Dissection of the Pre-Germinal Center B-Cell Maturation Pathway in Common Variable Immunodeficiency Based on Standardized Flow Cytometric EuroFlow Tools
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem
PubMed
33679693
PubMed Central
PMC7925888
DOI
10.3389/fimmu.2020.603972
Knihovny.cz E-zdroje
- Klíčová slova
- CVID, EuroFlow standardization, Pre-GC B-cell tube, expression markers, pre-GC maturation pathway,
- MeSH
- běžná variabilní imunodeficience diagnóza imunologie metabolismus MeSH
- CD antigeny analýza MeSH
- dospělí MeSH
- fenotyp MeSH
- imunofenotypizace * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- prekurzorové B-lymfoidní buňky imunologie metabolismus MeSH
- průtoková cytometrie * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- CD antigeny MeSH
INTRODUCTION: Common Variable Immunodeficiency (CVID) is characterized by defective antibody production and hypogammaglobulinemia. Flow cytometry immunophenotyping of blood lymphocytes has become of great relevance for the diagnosis and classification of CVID, due to an impaired differentiation of mature post-germinal-center (GC) class-switched memory B-cells (MBC) and severely decreased plasmablast/plasma cell (Pb) counts. Here, we investigated in detail the pre-GC B-cell maturation compartment in blood of CVID patients. METHODS: In this collaborative multicentric study the EuroFlow PID 8-color Pre-GC B-cell tube, standardized sample preparation procedures (SOPs) and innovative data analysis tools, were used to characterize the maturation profile of pre-GC B-cells in 100 CVID patients, vs 62 age-matched healthy donors (HD). RESULTS: The Pre-GC B-cell tube allowed identification within pre-GC B-cells of three subsets of maturation associated immature B-cells and three subpopulations of mature naïve B-lymphocytes. CVID patients showed overall reduced median absolute counts (vs HD) of the two more advanced stages of maturation of both CD5+ CD38+/++ CD21het CD24++ (2.7 vs 5.6 cells/µl, p=0.0004) and CD5+ CD38het CD21+ CD24+ (6.5 vs 17 cells/µl, p<0.0001) immature B cells (below normal HD levels in 22% and 37% of CVID patients). This was associated with an expansion of CD21-CD24- (6.1 vs 0.74 cells/µl, p<0.0001) and CD21-CD24++ (1.8 vs 0.4 cells/µl, p<0.0001) naïve B-cell counts above normal values in 73% and 94% cases, respectively. Additionally, reduced IgMD+ (21 vs 32 cells/µl, p=0.03) and IgMD- (4 vs 35 cells/µl, p<0.0001) MBC counts were found to be below normal values in 25% and 77% of CVID patients, respectively, always together with severely reduced/undetectable circulating blood pb. Comparison of the maturation pathway profile of pre-GC B cells in blood of CVID patients vs HD using EuroFlow software tools showed systematically altered patterns in CVID. These consisted of: i) a normally-appearing maturation pathway with altered levels of expression of >1 (CD38, CD5, CD19, CD21, CD24, and/or smIgM) phenotypic marker (57/88 patients; 65%) for a total of 3 distinct CVID patient profiles (group 1: 42/88 patients, 48%; group 2: 8/88, 9%; and group 3: 7/88, 8%) and ii) CVID patients with a clearly altered pre-GC B cell maturation pathway in blood (group 4: 31/88 cases, 35%). CONCLUSION: Our results show that maturation of pre-GC B-cells in blood of CVID is systematically altered with up to four distinctly altered maturation profiles. Further studies, are necessary to better understand the impact of such alterations on the post-GC defects and the clinical heterogeneity of CVID.
