Optimization and Evaluation of Poly(lactide-co-glycolide) Nanoparticles for Enhanced Cellular Uptake and Efficacy of Paclitaxel in the Treatment of Head and Neck Cancer
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
AJF201777
Aljalila foundation
PubMed
32872639
PubMed Central
PMC7559439
DOI
10.3390/pharmaceutics12090828
PII: pharmaceutics12090828
Knihovny.cz E-resources
- Keywords
- head and neck cancer, nanoparticles, paclitaxel, poly(lactide-co-glycolide), quality-by-design,
- Publication type
- Journal Article MeSH
The particle size (PS) and encapsulation efficiency (EE%) of drug-loaded nanoparticles (NPs) may inhibit their cellular uptake and lead to possible leakage of the drug into the systemic circulation at the tumor site. In this work, ultra-high paclitaxel-loaded poly(lactide-co-glycolide) NPs (PTX-PLGA-NPs) with ultra-small sizes were prepared and optimized by adopting the principles of quality by design (QbD) approach. The optimized PTX-PLGA-NPs showed ultra-small spherical particles of about 53 nm with EE% exceeding 90%, a relatively low polydispersity index (PDI) of 0.221, an effective surface charge of -10.1 mV, and a 10-fold increase in the in vitro drug release over 72 h relative to free drug. The cellular viability of pharynx carcinoma cells decreased by almost 50% in 24 h following treatment with optimized PTX-PLGA-NPs, compared to only 20% from the free drug. The intracellular uptake of PTX-PLGA-NPs was highly favored, and the antitumor activity of PTX was remarkably improved with a reduction in its half maximal inhibitory concentration (IC50), by almost 50% relative to free drug solution. These results suggest that the optimal critical formulation parameters, guided by QbD principles, could produce PLGA-NPs with remarkably high EE% and ultra-small PS, resulting in enhanced cellular uptake and efficacy of PTX.
See more in PubMed
Smirnova T., Adomako A., Locker J., Van Rooijen N., Prystowsky M.B., Segall J.E. In vivo invasion of head and neck squamous cell carcinoma cells does not require macrophages. Am. J. Pathol. 2011;178:2857–2865. doi: 10.1016/j.ajpath.2011.02.030. PubMed DOI PMC
Birkeland A.C., Swiecicki P.L., Brenner J.C., Shuman A.G. A review of drugs in development for the personalized treatment of head and neck squamous cell carcinoma. Expert Rev. Precis. Med. Drug Dev. 2016;1:379–385. doi: 10.1080/23808993.2016.1208050. PubMed DOI PMC
Li J., Gong C., Feng X., Zhou X., Xu X., Xie L., Wang R., Zhang D., Wang H., Deng P., et al. Biodegradable thermosensitive hydrogel for SAHA and DDP delivery: Therapeutic effects on oral squamous cell carcinoma xenografts. PLoS ONE. 2012;7:e33860. doi: 10.1371/journal.pone.0033860. PubMed DOI PMC
Du Y., Peyser N.D., Grandis J.R. Integration of molecular targeted therapy with radiation in head and neck cancer. Pharmacol. Ther. 2014;142:88–98. doi: 10.1016/j.pharmthera.2013.11.007. PubMed DOI
Guigay J., Fayette J., Mesia R., Lafond C., Saada-Bouzid E., Geoffrois L., Martin L., Cupissol D., Capitain O., Castanie H., et al. TPExtreme randomized trial: TPEx versus Extreme regimen in 1st line recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) J. Clin. Oncol. 2019;37:6002. doi: 10.1200/JCO.2019.37.15_suppl.6002. DOI
