Synthesis, antiproliferative activity in cancer cells and DNA interaction studies of [Pt(cis-1,3-diaminocycloalkane)Cl2] analogs
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32851480
DOI
10.1007/s00775-020-01809-9
PII: 10.1007/s00775-020-01809-9
Knihovny.cz E-zdroje
- Klíčová slova
- Antitumor, Cellular uptake, DNA, Glutathione, Oxaliplatin, Pt(1,n-diaminocycloalkane) moiety,
- MeSH
- antitumorózní látky chemická syntéza farmakologie MeSH
- apoptóza účinky léků MeSH
- cisplatina farmakologie normy MeSH
- cyklické uhlovodíky chemická syntéza MeSH
- DNA chemie MeSH
- glutathion chemie MeSH
- léky antitumorózní - screeningové testy MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- organokovové sloučeniny chemická syntéza farmakologie MeSH
- permeabilita buněčné membrány MeSH
- platina chemie MeSH
- proliferace buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antitumorózní látky MeSH
- cisplatina MeSH
- cyklické uhlovodíky MeSH
- DNA MeSH
- glutathion MeSH
- organokovové sloučeniny MeSH
- platina MeSH
The search for more effective platinum anticancer drugs has led to the design, synthesis, and preclinical testing of hundreds of new platinum complexes. This search resulted in the recognition and subsequent FDA approval of the third-generation Pt(II) anticancer drug, [Pt(1,2-diaminocyclohexane)(oxalate)], oxaliplatin, as an effective agent in treating colorectal and gastrointestinal cancers. Another promising example of the class of anticancer platinum(II) complexes incorporating the Pt(1,n-diaminocycloalkane) moiety is kiteplatin ([Pt(cis-1,4-DACH)Cl2], DACH = diaminocyclohexane). We report here our progress in evaluating the role of the cycloalkyl moiety in these complexes focusing on the synthesis, characterization, evaluation of the antiproliferative activity in tumor cells and studies of the mechanism of action of new [Pt(cis-1,3-diaminocycloalkane)Cl2] complexes wherein the cis-1,3-diaminocycloalkane group contains the cyclobutyl, cyclopentyl, and cyclohexyl moieties. We demonstrate that [Pt(cis-1,3-DACH)Cl2] destroys cancer cells with greater efficacy than the other two investigated 1,3-diamminocycloalkane derivatives, or cisplatin. Moreover, the investigated [Pt(cis-1,3-diaminocycloalkane)Cl2] complexes show selectivity toward tumor cells relative to non-tumorigenic normal cells. We also performed several mechanistic studies in cell-free media focused on understanding some early steps in the mechanism of antitumor activity of bifunctional platinum(II) complexes. Our data indicate that reactivities of the investigated [Pt(cis-1,3-diaminocycloalkane)Cl2] complexes and cisplatin with glutathione and DNA binding do not correlate with antiproliferative activity of these platinum(II) complexes in cancer cells. In contrast, we show that the higher antiproliferative activity in cancer cells of [Pt(cis-1,3-DACH)Cl2] originates from its highest hydrophobicity and most efficient cellular uptake.
Department of Chemistry Eastern Michigan University Ypsilanti MI 48197 USA
Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
Zobrazit více v PubMed
Connors TA, Jones M, Ross WCJ, Braddock PD, Khokhar AR, Tobe ML (1972) New platinum complexes with anti-tumour activity. Chem Biol Interact 5:415–424 PubMed DOI
Cleare MJ, Hoeschele JD (1973) Antitumor activity of group viii transition metal complexes. 1. Platinum(ll) complexes. Bioinorg Chem 2:187–210 DOI
Gale GR, Walker EM Jr, Atkins LM, Smith AB, Meischen SJ (1974) Antileukemic properties of dichloro(1,2-diaminocyclohexane)platinum(II). Res Commun Chem Pathol Pharmacol 7:529–538 PubMed
Kidani Y, Inagaki K, Iigo M, Hoshi A, Kuretani K (1978) Antitumor activity of 1,2-diamminocyclohexane-platinum complexes against sarcoma 180 ascites form. J Med Chem 21:1315–1318 PubMed DOI
Kim GP, Erlichman C (2007) Oxaliplatin in the treatment of colorectal cancer. Exp Opin Drug Metabol Toxicol 3:281–294 DOI
Kochi M, Fujii M, Kanamori N, Kaiga T, Okubo R, Mihara Y, Takayama T (2011) Pharmacokinetics of oxaliplatin in gastrointestinal cancer patients with malignant ascites. J Chemother 23:28–31 PubMed DOI
Hoeschele JD, Petruzzella E, Margiotta N, Natile G, Gandin V, Marzano C (2014) Kiteplatin—a potential clinical candidate showing significant activity vs Oxaliplatin-resistant colorectal cancer. Anticancer Res 34:5949–5950