Clinical and Translation Research Program Cancer Research Centre Salamanca Spain
Department of Immunology Erasmus University Medical Center Rotterdam Netherlands
Department of Laboratory Medicine University Hospital Ghent Ghent Belgium
Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisboa Portugal
Zobrazit více v PubMed
Bonilla FA, Barlan I, Chapel H, Costa-Carvalho BT, Cunningham-Rundles C, de la Morena MT, et al. . International Consensus Document (ICON): Common Variable Immunodeficiency Disorders. J Allergy Clin Immunol Pract (2016) 4:38–59. 10.1016/j.jaip.2015.07.025 PubMed DOI PMC
Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, et al. . International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol (2018) 38(1):96–128. 10.1007/s10875-017-0464-9 PubMed DOI PMC
Bousfiha A, Jeddane l, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. . The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol (2018) 38(1):129–43. 10.1007/s10875-017-0465-8 PubMed DOI PMC
Odnoletkova I, Kindle G, Quinti I, Grimbacher B, Knerr V, Gathmann B, et al. . The burden of common variable immunodeficiency disorders: a retrospective analysis of the European Society for Immunodeficiency (ESID) registry data. Orphanet J Rare Dis (2018) 13(1):201. 10.1186/s13023-018-0941-0 PubMed DOI PMC
Chapel H, Lucas M, Lee M, Bjorkander J, Webster D, Grimbacher B, et al. . Common Variable immunodeficiency disorders: Division into distinct clinical phenotypes. Blood (2008) 112(2):277–86. 10.1182/blood-2007-11-124545 PubMed DOI
de Valles-Ibáñez G, Esteve-Sole A, Piquer M, González-Navarro A, Hernández-Rodríguez J, Laayouni H, et al. . Evaluating the genetics of common variable immunodeficiency: monogenetic model and beyond. Front Immunol (2018) 9:636. 10.3389/fimmu.2018.00636 PubMed DOI PMC
del Pino-Molina L, Rodríguez-Ubreva J, Torres Canizales J, Coronel-Díaz M, Kulis M, Martín-Subero JL, et al. . Impaired CpG Demethylation in Common Variable Immunodeficiency Associates With B Cell Phenotype and Proliferation Rate. Front Immunol (2019) 10:1–11. 10.3389/fimmu.2019.00878 PubMed DOI PMC
Wehr C, Kivioja T, Schmitt C, Ferry B, Witte T, Eren E, et al. . The EUROclass trial: Defining subgroups in common variable immunodeficiency. Blood (2008) 111(1):77–85. 10.1182/blood-2007-06-091744 PubMed DOI
Driessen GJ, Van Zelm MC, Van Hagen PM, Hartwig NG, Trip M, Warris A, et al. . B-cell replication history and somatic hypermutation status identify distinct pathophysiologic backgrounds in common variable immunodeficiency. Blood (2011) 118(26):6814–23. 10.1182/blood-2011-06-361881 PubMed DOI
Kalina T, Stuchlý J, Janda A, Hrušák O, Růžičková Š, Šedivá A, et al. . Profiling of polychromatic flow cytometry data on B-cells reveals patients’ clusters in common variable immunodeficiency. Cytom Part A (2009) 75(11):902–9. 10.1002/cyto.a.20801 PubMed DOI
Seidel MG, Kindle G, Gathmann B, Quinti I, Buckland M, van Montfrans J, et al. . The European Society for Immunodeficiencies (ESID) Registry Working Definitions for the Clinical Diagnosis of Inborn Errors of Immunity. J Allergy Clin Immunol Pract (2019) 7(6):1763–70. 10.1016/j.jaip.2019.02.004 PubMed DOI