Xavier-Jr F.H., Gueutin C., Chacun H., Vauthier C., Egito E.S.T. Mucoadhesive paclitaxel-loaded chitosan-poly (isobutyl cyanoacrylate) core-shell nanocapsules containing copaiba oil designed for oral drug delivery. J. Drug Deliv. Sci. Technol. 2019;53:101194. doi: 10.1016/j.jddst.2019.101194. DOI
Khalifa A.M., Elsheikh M.A., Khalifa A.M., Elnaggar Y.S.R. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J. Control. Release. 2019;311–312:125–137. doi: 10.1016/j.jconrel.2019.08.034. PubMed DOI
Makadia H.K., Siegel S.J. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3:1377–1397. doi: 10.3390/polym3031377. PubMed DOI PMC
Montagner I.M., Banzato A., Zuccolotto G., Renier D., Campisi M., Bassi P.F., Zanovello P., Rosato A. Paclitaxel-hyaluronan hydrosoluble bioconjugate: Mechanism of action in human bladder cancer cell lines. Urol. Oncol. Semin. Orig. Investig. 2013;31:1261–1269. doi: 10.1016/j.urolonc.2012.01.005. PubMed DOI
Calleja P., Espuelas S., Corrales L., Pio R., Irache J.M. Pharmacokinetics and antitumor efficacy of paclitaxel-cyclodextrin complexes loaded in mucus-penetrating nanoparticles for oral administration. Nanomedicine. 2014;9:2109–2121. doi: 10.2217/nnm.13.199. PubMed DOI
Gupta U., Sharma S., Khan I., Gothwal A., Sharma A.K., Singh Y., Chourasia M.K., Kumar V. Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan. Int. J. Biol. Macromol. 2017;98:810–819. doi: 10.1016/j.ijbiomac.2017.02.030. PubMed DOI
Rivkin I., Cohen K., Koffler J., Melikhov D., Peer D., Margalit R. Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials. 2010;31:7106–7114. doi: 10.1016/j.biomaterials.2010.05.067. PubMed DOI
Meng Z., Lv Q., Lu J., Yao H., Lv X., Jiang F., Lu A., Zhang G. Prodrug strategies for paclitaxel. Int. J. Mol. Sci. 2016;17:796. doi: 10.3390/ijms17050796. PubMed DOI PMC
Sofias A.M., Dunne M., Storm G., Allen C. The battle of “nano” paclitaxel. Adv. Drug Deliv. Rev. 2017;122:20–30. doi: 10.1016/j.addr.2017.02.003. PubMed DOI
Xu Y., Asghar S., Li H., Chen M., Su Z., Xu Y., Ping Q., Xiao Y. Preparation of a paclitaxel-loaded cationic nanoemulsome and its biodistribution via direct intratumoral injection. Colloids Surfaces B Biointerfaces. 2016;142:81–88. doi: 10.1016/j.colsurfb.2016.02.046. PubMed DOI
Aluri S., Janib S.M., Mackay J.A. Environmentally responsive peptides as anticancer drug carriers. Adv. Drug Deliv. Rev. 2009;61:940–952. doi: 10.1016/j.addr.2009.07.002. PubMed DOI PMC
Shikanov A., Shikanov S., Vaisman B., Golenser J., Domb A.J. Paclitaxel tumor biodistribution and efficacy after intratumoral injection of a biodegradable extended release implant. Int. J. Pharm. 2008;358:114–120. doi: 10.1016/j.ijpharm.2008.02.028. PubMed DOI
Han X., Meng X., Wu Z., Wu Z., Qi X. Dynamic imine bond cross-linked self-healing thermosensitive hydrogels for sustained anticancer therapy via intratumoral injection. Mater. Sci. Eng. C. 2018;93:1064–1072. doi: 10.1016/j.msec.2018.08.064. PubMed DOI
Calderó G., Fornaguera C., Zadoina L., Dols-Perez A., Solans C. Design of parenteral MNP-loaded PLGA nanoparticles by a low-energy emulsification approach as theragnostic platforms for intravenous or intratumoral administration. Colloids Surf. B. 2017;160:535–542. doi: 10.1016/j.colsurfb.2017.09.060. PubMed DOI
