16S rRNA Gene Copy Number Normalization Does Not Provide More Reliable Conclusions in Metataxonomic Surveys
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
18-25706S
Grantová Agentura České Republiky
20-02022Y
Grantová Agentura České Republiky
PubMed
32862246
PubMed Central
PMC7835310
DOI
10.1007/s00248-020-01586-7
PII: 10.1007/s00248-020-01586-7
Knihovny.cz E-resources
- Keywords
- 16S rRNA, Gene, Metataxonomic surveys,
- MeSH
- Gene Dosage MeSH
- Gene Library MeSH
- Metagenome genetics MeSH
- Metagenomics standards MeSH
- Microbiota genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA, Ribosomal, 16S MeSH
Sequencing 16S rRNA gene amplicons is the gold standard to uncover the composition of prokaryotic communities. The presence of multiple copies of this gene makes the community abundance data distorted and gene copy normalization (GCN) necessary for correction. Even though GCN of 16S data provided a picture closer to the metagenome before, it should also be compared with communities of known composition due to the fact that library preparation is prone to methodological biases. Here, we process 16S rRNA gene amplicon data from eleven simple mock communities with DADA2 and estimate the impact of GCN. In all cases, the mock community composition derived from the 16S sequencing differs from those expected, and GCN fails to improve the classification for most of the analysed communities. Our approach provides empirical evidence that GCN does not improve the 16S target sequencing analyses in real scenarios. We therefore question the use of GCN for metataxonomic surveys until a more comprehensive catalogue of copy numbers becomes available.
See more in PubMed
Claassen JAHR. The gold standard: not a golden standard. BMJ. 2005;330:1121. doi: 10.1136/bmj.330.7500.1121. DOI
Versi E. “Gold standard” is an appropriate term [29] Br Med J. 1992;305:187. doi: 10.1136/bmj.305.6846.187-b. PubMed DOI PMC
Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8:e57923. doi: 10.1371/journal.pone.0057923. PubMed DOI PMC
McLaren MR, Willis AD, Callahan BJ (2019) Consistent and correctable bias in metagenomic sequencing experiments. Elife. 10.7554/elife.46923 PubMed PMC
Louca S, Doebeli M, Parfrey LW. Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome. 2018;6:41. doi: 10.1186/s40168-018-0420-9. PubMed DOI PMC
Highlander S (2014) Mock Community Analysis. In: Encyclopedia of Metagenomics. 10.1007/978-1-4614-6418-1_54-1
Bokulich NA, Rideout JR, Mercurio WG et al (2016) Mockrobiota: a public resource for microbiome bioinformatics benchmarking. mSystems. 10.1128/mSystems.00062-16 PubMed PMC
Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–7196. doi: 10.1093/nar/gkm864. PubMed DOI PMC
Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 2015;43:D593–D598. doi: 10.1093/nar/gku1201. PubMed DOI PMC
Siegwald L, Touzet H, Lemoine Y, Hot D, Audebert C, Caboche S. Assessment of common and emerging bioinformatics pipelines for targeted metagenomics. PLoS One. 2017;12:e0169563. doi: 10.1371/journal.pone.0169563. PubMed DOI PMC
Pylro VS, Roesch LFW, Morais DK, Clark IM, Hirsch PR, Tótola MR. Data analysis for 16S microbial profiling from different benchtop sequencing platforms. J Microbiol Methods. 2014;107:30–37. doi: 10.1016/j.mimet.2014.08.018. PubMed DOI
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–2643. doi: 10.1038/ismej.2017.119. PubMed DOI PMC
Starke R, Morais D (2019) Gene copy normalization of the 16S rRNA gene cannot outweigh the methodological biases of sequencing. bioRxiv. 10.1101/813477
