Comparing the effectiveness of different DNA extraction methods in MX-80 bentonite
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
847593
European Union's Horizon 2020 Research and Innovation Programme
SO2020-017
SÚRAO
PubMed
39582279
PubMed Central
PMC11586505
DOI
10.1111/1758-2229.70047
Knihovny.cz E-zdroje
- MeSH
- Bacteria genetika klasifikace izolace a purifikace MeSH
- bentonit * chemie MeSH
- DNA bakterií * genetika izolace a purifikace MeSH
- mikrobiota genetika MeSH
- půdní mikrobiologie MeSH
- RNA ribozomální 16S * genetika MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- bentonit * MeSH
- DNA bakterií * MeSH
- RNA ribozomální 16S * MeSH
Approaches to DNA extraction play a crucial role in determining the variability of results obtained through 16S rRNA amplicon sequencing. Particularly, clay-rich samples can impede the efficiency of various standard cultivation-independent techniques. We conducted an inter-laboratory comparison study to thoroughly assess the efficacy of two published DNA extraction methods (kit-based and phenol-chloroform-based) specifically designed for bentonite samples. To this end, we spiked Wyoming MX 80 bentonite with two different mock communities and compared the obtained DNA yield and purity, the presence of contaminants and the community profile. Our findings suggest that both methods are equally viable, with the best choice depending on the specific requirements of the downstream analysis. However, it is crucial to maintain consistency in the chosen method, as comparing results becomes challenging, particularly in the presence of bentonite. In summary, our study emphasizes the significance of standardized DNA extraction methods and underscores the importance of validating these methods using appropriate controls when studying microbial communities with 16S rRNA amplicon sequencing, particularly in environments characterized by low biomass and clay-rich compositions. Additionally, slight modifications to one of the extraction methods can substantially enhance its efficiency.
Department of Microbiology University of Granada Granada Spain
Unit of Microbiology Belgian Nuclear Research Centre Mol Belgium
Zobrazit více v PubMed
Abellan‐Schneyder, I. , Matchado, M.S. , Reitmeier, S. , Sommer, A. , Sewald, Z. , Baumbach, J. et al. (2021) Primer, pipelines, parameters: issues in 16S rRNA gene sequencing. mSphere, 6, 1–22. Available from: 10.1128/msphere.01202-01220 PubMed DOI PMC
Ainsworth, T. , Krause, L. , Bridge, T. , Torda, G. , Raina, J.B. , Zakrzewski, M. et al. (2015) The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. The ISME Journal, 9, 2261–2274. PubMed PMC
Bachran, M. , Kluge, S. , Lopez‐Fernandez, M. & Cherkouk, A. (2019) Microbial diversity in an arid, naturally saline environment. Microbial Ecology, 78, 494–505. PubMed
Bartak, D. , Bedrníková, E. , Kašpar, V. , Říha, J. , Hlaváčková, V. , Večerník, P. et al. (2023) Survivability and proliferation of microorganisms in bentonite with implication to radioactive waste geological disposal: strong effect of temperature and negligible effect of pressure. World Journal of Microbiology and Biotechnology, 40, 41. PubMed PMC
Beaver, R.C. , Engel, K. , Binns, W.J. & Neufeld, J.D. (2022) Microbiology of barrier component analogues of a deep geological repository. Canadian Journal of Microbiology, 68, 73–90. PubMed
Burzan, N. , Murad Lima, R. , Frutschi, M. , Janowczyk, A. , Reddy, B. , Rance, A. et al. (2022) Growth and persistence of an aerobic microbial community in Wyoming Bentonite MX‐80 despite anoxic in situ conditions. Frontiers in Microbiology, 13, 1–12. PubMed PMC
Cai, P. , Huang, Q. , Zhu, J. , Jiang, D. , Zhou, X. , Rong, X. et al. (2007) Effects of low‐molecular‐weight organic ligands and phosphate on DNA adsorption by soil colloids and minerals. Colloids and Surfaces. B, Biointerfaces, 54, 53–59. PubMed
Callahan, B. (2018) Silva taxonomic training data formatted for DADA2 (Silva version 132). Zenodo. Available from: 10.5281/zenodo.1172782 DOI
Callahan, B.J. , McMurdie, P.J. , Rosen, M.J. , Han, A.W. , Johnson, A.J. & Holmes, S.P. (2016) DADA2: high‐resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581–583. PubMed PMC
Chi Fru, E. & Athar, R. (2008) In situ bacterial colonization of compacted bentonite under deep geological high‐level radioactive waste repository conditions. Applied Microbiology and Biotechnology, 79, 499–510. PubMed
Costea, P.I. , Zeller, G. , Sunagawa, S. , Pelletier, E. , Alberti, A. , Levenez, F. et al. (2017) Towards standards for human fecal sample processing in metagenomic studies. Nature Biotechnology, 35, 1069–1076. PubMed
Courtois, S. , Frostegård, A. , Göransson, P. , Depret, G. , Jeannin, P. & Simonet, P. (2001) Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environmental Microbiology, 3, 431–439. PubMed
Davis, N.M. , Proctor, D.M. , Holmes, S.P. , Relman, D.A. & Callahan, B.J. (2018) Simple statistical identification and removal of contaminant sequences in marker‐gene and metagenomics data. Microbiome, 6, 226. PubMed PMC
Delmont, T.O. , Robe, P. , Clark, I. , Simonet, P. & Vogel, T.M. (2011) Metagenomic comparison of direct and indirect soil DNA extraction approaches. Journal of Microbiological Methods, 86, 397–400. PubMed
Engel, K. , Coyotzi, S. , Vachon, M.A. , McKelvie, J.R. & Neufeld, J.D. (2019) Validating DNA extraction protocols for bentonite clay. mSphere, 4, 1–14. PubMed PMC
Engel, K. , Ford, S.E. , Coyotzi, S. , McKelvie, J. , Diomidis, N. , Slater, G. et al. (2019) Stability of microbial community profiles associated with compacted bentonite from the Grimsel underground research laboratory. mSphere, 4, e00601–e00619. PubMed PMC
Frostegård, A. , Courtois, S. , Ramisse, V. , Clerc, S. , Bernillon, D. , Le Gall, F. et al. (1999) Quantification of bias related to the extraction of DNA directly from soils. Applied and Environmental Microbiology, 65, 5409–5420. PubMed PMC
Haynes, H.M. , Pearce, C.I. , Boothman, C. & Lloyd, J.R. (2018) Response of bentonite microbial communities to stresses relevant to geodisposal of radioactive waste. Chemical Geology, 501, 58–67.
