3D Cell Culture Models Demonstrate a Role for FGF and WNT Signaling in Regulation of Lung Epithelial Cell Fate and Morphogenesis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32850782
PubMed Central
PMC7396690
DOI
10.3389/fcell.2020.00574
Knihovny.cz E-zdroje
- Klíčová slova
- 3D cell culture, FGF signaling, WNT signaling, epithelial cell, lung, morphogenesis, organoid,
- Publikační typ
- časopisecké články MeSH
FGF signaling plays an essential role in lung development, homeostasis, and regeneration. We employed mouse 3D cell culture models and imaging to study ex vivo the role of FGF ligands and the interplay of FGF signaling with epithelial growth factor (EGF) and WNT signaling pathways in lung epithelial morphogenesis and differentiation. In non-adherent conditions, FGF signaling promoted formation of lungospheres from lung epithelial stem/progenitor cells (LSPCs). Ultrastructural and immunohistochemical analyses showed that LSPCs produced more differentiated lung cell progeny. In a 3D extracellular matrix, FGF2, FGF7, FGF9, and FGF10 promoted lung organoid formation. FGF9 showed reduced capacity to promote lung organoid formation, suggesting that FGF9 has a reduced ability to sustain LSPC survival and/or initial divisions. FGF7 and FGF10 produced bigger organoids and induced organoid branching with higher frequency than FGF2 or FGF9. Higher FGF concentration and/or the use of FGF2 with increased stability and affinity to FGF receptors both increased lung organoid and lungosphere formation efficiency, respectively, suggesting that the level of FGF signaling is a crucial driver of LSPC survival and differentiation, and also lung epithelial morphogenesis. EGF signaling played a supportive but non-essential role in FGF-induced lung organoid formation. Analysis of tissue architecture and cell type composition confirmed that the lung organoids contained alveolar-like regions with cells expressing alveolar type I and type II cell markers, as well as airway-like structures with club cells and ciliated cells. FGF ligands showed differences in promoting distinct lung epithelial cell types. FGF9 was a potent inducer of more proximal cell types, including ciliated and basal cells. FGF7 and FGF10 directed the differentiation toward distal lung lineages. WNT signaling enhanced the efficiency of lung organoid formation, but in the absence of FGF10 signaling, the organoids displayed limited branching and less differentiated phenotype. In summary, we present lung 3D cell culture models as useful tools to study the role and interplay of signaling pathways in postnatal lung development and homeostasis, and we reveal distinct roles for FGF ligands in regulation of mouse lung morphogenesis and differentiation ex vivo.
Department of Cytokinetics Institute of Biophysics of the Czech Academy of Sciences Brno Czechia
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czechia
International Clinical Research Center St Anne's University Hospital Brno Brno Czechia
Zobrazit více v PubMed
Barkauskas C. E., Chung M.-I., Fioret B., Gao X., Katsura H., Hogan B. L. M. (2017). Lung organoids: current uses and future promise. Development 144 986–997. 10.1242/dev.140103 PubMed DOI PMC
Barkauskas C. E., Cronce M. J., Rackley C. R., Bowie E. J., Keene D. R., Stripp B. R., et al. (2013). Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. 123 3025–3036. 10.1172/JCI68782 PubMed DOI PMC
Bhavanasi D., Klein P. S. (2016). Wnt signaling in normal and malignant stem cells. Curr. Stem Cell Rep. 2 379–387. 10.1007/s40778-016-0068-y PubMed DOI PMC
Cardoso W. V., Itoh A., Nogawa H., Mason I., Brody J. S. (1997). FGF-1 and FGF-7 induce distinct patterns of growth and differentiation in embryonic lung epithelium. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 208 398–405. 10.1002/(sici)1097-0177(199703)208:3<398::aid-aja10>3.0.co;2-x PubMed DOI