Wang Q., Li C., Ren T., Chen S., Ye X., Guo H., He H., Zhang Y., Yin T., Liang X.J., et al. Poly(vinyl methyl ether/maleic anhydride)-Doped PEG-PLA Nanoparticles for Oral Paclitaxel Delivery to Improve Bioadhesive Efficiency. Mol. Pharm. 2017;14:3598–3608. doi: 10.1021/acs.molpharmaceut.7b00612. PubMed DOI
Ahmed M., Lukyanov A.N., Torchilin V., Tournier H., Schneider A.N., Goldberg S.N. Combined Radiofrequency Ablation and Adjuvant Liposomal Chemotherapy: Effect of Chemotherapeutic Agent, Nanoparticle Size, and Circulation Time. J. Vasc. Interv. Radiol. 2005;16:1365–1371. doi: 10.1097/01.RVI.0000175324.63304.25. PubMed DOI
Cho E.J., Holback H., Liu K.C., Abouelmagd S.A., Park J., Yeo Y. Nanoparticle characterization: State of the art, challenges, and emerging technologies. Mol. Pharm. 2013;10:2093–2110. doi: 10.1021/mp300697h. PubMed DOI PMC
Jin C., Bai L., Wu H., Song W., Guo G., Dou K. Cytotoxicity of paclitaxel incorporated in plga nanoparticles on hypoxic human tumor cells. Pharm. Res. 2009;26:1776–1784. doi: 10.1007/s11095-009-9889-z. PubMed DOI
Orunoğlu M., Kaffashi A., Pehlivan S.B., Şahin S., Söylemezoğlu F., Karlı-Oğuz K., Mut M. Effects of curcumin-loaded PLGA nanoparticles on the RG2 rat glioma model. Mater. Sci. Eng. C. 2017;78:32–38. doi: 10.1016/j.msec.2017.03.292. PubMed DOI
Danhier F., Ansorena E., Silva J.M., Coco R., Le Breton A., Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release. 2012;161:505–522. doi: 10.1016/j.jconrel.2012.01.043. PubMed DOI
Ding D., Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater. Sci. Eng. C. 2018;92:1041–1060. doi: 10.1016/j.msec.2017.12.036. PubMed DOI
Graves R.A., Pamujula S., Moiseyev R., Freeman T., Bostanian L.A., Mandal T.K. Effect of different ratios of high and low molecular weight PLGA blend on the characteristics of pentamidine microcapsules. Int. J. Pharm. 2004;270:251–262. doi: 10.1016/j.ijpharm.2003.10.019. PubMed DOI
Ansari M., Moradi S., Shahlaei M. A molecular dynamics simulation study on the mechanism of loading of gemcitabine and camptothecin in poly lactic-co-glycolic acid as a nano drug delivery system. J. Mol. Liq. 2018;269:110–118. doi: 10.1016/j.molliq.2018.08.032. DOI
Tóth T., Kiss É. A method for the prediction of drug content of poly(lactic-co-glycolic)acid drug carrier nanoparticles obtained by nanoprecipitation. J. Drug Deliv. Sci. Technol. 2019;50:42–47. doi: 10.1016/j.jddst.2019.01.010. DOI
Anderson J.M., Shive M.S. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 2012;64:72–82. doi: 10.1016/j.addr.2012.09.004. PubMed DOI
Si S., Li H., Han X. Sustained release olmesartan medoxomil loaded PLGA nanoparticles with improved oral bioavailability to treat hypertension. J. Drug Deliv. Sci. Technol. 2020;55:101422. doi: 10.1016/j.jddst.2019.101422. DOI
Almeida K.B., Ramos A.S., Nunes J.B.B., Silva B.O., Ferraz E.R.A., Fernandes A.S., Felzenszwalb I., Amaral A.C.F., Roullin V.G., Falcão D.Q. PLGA nanoparticles optimized by Box-Behnken for efficient encapsulation of therapeutic Cymbopogon citratus essential oil. Colloids Surfaces B Biointerfaces. 2019;181:935–942. doi: 10.1016/j.colsurfb.2019.06.010. PubMed DOI
Tefas L.R., Tomuţă I., Achim M., Vlase L. Development and optimization of quercetin-loaded plga nanoparticles by experimental design. Clujul Med. 2015;88:214–223. doi: 10.15386/cjmed-418. PubMed DOI PMC
