Dual Thermo- and pH-Responsive Polymer Nanoparticle Assemblies for Potential Stimuli-Controlled Drug Delivery
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39661715
PubMed Central
PMC11752510
DOI
10.1021/acsabm.4c01167
Knihovny.cz E-resources
- Keywords
- RAFT polymerization, drug delivery systems, pH-sensitive polymers, self-assembling block copolymers, thermoresponsive polymers,
- MeSH
- Biocompatible Materials * chemistry chemical synthesis pharmacology MeSH
- Doxorubicin * pharmacology chemistry MeSH
- Hydrogen-Ion Concentration MeSH
- Drug Delivery Systems * MeSH
- Humans MeSH
- Nanoparticles * chemistry MeSH
- Polymers * chemistry MeSH
- Surface Properties MeSH
- Antibiotics, Antineoplastic * pharmacology chemistry MeSH
- Drug Screening Assays, Antitumor MeSH
- Temperature MeSH
- Materials Testing MeSH
- Drug Liberation MeSH
- Particle Size MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biocompatible Materials * MeSH
- Doxorubicin * MeSH
- Polymers * MeSH
- Antibiotics, Antineoplastic * MeSH
The development of stimuli-responsive drug delivery systems enables targeted delivery and environment-controlled drug release, thereby minimizing off-target effects and systemic toxicity. We prepared and studied tailor-made dual-responsive systems (thermo- and pH-) based on synthetic diblock copolymers consisting of a fully hydrophilic block of poly[N-(1,3-dihydroxypropyl)methacrylamide] (poly(DHPMA)) and a thermoresponsive block of poly[N-(2,2-dimethyl-1,3-dioxan-5-yl)methacrylamide] (poly(DHPMA-acetal)) as drug delivery and smart stimuli-responsive materials. The copolymers were designed for eventual medical application to be fully soluble in aqueous solutions at 25 °C. However, they form well-defined nanoparticles with hydrodynamic diameters of 50-800 nm when heated above the transition temperature of 27-31 °C. This temperature range is carefully tailored to align with the human body's physiological conditions. The formation of the nanoparticles and their subsequent decomposition was studied using dynamic light scattering (DLS), transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and nuclear magnetic resonance (NMR). 1H NMR studies confirmed that after approximately 20 h of incubation at pH 5, which closely mimics tumor microenvironment, approximately 40% of the acetal groups were hydrolyzed, and the thermoresponsive behavior of the copolymers was lost. This smart polymer response led to disintegration of the supramolecular structures, possibly releasing the therapeutic cargo. By tuning the transition temperature to the values relevant for medical applications, we ensure precise and effective drug release. In addition, our systems did not exhibit any cytotoxicity against any of the three cell lines. Our findings underscore the immense potential of these nanoparticles as eventual advanced drug delivery systems, especially for cancer therapy.
