Novel cis-Pt(II) Complexes with Alkylpyrazole Ligands: Synthesis, Characterization, and Unusual Mode of Anticancer Action

. 2022 ; 2022 () : 1717200. [epub] 20220302

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35281329

One concept of improving anticancer effects of conventional platinum-based antitumor drugs consists of conjugating these compounds with other biologically (antitumor) active agents, acting by a different mechanism. Here, we present synthesis, physicochemical characterization, biological effects, and mechanisms of action of four new analogs of conventional cisplatin, namely, cis-Pt(II) complexes containing either methyl or ethyl pyrazole N-donor ligands and chlorido or iodido ligands. It is noteworthy that while chlorido complexes display activity in a variety of cancer cell lines comparable to cisplatin, iodido complexes are considerably more potent due to their enhanced hydrophobicity and consequently enhanced cellular accumulation. Moreover, all of the studied Pt(II) alkylpyrazole complexes display a higher selectivity for tumor cells and effectively overcome the acquired resistance to cisplatin. Further results focused on the mechanism of action of the studied complexes and showed that in contrast to cisplatin and several platinum-based antitumor drugs, DNA damage by the investigated Pt(II)-alkylpyrazole complexes does not play a major role in their mechanism of action. Our findings demonstrate that inhibition of the tubulin kinesin Eg5, which is essential for forming a functional mitotic spindle, plays an important role in their mechanism of antiproliferative action.

Zobrazit více v PubMed

Brabec V., Hrabina O., Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coordination Chemistry Reviews . 2017;351(Supplement C):2–31. doi: 10.1016/j.ccr.2017.04.013. DOI

Florea A.-M., Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers . 2011;3(1):1351–1371. doi: 10.3390/cancers3011351. PubMed DOI PMC

Johnstone T. C., Suntharalingam K., Lippard S. J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chemical Reviews . 2016;116(5):3436–3486. doi: 10.1021/acs.chemrev.5b00597. PubMed DOI PMC

Wheate N. J., Walker S., Craig G. E., Oun R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Transactions . 2010;39(35):8113–8127. doi: 10.1039/c0dt00292e. PubMed DOI

Jin S., Guo Y., Guo Z., Wang X. Monofunctional platinum(II) anticancer agents. Pharmaceuticals . 2021;14(2) doi: 10.3390/ph14020133. PubMed DOI PMC

Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiology and Oncology . 2019;53(2):148–158. doi: 10.2478/raon-2019-0018. PubMed DOI PMC

Hanif M., Hartinger C. G. Anticancer metallodrugs: where is the next cisplatin? Future Medicinal Chemistry . 2018;10(6):615–617. doi: 10.4155/fmc-2017-0317. PubMed DOI

Cai L., Yu C., Ba L., et al. Anticancer platinum-based complexes with non-classical structures. Applied Organometallic Chemistry . 2018;32(4) doi: 10.1002/aoc.4228.e4228 DOI

Dilruba S., Kalayda G. V. Platinum-based drugs: past, present and future. Cancer Chemotherapy and Pharmacology . 2016;77(6):1103–1124. doi: 10.1007/s00280-016-2976-z. PubMed DOI

Olszewski U., Hamilton G. A better platinum-based anticancer drug yet to come? Anti-Cancer Agents in Medicinal Chemistry . 2010;10(4):293–301. doi: 10.2174/187152010791162306. PubMed DOI

Hannon M. J. Metal-based anticancer drugs: from a past anchored in platinum chemistry to a post-genomic future of diverse chemistry and biology. Pure and Applied Chemistry . 2007;79(12):2243–2261. doi: 10.1351/pac200779122243. DOI

Fricker S. P. Metal based drugs: from serendipity to design. Dalton Transactions . 2007;43(43):4903–4917. doi: 10.1039/b705551j. PubMed DOI

Zhang J., Wang L., Xing Z., et al. Status of bi- and multi-nuclear platinum anticancer drug development. Anti-Cancer Agents in Medicinal Chemistry . 2010;10(4):272–282. doi: 10.2174/187152010791162270. PubMed DOI

Zhang J., Liu D., Li Y., Sun J., Wang L., Zang A. Status of non-classical mononuclear platinum anticancer drug development. Mini-Reviews in Medicinal Chemistry . 2009;9(11):1357–1366. doi: 10.2174/138955709789878169. PubMed DOI

Farrell N. Polynuclear platinum drugs. In: Sigel A., Sigel H., editors. Metal Ions in Biological Systems . New York, NY, USA: Marcel Dekker, Inc; 2004. pp. 251–296. PubMed DOI

Farrell N. Nonclassical platinum antitumor agents: perspectives for design and development of new drugs complementary to cisplatin. Cancer Investigation . 1993;11(5):578–589. doi: 10.3109/07357909309011676. PubMed DOI

Dhara S. C. A rapid method for the synthesis of cis-[Pt(NH3)2Cl2] Indian Journal of Chemistry . 1970;8:193–194.