Escalona-Rayo O., Fuentes-Vázquez P., Jardon-Xicotencatl S., García-Tovar C.G., Mendoza-Elvira S., Quintanar-Guerrero D. Rapamycin-loaded polysorbate 80-coated PLGA nanoparticles: Optimization of formulation variables and in vitro anti-glioma assessment. J. Drug Deliv. Sci. Technol. 2019;52:488–499. doi: 10.1016/j.jddst.2019.05.026. DOI
Fonseca C., Simões S., Gaspar R. Paclitaxel-loaded PLGA nanoparticles: Preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release. 2002;83:273–286. doi: 10.1016/S0168-3659(02)00212-2. PubMed DOI
Mu L., Feng S.S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release. 2003;86:33–48. doi: 10.1016/S0168-3659(02)00320-6. PubMed DOI
Abdelbary G., Haider M. In vitro characterization and growth inhibition effect of nanostructured lipid carriers for controlled delivery of methotrexate. Pharm. Dev. Technol. 2013;18:1159–1168. doi: 10.3109/10837450.2011.614251. PubMed DOI
Oliveira R.R., Carrião M.S., Pacheco M.T., Branquinho L.C., de Souza A.L.R., Bakuzis A.F., Lima E.M. Triggered release of paclitaxel from magnetic solid lipid nanoparticles by magnetic hyperthermia. Mater. Sci. Eng. C. 2018;92:547–553. doi: 10.1016/j.msec.2018.07.011. PubMed DOI
Yallapu M.M., Gupta B.K., Jaggi M., Chauhan S.C. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J. Colloid Interface Sci. 2010;351:19–29. doi: 10.1016/j.jcis.2010.05.022. PubMed DOI
Ahmed I.S., El Hosary R., Hassan M.A., Haider M., Abd-Rabo M.M. Efficacy and Safety Profiles of Oral Atorvastatin-Loaded Nanoparticles: Effect of Size Modulation on Biodistribution. Mol. Pharm. 2018;15:247–255. doi: 10.1021/acs.molpharmaceut.7b00856. PubMed DOI
Ahmed I.S., El-Hosary R., Shalaby S., Abd-Rabo M.M., Elkhateeb D.G., Nour S. PD-PK evaluation of freeze-dried atorvastatin calcium-loaded poly-ε-caprolactone nanoparticles. Int. J. Pharm. 2016;504:70–79. doi: 10.1016/j.ijpharm.2016.03.045. PubMed DOI
Ahmed I.S., Rashed H.M., Fayez H., Farouk F., Shamma R.N. Nanoparticle-mediated dual targeting: An approach for enhanced baicalin delivery to the liver. Pharmaceutics. 2020;12:107. doi: 10.3390/pharmaceutics12020107. PubMed DOI PMC
Haider M., Hassan M.A., Ahmed I.S., Shamma R. Thermogelling Platform for Baicalin Delivery for Versatile Biomedical Applications. Mol. Pharm. 2018;15:3478–3488. doi: 10.1021/acs.molpharmaceut.8b00480. PubMed DOI
Martínez Rivas C.J., Tarhini M., Badri W., Miladi K., Greige-Gerges H., Nazari Q.A., Galindo Rodríguez S.A., Román R.Á., Fessi H., Elaissari A. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 2017;532:66–81. doi: 10.1016/j.ijpharm.2017.08.064. PubMed DOI
Dinarvand R., Sepehri N., Manoochehri S., Rouhani H., Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int. J. Nanomed. 2011;6:877–895. doi: 10.2147/IJN.S18905. PubMed DOI PMC
Shang L., Nienhaus K., Nienhaus G.U. Engineered nanoparticles interacting with cells: Size matters. J. Nanobiotechnol. 2014;12:1–11. doi: 10.1186/1477-3155-12-5. PubMed DOI PMC
Bahari L.A.S., Hamishehkar H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; A comparative literature review. Adv. Pharm. Bull. 2016;6:143–151. doi: 10.15171/apb.2016.021. PubMed DOI PMC