Cardoso W. V., Lü J. (2006). Regulation of early lung morphogenesis: questions, facts and controversies. Development 133:1611. 10.1242/dev.02310 PubMed DOI
Chen H., Matsumoto K., Brockway B. L., Rackley C. R., Liang J., Lee J.-H., et al. (2012). Airway epithelial progenitors are region specific and show differential responses to bleomycin-induced lung injury. Stem Cells Dayt. Ohio 30 1948–1960. 10.1002/stem.1150 PubMed DOI PMC
Clevers H., Loh K. M., Nusse R. (2014). An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346:1248012. 10.1126/science.1248012 PubMed DOI
Colvin J. S., White A. C., Pratt S. J., Ornitz D. M. (2001). Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Dev. Camb. Engl. 128 2095–2106. PubMed
De Arcangelis A., Georges-Labouesse E. (2000). Integrin and ECM functions: roles in vertebrate development. Trends Genet. 16 389–395. 10.1016/S0168-9525(00)02074-6 PubMed DOI
De Moerlooze L., Spencer-Dene B., Revest J. M., Hajihosseini M., Rosewell I., Dickson C. (2000). An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Dev. Camb. Engl. 127 483–492. PubMed
del Moral P.-M., De Langhe S. P., Sala F. G., Veltmaat J. M., Tefft D., Wang K., et al. (2006). Differential role of FGF9 on epithelium and mesenchyme in mouse embryonic lung. Dev. Biol. 293 77–89. 10.1016/j.ydbio.2006.01.020 PubMed DOI
Dessimoz J., Opoka R., Kordich J. J., Grapin-Botton A., Wells J. M. (2006). FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech. Dev. 123 42–55. 10.1016/j.mod.2005.10.001 PubMed DOI
Dvorak P., Bednar D., Vanacek P., Balek L., Eiselleova L., Stepankova V., et al. (2018). Computer-assisted engineering of hyperstable fibroblast growth factor 2. Biotechnol. Bioeng. 115 850–862. 10.1002/bit.26531 PubMed DOI
Frank D. B., Peng T., Zepp J., Snitow M., Vincent T., Penkala I. J., et al. (2016). Emergence of a wave of Wnt signaling that regulates lung alveologenesis through controlling epithelial self-renewal and differentiation. Cell. Rep. 17 2312–2325. 10.1016/j.celrep.2016.11.001 PubMed DOI PMC
Fuchs E., Chen T. (2013). A matter of life and death: self-renewal in stem cells. EMBO Rep. 14 39–48. 10.1038/embor.2012.197 PubMed DOI PMC
Goss A. M., Tian Y., Tsukiyama T., Cohen E. D., Zhou D., Lu M. M., et al. (2009). Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev. Cell. 17 290–298. 10.1016/j.devcel.2009.06.005 PubMed DOI PMC
Guo L., Degenstein L., Fuchs E. (1996). Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev. 10 165–175. 10.1101/gad.10.2.165 PubMed DOI
Han R. N., Liu J., Tanswell A. K., Post M. (1992). Expression of basic fibroblast growth factor and receptor: immunolocalization studies in developing rat fetal lung. Pediatr. Res. 31 435–440. 10.1203/00006450-199205000-00004 PubMed DOI
Hegab A. E., Arai D., Gao J., Kuroda A., Yasuda H., Ishii M., et al. (2015). Mimicking the niche of lung epithelial stem cells and characterization of several effectors of their in vitro behavior. Stem Cell. Res. 15 109–121. 10.1016/j.scr.2015.05.005 PubMed DOI
Jones M. R., Dilai S., Lingampally A., Chao C.-M., Danopoulos S., Carraro G., et al. (2019). A comprehensive analysis of fibroblast growth factor receptor 2b signaling on epithelial tip progenitor cells during early mouse lung branching morphogenesis. Front. Genet. 9:746. 10.3389/fgene.2018.00746 PubMed DOI PMC
Kheradmand F., Rishi K., Werb Z. (2002). Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J. Cell Sci. 115 839–848. PubMed PMC
Koledova Z., Sumbal J., Rabata A., de La Bourdonnaye G., Chaloupkova R., Hrdlickova B., et al. (2019). Fibroblast growth factor 2 protein stability provides decreased dependence on heparin for induction of FGFR signaling and alters ERK signaling dynamics. Front. Cell Dev. Biol. 7:331. 10.3389/fcell.2019.00331 PubMed DOI PMC
Lebeche D., Malpel S., Cardoso W. V. (1999). Fibroblast growth factor interactions in the developing lung. Mech. Dev. 86 125–136. 10.1016/S0925-4773(99)00124-0 PubMed DOI