Blanco E, Pérez-Andrés M, Arriba-Méndez S, Serrano C, Criado I, Del Pino-Molina L, et al. . Defects in memory B-cell and plasma cell subsets expressing different immunoglobulin-subclasses in patients with CVID and immunoglobulin subclass deficiencies. J Allergy Clin Immunol (2019) 144(3):809–24. 10.1016/j.jaci.2019.02.017 PubMed DOI
Gomes Ochtrop ML, Goldacker S, May AM, Rizzi M, Draeger R, Hauschke D, et al. . T and B lymphocyte abnormalities in bone marrow biopsies of common variable immunodeficiency. Blood (2011) 118(2):309–18. 10.1182/blood-2010-11-321695 PubMed DOI
Troilo A, Wehr C, Janowska I, Venhoff N, Thiel J, Rawluk J, et al. . Nonpermissive bone marrow environment impairs early B-cell development in common variable immunodeficiency. Blood (2020) 135(17):1452–7. 10.1182/blood.2019003855 PubMed DOI PMC
Anzilotti C, Kienzler AK, Lopez-Granados E, Gooding S, Davies B, Pandit H, et al. . Key stages of bone marrow B-cell maturation are defective in patients with common variable immunodeficiency disorders. J Allergy Clin Immunol (2015) 136(2):487–90. 10.1016/j.jaci.2014.12.1943 PubMed DOI
Quinti I, Keller B, Driessen G, Fisch P, Salzer U, Peter H-H, et al. . Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells. Proc Natl Acad Sci (2009) 106(32):13451–6. 10.1073/pnas.0901984106 PubMed DOI PMC
Wentink MWJ, Kalina T, Perez-Andres M, del Pino Molina L, IJspeert H, Kavelaars FG, et al. . Delineating Human B Cell Precursor Development With Genetically Identified PID Cases as a Model. Front Immunol (2019) 10:1–12. 10.3389/fimmu.2019.02680 PubMed DOI PMC
Pedreira CE, da Costa ES, Lecrevise Q, Grigore G, Fluxa R, Verde J, et al. . From big flow cytometry datasets to smart diagnostic strategies: The EuroFlow approach. J Immunol Methods (2019) 475:112631. 10.1016/j.jim.2019.07.003 PubMed DOI
Orfao A, Matarraz S, Pérez-andrés M, Almeida J, Teodosio C, Berkowska MA, et al. . Immunophenotypic dissection of normal hematopoiesis. J Immunol Methods (2019) 475:112684. 10.1016/j.jim.2019.112684 PubMed DOI
van Dongen JJM, van der Burg M, Kalina T, Perez-Andres M, Mejstrikova E, Vlkova M, et al. . EuroFlow-Based Flowcytometric Diagnostic Screening and Classification of Primary Immunodeficiencies of the Lymphoid System. Front Immunol (2019) 10:1–21. 10.3389/fimmu.2019.01271 PubMed DOI PMC
Kalina T, Flores-Montero J, Van Der Velden VHJ, Martin-Ayuso M, Böttcher S, Ritgen M, et al. . EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia (2012) 26(9):1986–2010. 10.1038/leu.2012.122 PubMed DOI PMC
Van Der Burg M, Kalina T, Perez-Andres M, Vlkova M, Lopez-Granados E, Blanco E, et al. . The EuroFlow PID orientation tube for flow cytometric diagnostic screening of primary immunodeficiencies of the lymphoid system. Front Immunol (2019) 10:246. 10.3389/fimmu.2019.00246 PubMed DOI PMC
Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, Garcia-Sanchez O, Bottcher S, et al. . Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia (2017) 31(10):2094–103. 10.1038/leu.2017.29 PubMed DOI PMC
Ameratunga R, Brewerton M, Slade C, Jordan A, Gillis D, Steele R, et al. . Comparison of diagnostic criteria for common variable immunodeficiency disorder. Front Immunol (2014) 5:415. 10.3389/fimmu.2014.00415 PubMed DOI PMC