Högfors‐Rönnholm, E. , Christel, S. , Engblom, S. & Dopson, M. (2018) Indirect DNA extraction method suitable for acidic soil with high clay content. MethodsX, 5, 136–140. PubMed PMC
Holmsgaard, P.N. , Norman, A. , Hede, S.C. , Poulsen, P.H.B. , Al‐Soud, W.A. , Hansen, L.H. et al. (2011) Bias in bacterial diversity as a result of Nycodenz extraction from bulk soil. Soil Biology and Biochemistry, 43, 2152–2159.
Ikeda, S. , Tsurumaru, H. , Wakai, S. , Noritake, C. , Fujishiro, K. , Akasaka, M. et al. (2008) Evaluation of the effects of different additives in improving the DNA extraction yield and quality from andosol. Microbes and Environments, 23, 159–166. PubMed
Karst, S.M. , Dueholm, M.S. , McIlroy, S.J. , Kirkegaard, R.H. , Nielsen, P.H. & Albertsen, M. (2018) Retrieval of a million high‐quality, full‐length microbial 16S and 18S rRNA gene sequences without primer bias. Nature Biotechnology, 36, 190–195. PubMed
Kebschull, J.M. & Zador, A.M. (2015) Sources of PCR‐induced distortions in high‐throughput sequencing data sets. Nucleic Acids Research, 43, e143. PubMed PMC
Kennedy, K. , Hall, M.W. , Lynch, M.D.J. , Moreno‐Hagelsieb, G. & Neufeld, J.D. (2014) Evaluating bias of Illumina‐based bacterial 16S rRNA gene profiles. Applied and Environmental Microbiology, 80, 5717–5722. PubMed PMC
King, F. , Kolář, M. , Puigdomenech, I. , Pitkänen, P. & Lilja, C. (2021) Modeling microbial sulfate reduction and the consequences for corrosion of copper canisters. Materials and Corrosion, 72, 339–347.
Klindworth, A. , Pruesse, E. , Schweer, T. , Peplies, J. , Quast, C. & Horn, M. (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next‐generation sequencing‐based diversity studies. Nucleic Acids Research, 41, e1. PubMed PMC
Lever, M.A. , Torti, A. , Eickenbusch, P. , Michaud, A.B. , Šantl‐Temkiv, T. & Jørgensen, B.B. (2015) A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Frontiers in Microbiology, 6, 1–25. PubMed PMC
Lopez‐Fernandez, M. , Cherkouk, A. , Vilchez‐Vargas, R. , Jauregui, R. , Pieper, D. , Boon, N. et al. (2015) Bacterial diversity in bentonites, engineered barrier for deep geological disposal of radioactive wastes. Microbial Ecology, 70, 922–935. PubMed
Luna, G.M. , Dell'Anno, A. & Danovaro, R. (2006) DNA extraction procedure: a critical issue for bacterial diversity assessment in marine sediments. Environmental Microbiology, 8, 308–320. PubMed
Martin, M. (2011) Cutadapt removes adapter sequences from high‐throughput sequencing reads 2011, 17, 3.
McMurdie, P.J. & Holmes, S. (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8, e61217. PubMed PMC
Mijnendonckx, K. , Monsieurs, P. , Černá, K. , Hlaváčková, V. , Steinová, J. , Burzan, N. et al. (2021) Chapter 4⸺molecular techniques for understanding microbial abundance and activity in clay barriers used for geodisposal. In: Lloyd, J.R. & Cherkouk, A. (Eds.) The microbiology of nuclear waste disposal. Amsterdam, The Netherlands: Elsevier, pp. 71–96.