Saez A., Guzmán M., Molpeceres J., Aberturas M.R. Freeze-drying of polycaprolactone and poly(D,L-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. Eur. J. Pharm. Biopharm. 2000;50:379–387. doi: 10.1016/S0939-6411(00)00125-9. PubMed DOI
He C., Yin L., Tang C., Yin C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials. 2012;33:8569–8578. doi: 10.1016/j.biomaterials.2012.07.063. PubMed DOI
Huang W., Zhang C. Tuning the Size of Poly(lactic-co-glycolic Acid) (PLGA) Nanoparticles Fabricated by Nanoprecipitation. Biotechnol. J. 2018;13 doi: 10.1002/biot.201700203. PubMed DOI PMC
Mora-Huertas C.E., Fessi H., Elaissari A. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods: Critical comparison. Adv. Colloid Interface Sci. 2011;163:90–122. doi: 10.1016/j.cis.2011.02.005. PubMed DOI
Chorny M., Fishbein I., Danenberg H.D., Golomb G. Lipophilic drug loaded nanospheres prepared by nanoprecipitation: Effect of formulation variables on size, drug recovery and release kinetics. J. Control. Release. 2002;83:389–400. doi: 10.1016/S0168-3659(02)00211-0. PubMed DOI
Menon J.U., Kona S., Wadajkar A.S., Desai F., Vadla A., Nguyen K.T. Effects of surfactants on the properties of PLGA nanoparticles. J. Biomed. Mater. Res. Part A. 2012;100:1998–2005. doi: 10.1002/jbm.a.34040. PubMed DOI
Pelikh O., Stahr P.L., Huang J., Gerst M., Scholz P., Dietrich H., Geisel N., Keck C.M. Nanocrystals for improved dermal drug delivery. Eur. J. Pharm. Biopharm. 2018;128:170–178. doi: 10.1016/j.ejpb.2018.04.020. PubMed DOI
Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., Khorasani S., Mozafari M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10:57. doi: 10.3390/pharmaceutics10020057. PubMed DOI PMC
Gaumet M., Vargas A., Gurny R., Delie F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 2008;69:1–9. doi: 10.1016/j.ejpb.2007.08.001. PubMed DOI
Shekhawat P., Pokharkar V. Risk assessment and QbD based optimization of an Eprosartan mesylate nanosuspension: In-vitro characterization, PAMPA and in-vivo assessment. Int. J. Pharm. 2019;567:118415. doi: 10.1016/j.ijpharm.2019.06.006. PubMed DOI
Huo S., Ma H., Huang K., Liu J., Wei T., Jin S., Zhang J., He S., Liang X.J. Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res. 2013;73:319–330. doi: 10.1158/0008-5472.CAN-12-2071. PubMed DOI
Asai D., Xu D., Liu W., Quiroz F.G., Callahan D.J., Zalutsky M.R., Craig S.L., Chilkoti A. Protein polymer hydrogels by in situ, rapid and reversible self-gelation. Biomaterials. 2012;33:5451–5458. doi: 10.1016/j.biomaterials.2012.03.083. PubMed DOI PMC
Wu I.Y., Bala S., Škalko-Basnet N., di Cagno M.P. Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes. Eur. J. Pharm. Sci. 2019;138:105026. doi: 10.1016/j.ejps.2019.105026. PubMed DOI
Termsarasab U., Cho H.-J., Kim D.H., Chong S., Chung S.-J., Shim C.-K., Moon H.T., Kim D.-D. Chitosan oligosaccharide–arachidic acid-based nanoparticles for anti-cancer drug delivery. Int. J. Pharm. 2013;441:373–380. doi: 10.1016/j.ijpharm.2012.11.018. PubMed DOI
Xu C.Z., Shi R.J., Chen D., Sun Y.Y., Wu Q.W., Wang T., Wang P.H. Potential biomarkers for paclitaxel sensitivity in hypopharynx cancer cell. Int. J. Clin. Exp. Pathol. 2013;6:2745–2756. PubMed PMC
Dreher M.R., Liu W., Michelich C.R., Dewhirst M.W., Yuan F., Chilkoti A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 2006;98:335–344. doi: 10.1093/jnci/djj070. PubMed DOI