See more in PubMed
Croy S.; Kwon G. Polymeric Micelles for Drug Delivery. Curr. Pharm. Des. 2006, 12 (36), 4669–4684. 10.2174/138161206779026245. PubMed DOI
Wei M.; Gao Y.; Li X.; Serpe M. J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017, 8 (1), 127–143. 10.1039/C6PY01585A. DOI
Stuart M. A. C.; Huck W. T. S.; Genzer J.; Müller M.; Ober C.; Stamm M.; Sukhorukov G. B.; Szleifer I.; Tsukruk V. V.; Urban M.; Winnik F.; Zauscher S.; Luzinov I.; Minko S. Emerging Applications of Stimuli-Responsive Polymer Materials. Nat. Mater. 2010, 9 (2), 101–113. 10.1038/nmat2614. PubMed DOI
Maeda H. Macromolecular Therapeutics in Cancer Treatment: The EPR Effect and Beyond. J. Controlled Release 2012, 164 (2), 138–144. 10.1016/j.jconrel.2012.04.038. PubMed DOI
Wu J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J. Pers. Med. 2021, 11 (8), 771.10.3390/jpm11080771. PubMed DOI PMC
Audureau N.; Coumes F.; Guigner J.-M.; Nguyen T. P. T.; Ménager C.; Stoffelbach F.; Rieger J. Thermoresponsive Properties of Poly(Acrylamide- Co -Acrylonitrile)-Based Diblock Copolymers Synthesized (by PISA) in Water. Polym. Chem. 2020, 11 (37), 5998–6008. 10.1039/D0PY00895H. DOI
Pola R.; Pechar M.; Ulbrich K.; Fabra Fres A. Polymer Doxorubicin Conjugate with a Synthetic Peptide Ligand Targeted on Prostate Tumor. J. Bioact. Compat. Polym. 2007, 22 (6), 602–620. 10.1177/0883911507084423. DOI
Gillies E. R.; Fréchet J. M. J. Development of Acid-Sensitive Copolymer Micelles for Drug Delivery. Pure Appl. Chem. 2004, 76 (7–8), 1295–1307. 10.1351/pac200476071295. DOI
Gillies E. R.; Fréchet J. M. J. PH-Responsive Copolymer Assemblies for Controlled Release of Doxorubicin. Bioconjugate Chem. 2005, 16 (2), 361–368. 10.1021/bc049851c. PubMed DOI
Huang X.; Du F.; Cheng J.; Dong Y.; Liang D.; Ji S.; Lin S. S.; Li Z. Acid-Sensitive Polymeric Micelles Based on Thermoresponsive Block Copolymers with Pendent Cyclic Orthoester Groups. Macromolecules 2009, 42 (3), 783–790. 10.1021/ma802138r. DOI
Xu Q.; He C.; Xiao C.; Chen X. Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications. Macromol. Biosci. 2016, 16 (5), 635–646. 10.1002/mabi.201500440. PubMed DOI
Wang X.; Chen Z.; Yang Y.; Guo H.; Yang Y.; Tang C.-Y.; Li X.; Law W.-C. Near-Infrared and PH Responsive Molecular Machine for Controlled Encapsulation and Release of Drugs. Polym. Test. 2022, 112 (February), 107631.10.1016/j.polymertesting.2022.107631. DOI
Wang X.; Yang Y.; Zhang G.; Tang C.-Y.; Law W.-C.; Yu C.; Wu X.; Li S.; Liao Y. NIR-Cleavable and PH-Responsive Polymeric Yolk–Shell Nanoparticles for Controlled Drug Release. Biomacromolecules 2023, 24 (5), 2009–2021. 10.1021/acs.biomac.2c01404. PubMed DOI
Perumal S.; Atchudan R.; Lee W. A Review of Polymeric Micelles and Their Applications. Polymers 2022, 14 (12), 2510.10.3390/polym14122510. PubMed DOI PMC
Du F.-S.; Huang X.-N.; Chen G.-T.; Lin S.-S.; Liang D.; Li Z.-C. Aqueous Solution Properties of the Acid-Labile Thermoresponsive Poly(Meth)Acrylamides with Pendent Cyclic Orthoester Groups. Macromolecules 2010, 43 (5), 2474–2483. 10.1021/ma902227g. DOI