Wilson J. J., Lippard S. J. Synthetic methods for the preparation of platinum anticancer complexes. Chemical Reviews . 2014;114(8):4470–4495. doi: 10.1021/cr4004314. PubMed DOI PMC

Štarha P., Vančo J., Trávníček Z., Hošek J., Klusáková J., Dvořák Z. Platinum(II) iodido complexes of 7-azaindoles with significant antiproliferative effects: an old story revisited with unexpected outcomes. PLoS One . 2016;11(12) doi: 10.1371/journal.pone.0165062.e0165062 PubMed DOI PMC

Marzo T., Pillozzi S., Hrabina O., et al. cis-Pt I2(NH3)2: a reappraisal. Dalton Transactions . 2015;44(33):14896–14905. doi: 10.1039/c5dt01196e. PubMed DOI

Štarha P., Trávníček Z. Non-platinum complexes containing releasable biologically active ligands. Coordination Chemistry Reviews . 2019;395:130–145. doi: 10.1016/j.ccr.2019.06.001. DOI

Whittaker J., Murray V., McFadyen W. D. The interaction of DNA-targeted platinum phenanthridinium complexes with DNA. Nucleic Acids Research . 1998;26(17):3933–3939. doi: 10.1093/nar/26.17.3933. PubMed DOI PMC

Bai L., Gao C., Liu Q., et al. Research progress in modern structure of platinum complexes. European Journal of Medicinal Chemistry . 2017;140:349–382. doi: 10.1016/j.ejmech.2017.09.034. PubMed DOI

Lee H. H., Palmer B. D., Baguley B. C., et al. DNA-directed alkylating agents. 5. Acridinecarboxamide derivatives of (1,2-diaminoethane)dichloroplatinum(II) Journal of Medicinal Chemistry . 1992;35(16):2983–2987. doi: 10.1021/jm00094a008. PubMed DOI

Temple M. D., Recabarren P., McFadyen W. D., Holmes R. J., Denny W. A., Murray V. The interaction of DNA-targeted 9-aminoacridine-4-carboxamide platinum complexes with DNA in intact human cells. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression . 2002;1574(3):223–230. doi: 10.1016/s0167-4781(01)00365-7. PubMed DOI

Muchova T., Pracharova J., Starha P., et al. Insight into the toxic effects of cis-dichloridoplatinum(II) complexes containing 7-azaindole halogeno derivatives in tumor cells. JBIC Journal of Biological Inorganic Chemistry . 2013;18(5):579–589. doi: 10.1007/s00775-013-1003-7. PubMed DOI

Van Kralingen C. G., De Ridder J. K., Reedijk J. Coordination compounds of Pt(II) and Pd(II) with imidazole as a ligand. New synthetic procedures and characterization. Inorganica Chimica Acta . 1979;36:69–77. doi: 10.1016/s0020-1693(00)89373-1. DOI

van Kralingen G., Reedijk J. Coordination compounds of Pt(II) with N-methyl imidazole as a ligand. Inorganica Chimica Acta . 1978;30:171–177. doi: 10.1016/s0020-1693(00)89032-5. DOI

Pantoja E., Gallipoli A., van Zutphen S., et al. In vitro antitumor activity and interaction with DNA model bases of cis-[PtCl2(iPram)(azole)] complexes and comparison with their trans analogues. Inorganica Chimica Acta . 2006;359(13):4335–4342. doi: 10.1016/j.ica.2006.06.012. DOI

Karmakar S., Kostrhunova H., Ctvrtlikova T., Novohradsky V., Gibson D., Brabec V. Platinum(IV)-estramustine multiaction prodrugs are effective antiproliferative agents against prostate cancer cells. Journal of Medicinal Chemistry . 2020;63(22):13861–13877. doi: 10.1021/acs.jmedchem.0c01400. PubMed DOI