Johnstone TC, Suntharalingam K, Lippard SJ (2016) The next generation of platinum drugs: Targeted pt(II) agents, nanoparticle delivery, and pt(iv) prodrugs. Chem Rev 116:3436–3486 PubMed DOI PMC
Brabec V, Hrabina O, Kasparkova J (2017) Cytotoxic platinum coordination compounds DNA binding agents. Coord Chem Rev 351:2–31 DOI
Dhara SC (1970) Process for the production of pure cis-platinum-(II)-diammine dichloride. Indian J Chem 8:193–194
Geyer R, Nordemann U, Strasser A, Wittmann H-J, Buschauer A (2016) Conformational restriction and enantioseparation increase potency and selectivity of cyanoguanidine-type histamine h4 receptor agonists. J Med Chem 59:3452–3470 PubMed DOI
Sheldrick G (2015) Shelxt—integrated space-group and crystal-structure determination. Acta Crystallog Sect. A 71:3–8 DOI
Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) Olex2: A complete structure solution, refinement and analysis program. J Appl Crystallog 42:339–341 DOI
Sheldrick GM (2008) A short history of shelx. Acta Crystallogr Sect A 64:112–122 DOI
Kasparkova J, Kostrhunova H, Novohradsky V, Pracharova J, Curci A, Margiotta N, Natile G, Brabec V (2017) Anticancer kiteplatin pyrophosphate derivatives show unexpected target selectivity for DNA. Dalton Trans 46:14139–14148 PubMed DOI
Hreusova M, Novákova O, Kostrhunova H, Pracharova J, Brabec V, Kašpárková J (2019) DNA modification by cisplatin-like Pt(II) complexes containing 1,1′-binaphtyl-2,2′-diamine ligand does not correlate with their antiproliferative activity in cancer cells. Inorg Chim Acta 495:118952 DOI
Novakova O, Liskova B, Vystrcilova J, Suchankova T, Vrana O, Starha P, Travnicek Z, Brabec V (2014) Conformation and recognition of DNA damaged by antitumor cis-dichlorido platinum(ii) complex of cdk inhibitor bohemine. Eur J Med Chem 78:54–64 PubMed DOI
Dabrowiak JC, Goodisman J, Souid AK (2002) Kinetic study of the reaction of cisplatin with thiols. Drug Metab Dispos 30:1378–1384 PubMed DOI
Qu Y, Wenxia T, Hu H, Dai A, Ji X, Zhang F and Liu Y (1986) Synthesis,characterization and antitumour activity of platinum complexes of 1,3-diaminocyclohexane. Chinese J Appl Chem 3:25–29
Kasparkova J, Suchankova T, Halamikova A, Zerzankova L, Vrana O, Margiotta N, Natile G, Brabec V (2010) Cytotoxicity, cellular uptake, glutathione and DNA interactions of an antitumor large-ring ptii chelate complex incorporating the cis-1,4-diaminocyclohexane carrier ligand. Biochem Pharmacol 79:552–564 PubMed DOI
Margiotta N, Savino S, Marzano C, Pacifico C, Hoeschele JD, Gandin V, Natile G (2016) Cytotoxicity-boosting of kiteplatin by Pt(IV) prodrugs with axial benzoate ligands. J Inorg Biochem 160:85–93 PubMed DOI
Kostrhunova H, Zajac J, Novohradsky V, Kasparkova J, Malina J, Aldrich-Wright JR, Petruzzella E, Sirota R, Gibson D, Brabec V (2019) A subset of new platinum antitumor agents kills cells by a multimodal mechanism of action also involving changes in the organization of the microtubule cytoskeleton. J Med Chem 62:5176–5190 PubMed DOI
Margiotta N, Marzano C, Gandin V, Osella D, Ravera M, Gabano E, Platts JA, Petruzzella E, Hoeschele JD, Natile G (2012) Revisiting [PtCl PubMed DOI
Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320 PubMed DOI
Novohradsky V, Liu Z, Vojtiskova M, Sadler PJ, Brabec V, Kasparkova J (2014) Mechanism of cellular accumulation of an iridium(iii) pentamethylcyclopentadienyl anticancer complex containing a C, N-chelating ligand. Metallomics 6:682–690 PubMed DOI
Safaei R, Howell SB (2005) Copper transporters regulate the cellular pharmacology and sensitivity to pt drugs. Crit Rev Oncol Hematol 53:13–23 PubMed DOI
Reedijk J (1999) Why does cisplatin reach guanine-N7 with competing s-donor ligands avaiable in the cell? Chem Rev 99:2499–2510 PubMed DOI
Hagrman D, Goodisman J, Dabrowiak JC, Souid AK (2003) Kinetic study on the reaction of cisplatin with metallothionein. Drug Metab Disp 31:916–923 DOI
Johnson NP, Butour J-L, Villani G, Wimmer FL, Defais M, Pierson V, Brabec V (1989) Metal antitumor compounds: the mechanism of action of platinum complexes. Prog Clin Biochem Med 10:1–24 DOI
Johnstone TC, Alexander SM, Lin W, Lippard SJ (2014) Effects of monofunctional platinum agents on bacterial growth: a retrospective study. J Am Chem Soc 136:116–118 PubMed DOI
Kasparkova J, Brabec V (2015) Effects of antitumor derivatives of ineffective transplatin on bacterial cells: is DNA a pharmacological target? J Inorg Biochem 153:206–210 PubMed DOI