Flores-montero J, Grigore G, Fluxá R, Hernández J, Fernandez P, Almeida J, et al. . EuroFlow Lymphoid Screening Tube (LST ) data base for automated identification of blood lymphocyte subsets. J Immunol Methods (2019) 475:112662. 10.1016/j.jim.2019.112662 PubMed DOI
Blanco E, Pérez-Andrés M, Arriba-Méndez S, Contreras-Sanfeliciano T, Criado I, Pelak O, et al. . Age-associated distribution of normal B-cell and plasma cell subsets in peripheral blood. J Allergy Clin Immunol (2018) 141:2208–2219.e16. 10.1016/j.jaci.2018.02.017 PubMed DOI
Warnatz K, Denz A, Dräger R, Braun M, Groth C, Wolff-Vorbeck G, et al. . Severe deficiency of switched memory B cells (CD27+IgM-IgD-) in subgroups of patients with common variable immunodeficiency: A new approach to classify a heterogeneous disease. Blood (2002) 99:1544–51. 10.1182/blood.V99.5.1544 PubMed DOI
Piqueras B, Lavenu-Bombled C, Galicier L, Bergeron-van der Cruyssen F, Mouthon L, Chevret S, et al. . Common variable immunodeficiency patient classification based on impaired B cell memory differentiation correlates with clinical aspects. J Clin Immunol (2003) 23(5):385–400. 10.1023/a:1025373601374 PubMed DOI
Pupovac A, Good-Jacobson KL. An antigen to remember: regulation of B cell memory in health and disease. Curr Opin Immunol (2017) 45:89–96. 10.1016/j.coi.2017.03.004 PubMed DOI PMC
Thorarinsdottir K, Camponeschi A, Gjertsson I, Mårtensson IL. CD21-/low B cells: A Snapshot of a Unique B Cell Subset in Health and Disease. Scand J Immunol (2015) 82(3):254–61. 10.1111/sji.12339 PubMed DOI
Proschan MA, Kottilil S, Fauci AS, Roby G, Arthos J, Malaspina A, et al. . Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med (2008) 205(8):1797–805. 10.1084/jem.20072683 PubMed DOI PMC
Rakhmanov M, Gutenberger S, Keller B, Schlesier M, Peter HH, Warnatz K. CD21low B cells in common variable immunodeficiency do not show defects in receptor editing, but resemble tissue-like memory B cells. Blood (2010) 116(18):3682–3. 10.1182/blood-2010-05-285585 PubMed DOI
Vlková M, Froňková E, Kanderová V, Janda A, Růžiková Š, Litzman J, et al. . Characterization of Lymphocyte Subsets in Patients with Common Variable Immunodeficiency Reveals Subsets of Naive Human B Cells Marked by CD24 Expression. J Immunol (2010) 185(11):6431–8. 10.4049/jimmunol.0903876 PubMed DOI
Kurosaki T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol (2015) 15:149–59. 10.1038/nri3802 PubMed DOI
Isnardi I, Ng Y, Menard L, Meyers G, Saadoun D, Srdanovic I, et al. . Complement receptor 2/CD21. Blood (2016) 115:5026–37. 10.1182/blood-2009-09-243071 PubMed DOI PMC
Thorarinsdottir K, Camponeschi A, Cavallini N, Grimsholm O, Jacobsson L, Gjertsson I, et al. . CD21–/low B cells in human blood are memory cells. Clin Exp Immunol (2016) 185:252–62. 10.1111/cei.12795 PubMed DOI PMC
Knox JJ, Myles A, Cancro MP. T-bet(+) memory B cells: Generation, function, and fate. Immunol Rev (2019) 288:149–60. 10.1111/imr.12736 PubMed DOI PMC
Unger S, Seidl M, van Schouwenburg P, Rakhmanov M, Bulashevska A, Frede N, et al. . The T(H)1 phenotype of follicular helper T cells indicates an IFN-γ-associated immune dysregulation in patients with CD21low common variable immunodeficiency. J Allergy Clin Immunol (2018) 141:730–40. 10.1016/j.jaci.2017.04.041 PubMed DOI