Lee J.-H., Bhang D. H., Beede A., Huang T. L., Stripp B. R., Bloch K. D., et al. (2014). Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-Thrombospondin-1 axis. Cell 156 440–455. 10.1016/j.cell.2013.12.039 PubMed DOI PMC
Lee J.-H., Tammela T., Hofree M., Choi J., Marjanovic N. D., Han S., et al. (2017). Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6. Cell 170 1149.e12–1163.e12. 10.1016/j.cell.2017.07.028 PubMed DOI PMC
Lu M. M., Yang H., Zhang L., Shu W., Blair D. G., Morrisey E. E. (2001). The bone morphogenic protein antagonist gremlin regulates proximal-distal patterning of the lung. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 222 667–680. 10.1002/dvdy.1231 PubMed DOI
Malpel S., Mendelsohn C., Cardoso W. V. (2000). Regulation of retinoic acid signaling during lung morphogenesis. Development 127 3057–3067. PubMed
Matsui R., Brody J. S., Yu Q. (1999). FGF-2 induces surfactant protein gene expression in foetal rat lung epithelial cells through a MAPK-independent pathway. Cell. Signal. 11, 221– 228 10.1016/s0898-6568(98)00070-9 PubMed DOI
McQualter J. L., Bertoncello I. (2015). “Clonal culture of adult mouse lung epithelial stem/progenitor cells,” in Stem Cell Protocols Methods in Molecular Biology, ed. Rich I. N. (New York, NY: Springer; ), 231–241. 10.1007/978-1-4939-1785-3_17 PubMed DOI
McQualter J. L., Yuen K., Williams B., Bertoncello I. (2010). Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc. Natl. Acad. Sci. U.S.A. 107 1414–1419. 10.1073/pnas.0909207107 PubMed DOI PMC
Miller L.-A. D., Wert S. E., Clark J. C., Xu Y., Perl A.-K. T., Whitsett J. A. (2004). Role of Sonic hedgehog in patterning of tracheal-bronchial cartilage and the peripheral lung. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 231 57–71. 10.1002/dvdy.20105 PubMed DOI
Min H., Danilenko D. M., Scully S. A., Bolon B., Ring B. D., Tarpley J. E., et al. (1998). Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 12 3156–3161. 10.1101/gad.12.20.3156 PubMed DOI PMC
Mucenski M. L., Wert S. E., Nation J. M., Loudy D. E., Huelsken J., Birchmeier W., et al. (2003). beta-Catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J. Biol. Chem. 278 40231–40238. 10.1074/jbc.M305892200 PubMed DOI
Nyeng P., Norgaard G. A., Kobberup S., Jensen J. (2008). FGF10 maintains distal lung bud epithelium and excessive signaling leads to progenitor state arrest, distalization, and goblet cell metaplasia. BMC Dev. Biol. 8:2. 10.1186/1471-213X-8-2 PubMed DOI PMC
Ohuchi H., Hori Y., Yamasaki M., Harada H., Sekine K., Kato S., et al. (2000). FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem. Biophys. Res. Commun. 277 643–649. 10.1006/bbrc.2000.3721 PubMed DOI
Pastrana E., Silva-Vargas V., Doetsch F. (2011). Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8 486–498. 10.1016/j.stem.2011.04.007 PubMed DOI PMC
Powell P. P., Wang C. C., Horinouchi H., Shepherd K., Jacobson M., Lipson M., et al. (1998). Differential expression of fibroblast growth factor receptors 1 to 4 and ligand genes in late fetal and early postnatal rat lung. Am. J. Respir. Cell Mol. Biol. 19 563–572. 10.1165/ajrcmb.19.4.2994 PubMed DOI
Rabata A., Hampl A., Koledova Z. (2017). “Lungosphere assay: 3D culture of lung epithelial stem/progenitor cells,” in 3D Cell Culture: Methods and Protocols Methods in Molecular Biology, ed. Koledova Z. (New York, NY: Springer; ), 149–165. 10.1007/978-1-4939-7021-6_11 PubMed DOI
Ramasamy S. K., Mailleux A. A., Gupte V. V., Mata F., Sala F. G., Veltmaat J. M., et al. (2007). Fgf10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development. Dev. Biol. 307 237–247. 10.1016/j.ydbio.2007.04.033 PubMed DOI PMC
Reynolds B. A., Weiss S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255 1707–1710. 10.1126/science.1553558 PubMed DOI