Huang X.-N.; Du F.-S.; Zhang B.; Zhao J.-Y.; Li Z.-C. Acid-labile, Thermoresponsive (Meth)Acrylamide Polymers with Pendant Cyclic Acetal Moieties. J. Polym. Sci., Part A:Polym. Chem. 2008, 46 (13), 4332–4343. 10.1002/pola.22751. DOI
Konefał R.; Spěváček J.; Mužíková G.; Laga R. Thermoresponsive Behavior of Poly(DEGMA)-Based Copolymers. NMR and Dynamic Light Scattering Study of Aqueous Solutions. Eur. Polym. J. 2020, 124 (November 2019), 109488.10.1016/j.eurpolymj.2020.109488. DOI
Kataoka K.; Matsumoto T.; Yokoyama M.; Okano T.; Sakurai Y.; Fukushima S.; Okamoto K.; Kwon G. S. Doxorubicin-Loaded Poly(Ethylene Glycol)–Poly(β-Benzyl-l-Aspartate) Copolymer Micelles: Their Pharmaceutical Characteristics and Biological Significance. J. Controlled Release 2000, 64 (1–3), 143–153. 10.1016/S0168-3659(99)00133-9. PubMed DOI
Hamaguchi T.; Doi T.; Eguchi-Nakajima T.; Kato K.; Yamada Y.; Shimada Y.; Fuse N.; Ohtsu A.; Matsumoto S.; Takanashi M.; Matsumura Y. Phase I Study of NK012, a Novel SN-38–Incorporating Micellar Nanoparticle, in Adult Patients with Solid Tumors. Clin. Cancer Res. 2010, 16 (20), 5058–5066. 10.1158/1078-0432.CCR-10-0387. PubMed DOI
Dong Y.; Feng S.-S. Methoxy Poly(Ethylene Glycol)-Poly(Lactide) (MPEG-PLA) Nanoparticles for Controlled Delivery of Anticancer Drugs. Biomaterials 2004, 25 (14), 2843–2849. 10.1016/j.biomaterials.2003.09.055. PubMed DOI
Wei X.; Gong C.; Gou M.; Fu S.; Guo Q.; Shi S.; Luo F.; Guo G.; Qiu L.; Qian Z. Biodegradable Poly(ε-Caprolactone)–Poly(Ethylene Glycol) Copolymers as Drug Delivery System. Int. J. Pharm. 2009, 381 (1), 1–18. 10.1016/j.ijpharm.2009.07.033. PubMed DOI
Kabanov A. V.; Batrakova E. V.; Alakhov V. Y. Pluronic® Block Copolymers as Novel Polymer Therapeutics for Drug and Gene Delivery. J. Controlled Release 2002, 82 (2–3), 189–212. 10.1016/S0168-3659(02)00009-3. PubMed DOI
Yin F.; Laborie P.; Lonetti B.; Gineste S.; Coppel Y.; Lauth-de Viguerie N.; Marty J.-D. Dual Thermo- and PH-Responsive Block Copolymer of Poly(N -Isopropylacrylamide)- Block -Poly(N, N -Diethylamino Ethyl Acrylamide): Synthesis, Characterization, Phase Transition, and Self-Assembly Behavior in Aqueous Solution. Macromolecules 2023, 56 (10), 3703–3720. 10.1021/acs.macromol.3c00424. DOI
Su F.; Yun P.; Li C.; Li R.; Xi L.; Wang Y.; Chen Y.; Li S. Novel Self-Assembled Micelles of Amphiphilic Poly(2-Ethyl-2-Oxazoline) -Poly(L-Lactide) Diblock Copolymers for Sustained Drug Delivery. Colloids Surf., A 2019, 566, 120.10.1016/j.colsurfa.2019.01.015. DOI
Zhang W.-J.; Hong C.-Y.; Pan C.-Y. Polymerization-Induced Self-Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery. Macromol. Rapid Commun. 2019, 40 (2), 1800279.10.1002/marc.201800279. PubMed DOI
Louage B.; Zhang Q.; Vanparijs N.; Voorhaar L.; Vande Casteele S.; Shi Y.; Hennink W. E.; Van Bocxlaer J.; Hoogenboom R.; De Geest B. G. Degradable Ketal-Based Block Copolymer Nanoparticles for Anticancer Drug Delivery: A Systematic Evaluation. Biomacromolecules 2015, 16 (1), 336–350. 10.1021/bm5015409. PubMed DOI
