doi: 10.1002/marc.200900683. PubMed DOI
Diehl C., Schlaad H. Polyoxazoline-based Crystalline Microspheres for Carbohydrate-Protein Recognition. Chem. A Eur. J. 2009;15:11469–11472. doi: 10.1002/chem.200901420. PubMed DOI
Konefał R., Spěváček J., Jäger E., Petrova S. Thermoresponsive behaviour of terpolymers containing poly(ethylene oxide), poly(2-ethyl-2-oxazoline) and poly(ε-caprolactone) blocks in aqueous solutions: An NMR study. Colloid Polym. Sci. 2016;294:1717–1726. doi: 10.1007/s00396-016-3930-7. DOI
Jakeš J. Regularized Positive Exponential Sum (REPES) Program-A Way of Inverting Laplace Transform Data Obtained by Dynamic Light Scattering. Collect. Czechoslov. Chem. Commun. 1995;60:1781–1797. doi: 10.1135/cccc19951781. DOI
Konefał R., Spěváček J., Černoch P. Thermoresponsive poly(2-oxazoline) homopolymers and copolymers in aqueous solutions studied by NMR spectroscopy and dynamic light scattering. Eur. Polym. J. 2018;100:241–252. doi: 10.1016/j.eurpolymj.2018.01.019. PubMed DOI PMC
Oleszko-Torbus N., Utrata-Wesołek A., Wałach W., Dworak A. Solution behavior of thermoresponsive random and gradient copolymers of 2-n-propyl-2-oxazoline. Eur. Polym. J. 2017;88:613–622. doi: 10.1016/j.eurpolymj.2016.11.008. DOI
Amirova A.I., Kirile T.Y., Ten’kovtsev A.V., Filippov A.P. Effect of terminal hydrophobic groups on the behavior of linear poly-2-isopropyl-2-oxazoline in aqueous solution. Fibre Chem. 2018;50:293–296. doi: 10.1007/s10692-019-09978-3. DOI
Zeng F., Tong Z., Feng H. NMR investigation of phase separation in poly(N-isopropyl acrylamide)/water solutions. Polym. Guildf. 1997;38:5539–5544. doi: 10.1016/S0032-3861(97)00118-3. DOI
Kouřilová H., Spěváček J., Hanyková L. 1H NMR study of temperature-induced phase transitions in aqueous solutions of poly(N-isopropylmethacrylamide)/poly(N-vinylcaprolactam) mixtures. Polym. Bull. 2013;70:221–235. doi: 10.1007/s00289-012-0831-x. DOI
Spěváček J., Konefał R., Dybal J., Čadová E., Kovářová J. Thermoresponsive behavior of block copolymers of PEO and PNIPAm with different architecture in aqueous solutions: A study by NMR, FTIR, DSC and quantum-chemical calculations. Eur. Polym. J. 2017;94:471–483. doi: 10.1016/j.eurpolymj.2017.07.034. DOI
Legros C., de Pauw-Gillet M.C., Tam K.C., Taton D., Lecommandoux S. Crystallisation-driven self-assembly of poly(2-isopropyl-2-oxazoline)-block-poly(2-methyl-2-oxazoline) above the LCST. Soft Matter. 2015;11:3354–3359. doi: 10.1039/C5SM00313J. PubMed DOI
Spěváček J. NMR investigations of phase transition in aqueous polymer solutions and gels. Curr. Opin. Colloid Interface Sci. 2009;14:184–191. doi: 10.1016/j.cocis.2008.10.003. DOI
Spěváček J., Dybal J., Starovoytova L., Zhigunov A., Sedláková Z. Temperature-induced phase separation and hydration in poly(N-vinylcaprolactam) aqueous solutions: A study by NMR and IR spectroscopy, SAXS, and quantum-chemical calculations. Soft Matter. 2012;8:6110–6119. doi: 10.1039/c2sm25432h. DOI
Oleszko-Torbus N., Utrata-Wesołek A., Bochenek M., Lipowska-Kur D., Dworak A., Wałach W. Thermal and crystalline properties of poly(2-oxazoline)s. Polym. Chem. 2019;11:15–33. doi: 10.1039/c9py01316d. DOI
Katsumoto Y., Tsuchiizu A., Qiu X., Winnik F.M. Dissecting the mechanism of the heat-induced phase separation and crystallization of poly(2-isopropyl-2-oxazoline) in water through vibrational spectroscopy and molecular orbital calculations. Macromolecules. 2012;45:3531–3541. doi: 10.1021/ma300252e. DOI
Trzebicka B., Haladjova E., Otulakowski Ł., Oleszko N., Wałach W., Libera M., Rangelov S., Dworak A. Hybrid nanoparticles obtained from mixed mesoglobules. Polym. Guildf. 2015;68:65–73. doi: 10.1016/j.polymer.2015.04.085. DOI
Demirel A.L., Meyer M., Schlaad H. Formation of polyamide nanofibers by directional crystallization in aqueous solution. Angew. Chem. Int. Ed. 2007;46:8622–8624. doi: 10.1002/anie.200703486. PubMed DOI
Aseyev V.O., Tenhu H., Winnik F.M. Temperature dependence of the colloidal stability of neutral amphiphilic polymers in water. Adv. Polym. Sci. 2006;196:1–85. doi: 10.1007/12_052. DOI
Sierra-Martín B., Romero-Cano M.S., Cosgrove T., Vincent B., Fernández-Barbero A. Solvent relaxation of swelling PNIPAM microgels by NMR. Coll. Surf. A Physicochem. Eng. Asp. 2005;270–271:296–300. doi: 10.1016/j.colsurfa.2005.06.044. DOI
Zhang C., Peng H., Puttick S., Reid J., Bernardi S., Searles D.J., Whittaker A.K. Conformation of hydrophobically modified thermoresponsive poly(OEGMA-co-TFEA) across the LCST revealed by NMR and molecular dynamics studies. Macromolecules. 2015;48:3310–3317. doi: 10.1021/acs.macromol.5b00641. DOI
Zhang C., Peng H., Li W., Liu L., Puttick S., Reid J., Bernardi S., Searles D.J., Zhang A., Whittaker A.K., et al. Conformation transitions of thermoresponsive dendronized polymers across the lower critical solution temperature. Macromolecules. 2016;49:900–908. doi: 10.1021/acs.macromol.5b02414. DOI