Sekine K., Ohuchi H., Fujiwara M., Yamasaki M., Yoshizawa T., Sato T., et al. (1999). Fgf10 is essential for limb and lung formation. Nat. Genet. 21 138–141. 10.1038/5096 PubMed DOI
Shaw F. L., Harrison H., Spence K., Ablett M. P., Simões B. M., Farnie G., et al. (2012). A detailed mammosphere assay protocol for the quantification of breast stem cell activity. J. Mammary Gland Biol. Neoplasia 17 111–117. 10.1007/s10911-012-9255-3 PubMed DOI
Shu W., Guttentag S., Wang Z., Andl T., Ballard P., Lu M. M., et al. (2005). Wnt/β-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal–distal patterning in the lung. Dev. Biol. 283 226–239. 10.1016/j.ydbio.2005.04.014 PubMed DOI
Sugimoto S., Sato T. (2017). “Establishment of 3D intestinal organoid cultures from intestinal stem cells,” in 3D Cell Culture: Methods and Protocols Methods in Molecular Biology, ed. Koledova Z. (New York, NY: Springer; ), 97–105. 10.1007/978-1-4939-7021-6_7 PubMed DOI
Tichelaar J. W., Lu W., Whitsett J. A. (2000). Conditional expression of fibroblast growth factor-7 in the developing and mature lung. J. Biol. Chem. 275 11858–11864. 10.1074/jbc.275.16.11858 PubMed DOI
Volckaert T., Campbell A., Dill E., Li C., Minoo P., De Langhe S. (2013). Localized Fgf10 expression is not required for lung branching morphogenesis but prevents differentiation of epithelial progenitors. Dev. Camb. Engl. 140 3731–3742. 10.1242/dev.096560 PubMed DOI PMC
Volckaert T., De Langhe S. P. (2015). Wnt and FGF mediated epithelial mesenchymal crosstalk during lung development. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 244 342–366. 10.1002/dvdy.24234 PubMed DOI PMC
Volckaert T., Yuan T., Chao C.-M., Bell H., Sitaula A., Szimmtenings L., et al. (2017). Fgf10-hippo epithelial-mesenchymal crosstalk maintains and recruits lung basal stem cells. Dev. Cell 43 48.e5–59.e5. 10.1016/j.devcel.2017.09.003 PubMed DOI PMC
Volckaert T., Yuan T., Yuan J., Boateng E., Hopkins S., Zhang J.-S., et al. (2019). Hippo signaling promotes lung epithelial lineage commitment by curbing Fgf10 and β-catenin signaling. Dev. Camb. Engl. 146:dev166454. 10.1242/dev.166454 PubMed DOI PMC
Weaver M., Yingling J. M., Dunn N. R., Bellusci S., Hogan B. L. (1999). Bmp signaling regulates proximal-distal differentiation of endoderm in mouse lung development. Dev. Camb. Engl. 126 4005–4015. PubMed
Wells J. M., Melton D. A. (2000). Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Dev. Camb. Engl. 127 1563–1572. PubMed
White A. C., Xu J., Yin Y., Smith C., Schmid G., Ornitz D. M. (2006). FGF9 and SHH signaling coordinate lung growth and development through regulation of distinct mesenchymal domains. Dev. Camb. Engl. 133 1507–1517. 10.1242/dev.02313 PubMed DOI
Whyte J. L., Smith A. A., Helms J. A. (2012). Wnt signaling and injury repair. Cold Spring Harb. Perspect. Biol. 4:a008078. 10.1101/cshperspect.a008078 PubMed DOI PMC
Yin Y., White A. C., Huh S.-H., Hilton M. J., Kanazawa H., Long F., et al. (2008). An FGF–WNT gene regulatory network controls lung mesenchyme development. Dev. Biol. 319 426–436. 10.1016/j.ydbio.2008.04.009 PubMed DOI PMC
Yuan T., Volckaert T., Redente E. F., Hopkins S., Klinkhammer K., Wasnick R., et al. (2019). FGF10-FGFR2B signaling generates basal cells and drives alveolar epithelial regeneration by bronchial epithelial stem cells after lung injury. Stem Cell Rep. 12 1041–1055. 10.1016/j.stemcr.2019.04.003 PubMed DOI PMC
Zhao C., Setrerrahmane S., Xu H. (2015). Enrichment and characterization of cancer stem cells from a human non-small cell lung cancer cell line. Oncol. Rep. 34 2126–2132. 10.3892/or.2015.4163 PubMed DOI
Zhou M., Sutliff R. L., Paul R. J., Lorenz J. N., Hoying J. B., Haudenschild C. C., et al. (1998). Fibroblast growth factor 2 control of vascular tone. Nat. Med. 4 201–207. 10.1038/nm0298-201 PubMed DOI PMC
Lung Organoids-The Ultimate Tool to Dissect Pulmonary Diseases?