Zhang Q.; Hou Z.; Louage B.; Zhou D.; Vanparijs N.; De Geest B. G.; Hoogenboom R. Acid-Labile Thermoresponsive Copolymers That Combine Fast PH-Triggered Hydrolysis and High Stability under Neutral Conditions. Angew. Chem. 2015, 127 (37), 11029–11033. 10.1002/ange.201505145. PubMed DOI
Zhang Q.; Vanparijs N.; Louage B.; De Geest B. G.; Hoogenboom R. Dual PH- and Temperature-Responsive RAFT-Based Block Co-Polymer Micelles and Polymer–Protein Conjugates with Transient Solubility. Polym. Chem. 2014, 5 (4), 1140–1144. 10.1039/C3PY00971H. DOI
Kuperkar K.; Patel D.; Atanase L. I.; Bahadur P. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers 2022, 14 (21), 4702.10.3390/polym14214702. PubMed DOI PMC
Gupta M.; Sharma V.; Chauhan D. N.; Chauhan N. S.; Shah K.; Goyal R. K.. Amphiphilic Block Copolymer: A Smart Option for Bioactives Delivery. In Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents; Elsevier, 2020, pp. 451–479. 10.1016/B978-0-12-819666-3.00015-8. DOI
Huang X.; Du F.; Ju R.; Li Z. Novel Acid-Labile, Thermoresponsive Poly(Methacrylamide)s with Pendent Ortho Ester Moieties. Macromol. Rapid Commun. 2007, 28 (5), 597–603. 10.1002/marc.200600798. DOI
Ishitake K.; Satoh K.; Kamigaito M.; Okamoto Y. Stereogradient Polymers Formed by Controlled/Living Radical Polymerization of Bulky Methacrylate Monomers. Angew. Chem. 2009, 121 (11), 2025–2028. 10.1002/ange.200805168. PubMed DOI
Pytlíková S.; Pechar M.; Chytil P.; Studenovský M.; Pola R.; Kotrchová L.; Konefał R.; Čtveráčková L.; Laga R.; Pankrác J.; et al. Highly Hydrophilic Methacrylamide-Based Copolymers as Precursors for Polymeric Nanomedicines Containing Anthracyclines. Eur. Polym. J. 2024, 205 (January), 112756.10.1016/j.eurpolymj.2024.112756. DOI
Kolouchová K.; Lobaz V.; Beneš H.; de la Rosa V. R.; Babuka D.; Švec P.; Černoch P.; Hrubý M.; Hoogenboom R.; Štěpánek P.; Groborz O. Thermoresponsive Properties of Polyacrylamides in Physiological Solutions. Polym. Chem. 2021, 12 (35), 5077–5084. 10.1039/D1PY00843A. DOI
Paiuk O.; Mitina N.; Slouf M.; Pavlova E.; Finiuk N.; Kinash N.; Karkhut A.; Manko N.; Gromovoy T.; Hevus O.; et al. Fluorine-Containing Block/Branched Polyamphiphiles Forming Bioinspired Complexes with Biopolymers. Colloids Surf., B 2019, 174 (June 2018), 393–400. 10.1016/j.colsurfb.2018.11.047. PubMed DOI
Bildziukevich U.; Kaletová E.; Šaman D.; Sievänen E.; Kolehmainen E. T.; Šlouf M.; Wimmer Z. Spectral and Microscopic Study of Self-Assembly of Novel Cationic Spermine Amides of Betulinic Acid. Steroids 2017, 117, 90–96. 10.1016/j.steroids.2016.07.007. PubMed DOI
Laga R.; Janoušková O.; Ulbrich K.; Pola R.; Blažková J.; Filippov S. K.; Etrych T.; Pechar M. Thermoresponsive Polymer Micelles as Potential Nanosized Cancerostatics. Biomacromolecules 2015, 16 (8), 2493–2505. 10.1021/acs.biomac.5b00764. PubMed DOI
Spěváček J.; Konefał R.; Dybal J.; Čadová E.; Kovářová J. Thermoresponsive Behavior of Block Copolymers of PEO and PNIPAm with Different Architecture in Aqueous Solutions: A Study by NMR, FTIR, DSC and Quantum-Chemical Calculations. Eur. Polym. J. 2017, 94 (May), 471–483. 10.1016/j.eurpolymj.2017.07.034. DOI