Pylro VS, Morais DK, Kalks KHM, Roesch LFW, Hirsch PR, Tótola MR, Yotoko K. Misguided phylogenetic comparisons using DGGE excised bands may contaminate public sequence databases. J Microbiol Methods. 2016;126:18–23. doi: 10.1016/j.mimet.2016.04.012. PubMed DOI
Kitahara K, Miyazaki K. Revisiting bacterial phylogeny: natural and experimental evidence for horizontal gene transfer of 16S rRNA. Mob Genet Elem. 2013;3:e24210. doi: 10.4161/mge.24210. PubMed DOI PMC
Bastida F, Torres IF, Andrés-Abellán M, Baldrian P, López-Mondéjar R, Větrovský T, Richnow HH, Starke R, Ondoño S, García C, López-Serrano FR, Jehmlich N. Differential sensitivity of total and active soil microbial communities to drought and forest management. Glob Chang Biol. 2017;23:4185–4203. doi: 10.1111/gcb.13790. PubMed DOI
Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci. 2006;103:626–631. doi: 10.1073/pnas.0507535103. PubMed DOI PMC
Peng M, Zi X, Wang Q. Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16s rRNA genes. Int J Environ Res Public Health. 2015;12:12002–12015. doi: 10.3390/ijerph121012002. PubMed DOI PMC
Kaiser K, Wemheuer B, Korolkow V, Wemheuer F, Nacke H, Schöning I, Schrumpf M, Daniel R (2016) Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci Rep 6. 10.1038/srep33696 PubMed PMC
Zhang HH, Chen SN, Huang TL, Ma WX, Xu JL, Sun X. Vertical distribution of bacterial community diversity and water quality during the reservoir thermal stratification. Int J Environ Res Public Health. 2015;12:6933–6945. doi: 10.3390/ijerph120606933. PubMed DOI PMC
Liu K, Liu Y, Han BP, Xu B, Zhu L, Ju J, Jiao N, Xiong J. Bacterial community changes in a glacial-fed Tibetan lake are correlated with glacial melting. Sci Total Environ. 2019;651:2059–2067. doi: 10.1016/j.scitotenv.2018.10.104. PubMed DOI
Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol. 2004;186:2629–2635. doi: 10.1128/JB.186.9.2629-2635.2004. PubMed DOI PMC
Hardly BD, Nour SM, Van Berkum P, Selander RK. Rhizobial 16S rRNA and dnaK genes: Mosaicism and the uncertain phylogenetic placement of rhizobium galegae. Appl Environ Microbiol. 2005;71:1328–1335. doi: 10.1128/AEM.71.3.1328-1335.2005. PubMed DOI PMC
Miller SR, Augustine S, Le Olson T, et al. Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci U S A. 2005;102:850–855. doi: 10.1073/pnas.0405667102. PubMed DOI PMC
Schouls LM, Schot CS, Jacobs JA. Horizontal transfer of segments of the 16S rRNA genes between species of the Streptococcus anginosus group. J Bacteriol. 2003;185:7241–7246. doi: 10.1128/JB.185.24.7241-7246.2003. PubMed DOI PMC
Wang Y, Zhang Z. Comparative sequence analyses reveal frequent occurrence of short segments containing an abnormally high number of non-random base variations in bacterial rRNA genes. Microbiology. 2000;146:2845–2854. doi: 10.1099/00221287-146-11-2845. PubMed DOI
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814–821. doi: 10.1038/nbt.2676. PubMed DOI PMC
Angly FE, Dennis PG, Skarshewski A, Vanwonterghem I, Hugenholtz P, Tyson GW (2014) CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome. 10.1186/2049-2618-2-11 PubMed PMC
Willis AD (2019) Rarefaction, alpha diversity, and statistics. Front Microbiol PubMed PMC
Edgar R (2017) Updating the 97% identity threshold for 16S ribosomal RNA OTUs. bioRxiv. 10.1101/192211 PubMed
Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics. 2018;34:2371–2375. doi: 10.1093/bioinformatics/bty113. PubMed DOI
Wickham H (2017) ggplot2: elegant graphics for data analysis. J Stat Softw. 10.1007/978-0-387-98141-3
Comparing the effectiveness of different DNA extraction methods in MX-80 bentonite