Thomas MD, Srivastava B, Allman D. Regulation of peripheral B cell maturation. Cell Immunol (2006) 239:92–102. 10.1016/j.cellimm.2006.04.007 PubMed DOI
Looney RJ, Palanichamy A, Sanz I, Barnard J, Owen T, Quach T, et al. . Novel Human Transitional B Cell Populations Revealed by B Cell Depletion Therapy. J Immunol (2009) 182:5982–93. 10.4049/jimmunol.0801859 PubMed DOI PMC
Yu LJ, Shaw PJ, Cuss AK, Cannons JL, Tangye SG, Nichols KE, et al. . Expansion of Functionally Immature Transitional B Cells Is Associated with Human-Immunodeficient States Characterized by Impaired Humoral Immunity. J Immunol (2014) 176:1506–16. 10.4049/jimmunol.176.3.1506 PubMed DOI
Benschop RJ, Brandl E, Chan AC, Cambier JC. Unique Signaling Properties of B Cell Antigen Receptor in Mature and Immature B Cells: Implications for Tolerance and Activation. J Immunol (2001) 167:4172–9. 10.4049/jimmunol.167.8.4172 PubMed DOI
Perez-Andres M, Paiva B, Nieto G, Caraux A, Schmitz A, Almeida J, et al. . Human peripheral blood B-Cell compartments: A crossroad in B-cell traffic. Cytom Part B Clin Cytom (2010) 78:47–60. 10.1002/cyto.b.20547 PubMed DOI
Lipsky PE, Fischer R, Chang S, Kuchen S, Lee J. Identification and Characterization of a Human CD5+ Pre-Naive B Cell Population. J Immunol (2009) 182:4116–26. 10.4049/jimmunol.0803391 PubMed DOI
Santner-Nanan B, Tangye SG, Nanan R, Wong M, Suryani S, Williams A, et al. . Differential expression of CD21 identifies developmentally and functionally distinct subsets of human transitional B cells. Blood (2009) 115(3):519–29. 10.1182/blood-2009-07-234799 PubMed DOI
Saxon A, Keld B, Guo B, Hart NST, Lyon L. B cells from a distinct subset of patients with common variable CD38 expression, and undergo enhanced apoptosis. Clin Exp Immunol (1995) 95:17–25. 10.1111/j.1365-2249.1995.tb06630.x PubMed DOI PMC
Liu Y, Chen GY, Zheng P. CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol (2009) 30(12):557–61. 10.1016/j.it.2009.09.006 PubMed DOI PMC
Wentink MWJ, van Zelm MC, van Dongen JJM, Warnatz K, van der Burg M. Deficiencies in the CD19 complex. Clin Immunol (2018) 195:82–7. 10.1016/j.clim.2018.07.017 PubMed DOI
Dalloul A. CD5: A safeguard against autoimmunity and a shield for cancer cells. Autoimmun Rev (2009) 8:349–53. 10.1016/j.autrev.2008.11.007 PubMed DOI
Artac H, Reisli I, Kara R, Pico-Knijnenburg I, Adin-Çinar S, Pekcan S, et al. . B-cell maturation and antibody responses in individuals carrying a mutated CD19 allele. Genes Immun (2010) 11(7):523–30. 10.1038/gene.2010.22 PubMed DOI
Warnatz K, Wehr C, Dräger S, Schmidt S, Eibel H, Schlesier M, et al. . Expansion of CD19(hi)CD21(lo/neg) B cells in common variable immunodeficiency (CVID) patients with autoimmune cytopenia. Immunobiology (2002) 206(5):502–13. 10.1078/0171-2985-00198 PubMed DOI
Picchianti Diamanti A, Rosado MM, Scarsella M, Ceccarelli S, Laganà B, D’Amelio R, et al. . Increased serum IgM, immunodeficiency, and autoimmunity: A clinical series. Int J Immunopathol Pharmacol (2015) 28(4):547–56. 10.1177/0394632015600231 PubMed DOI
Li X, Ding Y, Zi M, Sun L, Zhang W, Chen S, et al. . CD19, from bench to bedside. Immunol Lett (2017) 183:86–95. 10.1016/j.imlet.2017.01.010 PubMed DOI