Konefał R.; Spěváček J.; Černoch P. Thermoresponsive Poly(2-Oxazoline) Homopolymers and Copolymers in Aqueous Solutions Studied by NMR Spectroscopy and Dynamic Light Scattering. Eur. Polym. J. 2018, 100 (January), 241–252. 10.1016/j.eurpolymj.2018.01.019. DOI
Konefał R.; Černoch P.; Konefał M.; Spěváček J. Temperature Behavior of Aqueous Solutions of Poly(2-Oxazoline) Homopolymer and Block Copolymers Investigated by NMR Spectroscopy and Dynamic Light Scattering. Polymers 2020, 12 (9), 1879.10.3390/polym12091879. PubMed DOI PMC
Aseyev V. O.; Tenhu H.; Winnik F. M.. Temperature Dependence of the Colloidal Stability of Neutral Amphiphilic Polymers in Water Conformation-Dependent Design of Sequences in Copolymers II Springer; 20061–85
Oleszko-Torbus N.; Utrata-Wesołek A.; Bochenek M.; Lipowska-Kur D.; Dworak A.; Wałach W. Thermal and Crystalline Properties of Poly(2-Oxazoline)S. Polym. Chem. 2020, 11 (1), 15–33. 10.1039/C9PY01316D. DOI
Bordat A.; Boissenot T.; Nicolas J.; Tsapis N. Thermoresponsive Polymer Nanocarriers for Biomedical Applications. Adv. Drug Delivery Rev. 2019, 138, 167–192. 10.1016/j.addr.2018.10.005. PubMed DOI
Säckel C.; von Klitzing R.; Siegel R.; Senker J.; Vogel M. Water Dynamics in Solutions of Linear Poly (N-Isopropyl Acrylamide) Studied by 2H NMR Field-Cycling Relaxometry. Front. Soft Matter 2024, 4 (March), 1–11. 10.3389/frsfm.2024.1379816. DOI
Spěváček J.; Dybal J.; Starovoytova L.; Zhigunov A.; Sedláková Z. Temperature-Induced Phase Separation and Hydration in Poly(N-Vinylcaprolactam) Aqueous Solutions: A Study by NMR and IR Spectroscopy, SAXS, and Quantum-Chemical Calculations. Soft Matter 2012, 8 (22), 6110.10.1039/c2sm25432h. DOI
Zhang C.; Sanchez R. J. P.; Fu C.; Clayden-Zabik R.; Peng H.; Kempe K.; Whittaker A. K. Importance of Thermally Induced Aggregation on 19 F Magnetic Resonance Imaging of Perfluoropolyether-Based Comb-Shaped Poly(2-Oxazoline)S. Biomacromolecules 2019, 20 (1), 365–374. 10.1021/acs.biomac.8b01549. PubMed DOI
Lobaz V.; Liščáková V.; Sedlák F.; Musil D.; Petrova S. L.; Šeděnková I.; Pánek J.; Kučka J.; Konefał R.; Tihlaříková E.; Neděla V.; Pankrác J.; Šefc L.; Hrubý M.; Šácha P.; Štěpánek P. Tuning Polymer–Blood and Polymer–Cytoplasm Membrane Interactions by Manipulating the Architecture of Poly(2-Oxazoline) Triblock Copolymers. Colloids Surf., B 2023, 231 (July), 113564.10.1016/j.colsurfb.2023.113564. PubMed DOI
Smith O. E. P.; Waters L. J.; Small W.; Mellor S. CMC Determination Using Isothermal Titration Calorimetry for Five Industrially Significant Non-Ionic Surfactants. Colloids Surf., B 2022, 211 (November 2021), 112320.10.1016/j.colsurfb.2022.112320. PubMed DOI
Yamamoto Y.; Yasugi K.; Harada A.; Nagasaki Y.; Kataoka K. Temperature-Related Change in the Properties Relevant to Drug Delivery of Poly(Ethylene Glycol)-Poly(D,L-Lactide) Block Copolymer Micelles in Aqueous Milieu. J. Controlled Release 2002, 82 (2–3), 359–371. 10.1016/S0168-3659(02)00147-5. PubMed DOI