Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma
Language English Country Denmark Media print-electronic
Document type Journal Article, Review
PubMed
32893900
PubMed Central
PMC7756301
DOI
10.1111/all.14582
Knihovny.cz E-resources
- Keywords
- allergen immunotherapy, allergic rhinitis, asthma phenotypes and endotypes, biomarkers, food allergy,
- MeSH
- Rhinitis, Allergic * diagnosis therapy MeSH
- Hypersensitivity * diagnosis therapy MeSH
- Dermatitis, Atopic * MeSH
- Biomarkers MeSH
- Asthma * diagnosis therapy MeSH
- Humans MeSH
- Food Hypersensitivity * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Biomarkers MeSH
Modern health care requires a proactive and individualized response to diseases, combining precision diagnosis and personalized treatment. Accordingly, the approach to patients with allergic diseases encompasses novel developments in the area of personalized medicine, disease phenotyping and endotyping, and the development and application of reliable biomarkers. A detailed clinical history and physical examination followed by the detection of IgE immunoreactivity against specific allergens still represents the state of the art. However, nowadays, further emphasis focuses on the optimization of diagnostic and therapeutic standards and a large number of studies have been investigating the biomarkers of allergic diseases, including asthma, atopic dermatitis, allergic rhinitis, food allergy, urticaria and anaphylaxis. Various biomarkers have been developed by omics technologies, some of which lead to a better classification of distinct phenotypes or endotypes. The introduction of biologicals to clinical practice increases the need for biomarkers for patient selection, prediction of outcomes and monitoring, to allow for an adequate choice of the duration of these costly and long-lasting therapies. Escalating healthcare costs together with questions about the efficacy of the current management of allergic diseases require further development of a biomarker-driven approach. Here, we review biomarkers in diagnosis and treatment of asthma, atopic dermatitis, allergic rhinitis, viral infections, chronic rhinosinusitis, food allergy, drug hypersensitivity and allergen immunotherapy with a special emphasis on specific IgE, the microbiome and the epithelial barrier. In addition, EAACI guidelines on biologicals are discussed within the perspective of biomarkers.
Allergy Asthma and Clinical Immunology Service Alfred Health Melbourne Vic Australia
Allergy Unit Regional University Hospital of Malaga IBIMA UMA ARADyAL Malaga Spain
CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
Department of Immunology University of Toronto Toronto ON Canada
Department of Otorhinolaryngology Amsterdam University Medical Centres Amsterdam The Netherlands
Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
Otorhinolaryngology Hospital The 1st Affiliated Hospital Sun Yat Sen University Guangzhou China
Sean N Parker Center for Allergy and Asthma Research Stanford University Stanford CA USA
Swiss Institute of Allergy and Asthma Research University Zurich Davos Switzerland
Translational Medicine Program Research Institute Hospital for Sick Children Toronto ON Canada
ZIEL Institute for Food and Health Technical University of Munich Freising Weihenstephan Germany
See more in PubMed
Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature. 2008;454(7203):445‐454. PubMed PMC
Samitas K, Carter A, Kariyawasam HH, Xanthou G. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: the one airway concept revisited. Allergy. 2018;73(5):993‐1002. PubMed
Barbarot S, Auziere S, Gadkari A, et al. Epidemiology of atopic dermatitis in adults: results from an international survey. Allergy. 2018;73(6):1284‐1293. PubMed
Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58(Suppl S29):1‐464. PubMed