Kostrhunova H., Petruzzella E., Gibson D., Kasparkova J., Brabec V. An anticancer Pt IV prodrug that acts by mechanisms involving DNA damage and different epigenetic effects. Chemistry–A European Journal . 2019;25(20):5235–5245. doi: 10.1002/chem.201805626. PubMed DOI

Hreusová M., Nováková O., Kostrhunová H. DNA modification by cisplatin-like Pt(II) complexes containing 1,1′-binaphtyl-2,2′-diamine ligand does not correlate with their antiproliferative activity in cancer cells. Inorganica Chimica Acta . 2019;495118952

Hoeschele J. D., Kasparkova J., Kostrhunova H., et al. Synthesis, antiproliferative activity in cancer cells and DNA interaction studies of [Pt(cis-1,3-diaminocycloalkane)Cl2] analogs. JBIC Journal of Biological Inorganic Chemistry . 2020;25(6):913–924. doi: 10.1007/s00775-020-01809-9. PubMed DOI

Dabrowiak J. C., Goodisman J., Souid A.-K. Kinetic study of the reaction of cisplatin with thiols. Drug Metabolism and Disposition . 2002;30(12):1378–1384. doi: 10.1124/dmd.30.12.1378. PubMed DOI

van Kralingen C. G., de Ridder J. K., Reedijk J. Coordination compounds of platinum(II) and palladium(II) with pyrazole as a ligand. New synthetic procedures and characterisation. Transition Metal Chemistry . 1980;5(1):73–77. doi: 10.1007/bf01396873. DOI

Bancroft D. P., Lepre C. A., Lippard S. J. 195Pt NMR kinetic and mechanistic studies of cis-diamminedichloroplatinum and trans-diamminedichloroplatinum(II) binding to DNA. Journal of the American Chemical Society . 1990;112:6860–6871.

Barnham K. J., Sadler P. J., Frenkiel S. J., Frey U. Platination pathways for reactions of cisplatin with GG single-stranded and double-stranded decanucleotides. Angewandte Chemie International Edition in English . 1995;34(17):1874–1877. doi: 10.1002/anie.199518741. DOI

Repta A. J., Long D. F. Reactions of cisplatin with human plasma and plasma fractions. In: Prestayko A. W., Crooke S. T., Carter S. K., editors. Cisplatin . Cambridge, MA, USA: Academic Press; 1980. pp. 285–304. DOI

Cubo L., Parro T., Carnero A. Synthesis, reactivity studies, and cytotoxicity of two trans-iodidoplatinum(II) complexes. Does photoactivation work? Inorganics . 2018;6(4):p. 127. doi: 10.3390/inorganics6040127. DOI

Štarha P., Drahoš B., Herchel R. An unexpected in-solution instability of diiodido analogue of picoplatin complicates its biological characterization. Dalton Transactions . 2021;50(18):6071–6075. doi: 10.1039/d1dt00740h. PubMed DOI

Štarha P., Vančo J., Trávníček Z. Platinum iodido complexes: a comprehensive overview of anticancer activity and mechanisms of action. Coordination Chemistry Reviews . 2019;380:103–135. doi: 10.1016/j.ccr.2018.09.017. DOI

Zaludova R., Zakovska A., Kasparkova J., et al. DNA interactions of bifunctional dinuclear platinum(II) antitumor agents. European Journal of Biochemistry . 1997;246(2):508–517. doi: 10.1111/j.1432-1033.1997.00508.x. PubMed DOI

Reedijk J. Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chemical Reviews . 1999;99(9):2499–2510. doi: 10.1021/cr980422f. PubMed DOI

Reedijk J., Teuben J. M. Platinum-sulfur interactions involved in antitumor drugs, rescue agents, and biomolecules. In: Lippert B., editor. Cisplatin. Chemistry and Biochemistry of a Leading Anticancer Drug . Zürich, Switzerland: VHCA, Wiley-VCH; 1999. pp. 339–362.