Oksanen, J. , Blanchet, F.G. , Friendly, M. , Kindt, R. , Legendre, P. , McGlinn, D. et al. (2020) Vegan: community ecology package. Available from: https://CRAN.R-project.org/package=vegan
Pedersen, K. , Motamedi, M. , Karnland, O. & Sandén, T. (2000) Mixing and sulphate‐reducing activity of bacteria in swelling, compacted bentonite clay under high‐level radioactive waste repository conditions. Journal of Applied Microbiology, 89, 1038–1047. PubMed
Pietramellara, G. , Franchi, M. , Gallori, E. & Nannipieri, P. (2001) Effect of molecular characteristics of DNA on its adsorption and binding on homoionic montmorillonite and kaolinite. Biology and Fertility of Soils, 33, 402–409.
Povedano‐Priego, C. , Jroundi, F. , Lopez‐Fernandez, M. , Shrestha, R. , Spanek, R. , Martín‐Sánchez, I. et al. (2021) Deciphering indigenous bacteria in compacted bentonite through a novel and efficient DNA extraction method: insights into biogeochemical processes within the deep geological disposal of nuclear waste concept. Journal of Hazardous Materials, 408, 124600. PubMed
Raynaud, X. & Nunan, N. (2014) Spatial ecology of bacteria at the microscale in soil. PLoS ONE, 9, e87217. PubMed PMC
Reasoner, D.J. & Geldreich, E.E. (1985) A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 49, 1–7. PubMed PMC
Romanowski, G. , Lorenz, M.G. & Wackernagel, W. (1991) Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Applied and Environmental Microbiology, 57, 1057–1061. PubMed PMC
Salter, S.J. , Cox, M.J. , Turek, E.M. , Calus, S.T. , Cookson, W.O. , Moffatt, M.F. et al. (2014) Reagent and laboratory contamination can critically impact sequence‐based microbiome analyses. BMC Biology, 12, 87. PubMed PMC
Schwartz, W. (1985) Postgate, J. R., the sulfate‐reducing bacteria (2nd edition) X + 208 S., 20 Abb., 4 Tab. University press, Cambridge 1983. US $ 39.50. Journal of Basic Microbiology, 25, 202.
Sellin, P. & Leupin, O.X. (2013) The use of clay as an engineered barrier in radioactive‐waste management⸺a review. Clays and Clay Minerals, 61, 477–498.
Spreckels, J.E. , Fernández‐Pato, A. , Kruk, M. , Kurilshikov, A. , Garmaeva, S. , Sinha, T. et al. (2023) Analysis of microbial composition and sharing in low‐biomass human milk samples: a comparison of DNA isolation and sequencing techniques. ISME Communications, 3, 116. PubMed PMC
Starke, R. , Pylro, V.S. & Morais, D.K. (2021) 16S rRNA gene copy number normalization does not provide more reliable conclusions in metataxonomic surveys. Microbial Ecology, 81, 535–539. PubMed PMC
Stone, W. , Kroukamp, O. , Moes, A. , McKelvie, J. , Korber, D.R. & Wolfaardt, G.M. (2016) Measuring microbial metabolism in atypical environments: bentonite in used nuclear fuel storage. Journal of Microbiological Methods, 120, 79–90. PubMed
Stroes‐Gascoyne, S. , Hamon, C.J. & Maak, P. (2011) Limits to the use of highly compacted bentonite as a deterrent for microbiologically influenced corrosion in a nuclear fuel waste repository. Physics and Chemistry of the Earth, Parts A/B/C, 36, 1630–1638.
Stroes‐Gascoyne, S. , Hamon, C.J. , Maak, P. & Russell, S. (2010) The effects of the physical properties of highly compacted smectitic clay (bentonite) on the culturability of indigenous microorganisms. Applied Clay Science, 47, 155–162.
Sudarshan, A.S. , Jolanda, K. & Susana, F. (2023) A tool to assess the mock community samples in 16S rRNA gene‐based microbiota profiling studies. Microbiome Research Reports, 2, 14. PubMed PMC
Takada‐Hoshino, Y. & Matsumoto, N. (2004) An improved DNA extraction method using skim milk from soils that strongly adsorb DNA. Microbes and Environments, 19, 13–19.
Vachon, M.A. , Engel, K. , Beaver, R.C. , Slater, G.F. , Binns, W.J. & Neufeld, J.D. (2021) Fifteen shades of clay: distinct microbial community profiles obtained from bentonite samples by cultivation and direct nucleic acid extraction. Scientific Reports, 11, 22349. PubMed PMC
Van Eesbeeck, V. , Props, R. , Mysara, M. , Petit, P.C.M. , Rivasseau, C. , Armengaud, J. et al. (2021) Cyclical patterns affect microbial dynamics in the water basin of a nuclear research reactor. Frontiers in Microbiology, 12, 744115. PubMed PMC
Zielinska, S. , Radkowski, P. , Blendowska, A. , Ludwig‐Galezowska, A. , Los, J.M. & Los, M. (2017) The choice of the DNA extraction method may influence the outcome of the soil microbial community structure analysis. Microbiology, 6, 1–11. PubMed PMC