Hagrman D., Goodisman J., Dabrowiak J. C., Souid A.-K. Kinetic study on the reaction of cisplatin with metallothionein. Drug Metabolism and Disposition . 2003;31(7):916–923. doi: 10.1124/dmd.31.7.916. PubMed DOI

Abassi Y. A., Xi B., Zhang W., et al. Kinetic cell-based morphological screening: prediction of mechanism of compound action and off-target effects. Chemistry & Biology . 2009;16(7):712–723. doi: 10.1016/j.chembiol.2009.05.011. PubMed DOI PMC

Novohradsky V., Yellol J., Stuchlikova O., et al. Organoruthenium complexes with C^N ligands are highly potent cytotoxic agents that act by a new mechanism of action. Chemistry - A European Journal . 2017;23(61):15294–15299. doi: 10.1002/chem.201703581. PubMed DOI

Novohradsky V., Zerzankova L., Stepankova J., et al. A dual-targeting, apoptosis-inducing organometallic half-sandwich iridium anticancer complex. Metallomics . 2014;6(8):1491–1501. doi: 10.1039/c4mt00112e. PubMed DOI

Sebastian J. Dihydropyrazole and dihydropyrrole structures based design of Kif15 inhibitors as novel therapeutic agents for cancer. Computational Biology and Chemistry . 2017;68:164–174. doi: 10.1016/j.compbiolchem.2017.03.006. PubMed DOI

Muthuraja P., Veeramani V., Prakash S., Himesh M., Venkatasubramanian U., Manisankar P. Structure-activity relationship of pyrazolo pyrimidine derivatives as inhibitors of mitotic kinesin Eg5 and anticancer agents. Bioorganic Chemistry . 2019;84:493–504. doi: 10.1016/j.bioorg.2018.12.014. PubMed DOI

Malik M. S., Asghar B. H., Syed R. Novel pyran-linked phthalazinone-pyrazole hybrids: synthesis, cytotoxicity evaluation, molecular modeling, and descriptor studies. Frontiers in Chemistry . 2021;9(353) doi: 10.3389/fchem.2021.666573. PubMed DOI PMC

Dawood K. M., Eldebss T. M. A., El-Zahabi H. S. A., Yousef M. H., Metz P. Synthesis of some new pyrazole-based 1,3-thiazoles and 1,3,4-thiadiazoles as anticancer agents. European Journal of Medicinal Chemistry . 2013;70:740–749. doi: 10.1016/j.ejmech.2013.10.042. PubMed DOI

Guido B. C., Ramos L. M., Nolasco D. O., et al. Impact of kinesin Eg5 inhibition by 3,4-dihydropyrimidin-2(1H)-one derivatives on various breast cancer cell features. BMC Cancer . 2015;15(1):p. 283. doi: 10.1186/s12885-015-1274-1. PubMed DOI PMC

Valentine M. T., Gilbert S. P. To step or not to step? How biochemistry and mechanics influence processivity in Kinesin and Eg5. Current Opinion in Cell Biology . 2007;19(1):75–81. doi: 10.1016/j.ceb.2006.12.011. PubMed DOI PMC

Ishikawa K., Tamura Y., Maruta S. Photocontrol of mitotic kinesin Eg5 facilitated by thiol-reactive photochromic molecules incorporated into the loop L5 functional loop. Journal of Biochemistry . 2014;155(3):195–206. doi: 10.1093/jb/mvt111. PubMed DOI

Sarli V., Giannis A. Kinesin motor inhibitors as effective anticancer drugs. In: Dai W., editor. Checkpoint Responses in Cancer Therapy . Totowa, NJ, USA: Humana Press; 2008. pp. 207–226. DOI

Garcia-Saez I., Skoufias D. A. Eg5 targeting agents: from new anti-mitotic based inhibitor discovery to cancer therapy and resistance. Biochemical Pharmacology . 2021;184 doi: 10.1016/j.bcp.2020.114364.114364 PubMed DOI

Mayer T. U., Kapoor T. M., Haggarty S. J., King R. W., Schreiber S. L., Mitchison T. J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science . 1999;286(5441):971–974. doi: 10.1126/science.286.5441.971. PubMed DOI

Kapoor T. M., Mayer T. U., Coughlin M. L., Mitchison T. J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. Journal of Cell Biology . 2000;150(5):975–988. doi: 10.1083/jcb.150.5.975. PubMed DOI PMC

Weil D., Garçon L., Harper M., Duménil D., Dautry F., Kress M. Targeting the kinesin Eg5 to monitor siRNA transfection in mammalian cells. Biotechniques . 2002;33(6):1244–1248. doi: 10.2144/02336st01. PubMed DOI

Chen G.-Y., Kang Y. J., Gayek A. S., et al. Eg5 inhibitors have contrasting effects on microtubule stability and metaphase spindle integrity. ACS Chemical Biology . 2017;12(4):1038–1046. doi: 10.1021/acschembio.6b01040. PubMed DOI PMC

Siddik Z. H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene . 2003;22:7265–7279. doi: 10.1038/sj.onc.1206933. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...