De Meulder B, Lefaudeux D, Bansal AT, et al. A computational framework for complex disease stratification from multiple large‐scale datasets. BMC Syst Biol. 2018;12(1):60. PubMed PMC
Agache I, Sugita K, Morita H, Akdis M, Akdis CA. The complex type 2 endotype in allergy and asthma: from laboratory to bedside. Curr Allergy Asthma Rep. 2015;15(6):29. PubMed
Agache I, Rogozea L. Asthma biomarkers: do they bring precision medicine closer to the clinic? Allergy Asthma Immunol Res. 2017;9(6):466‐476. PubMed PMC
Diamant Z, Vijverberg S, Alving K, et al. Toward clinically applicable biomarkers for asthma: an EAACI position paper. Allergy. 2019;74(10):1835‐1851. PubMed
Agache I, Strasser DS, Klenk A, et al. Serum IL‐5 and IL‐13 consistently serve as the best predictors for the blood eosinophilia phenotype in adult asthmatics. Allergy. 2016;71(8):1192‐1202. PubMed
Yii ACA, Tay TR, Choo XN, Koh MSY, Tee AKH, Wang DY. Precision medicine in united airways disease: a "treatable traits" approach. Allergy. 2018;73(10):1964‐1978. PubMed
Bachert C, Zhang N. Medical algorithm: diagnosis and treatment of chronic rhinosinusitis. Allergy. 2020;75(1):240‐242. PubMed
Cardona V, Demoly P, Dreborg S, et al. Current practice of allergy diagnosis and the potential impact of regulation in Europe. Allergy. 2018;73(2):323‐327. PubMed
Diamant Z, Vijverberg SJ, Agache I, et al. Much ado about biologicals: highlights of the master class on biologicals, Prague, 2018. Allergy. 2019;74(4):837‐840. PubMed
Eguiluz‐Gracia I, Tay TR, Hew M, et al. Recent developments and highlights in biomarkers in allergic diseases and asthma. Allergy. 2018;73(12):2290‐2305. PubMed
Guerra ENS, Acevedo AC, de Toledo IP, Combes A, Chardin H. Do mucosal biomarkers reveal the immunological state associated with food allergy? Allergy. 2018;73(12):2392‐2394. PubMed
Chen LC, Tseng HM, Kuo ML, et al. A composite of exhaled LTB(4), LXA(4), FeNO, and FEV(1) as an "asthma classification ratio" characterizes childhood asthma. Allergy. 2018;73(3):627‐634. PubMed
Rodrigo‐Muñoz JM, Cañas JA, Sastre B, et al. Asthma diagnosis using integrated analysis of eosinophil microRNAs. Allergy. 2019;74(3):507‐517. PubMed
Siroux V, Boudier A, Nadif R, Lupinek C, Valenta R, Bousquet J. Association between asthma, rhinitis, and conjunctivitis multimorbidities with molecular IgE sensitization in adults. Allergy. 2019;74(4):824‐827. PubMed
Lunjani N, Satitsuksanoa P, Lukasik Z, Sokolowska M, Eiwegger T, O'Mahony L. Recent developments and highlights in mechanisms of allergic diseases: microbiome. Allergy. 2018;73(12):2314‐2327. PubMed
Su MW, Lin WC, Tsai CH, et al. Childhood asthma clusters reveal neutrophil‐predominant phenotype with distinct gene expression. Allergy. 2018;73(10):2024‐2032. PubMed
Dona I, Jurado‐Escobar R, Perkins JR, et al. Eicosanoid mediator profiles in different phenotypes of nonsteroidal anti‐inflammatory drug‐induced urticaria. Allergy. 2019;74(6):1135‐1144. PubMed
Liao B, Liu JX, Li ZY, et al. Multidimensional endotypes of chronic rhinosinusitis and their association with treatment outcomes. Allergy. 2018;73(7):1459‐1469. PubMed PMC
Asthma GIf. https://ginasthma.org/. accessed June 30, 2020
Seys SF, Quirce S, Agache I, et al. Severe asthma: Entering an era of new concepts and emerging therapies: highlights of the 4th international severe asthma forum, Madrid, 2018. Allergy. 2019;74(11):2244‐2248. PubMed
Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: moving toward precision medicine. J Allergy Clin Immunol. 2019;144(1):1‐12. PubMed
Fahy JV. Type 2 inflammation in asthma–present in most, absent in many. Nat Rev Immunol. 2015;15(1):57‐65. PubMed PMC
Fokkens WJ, Lund V, Bachert C, et al. EUFOREA consensus on biologics for CRSwNP with or without asthma. Allergy. 2019;74(12):2312‐2319. PubMed PMC
Kowalski ML, Agache I, Bavbek S, et al. Diagnosis and management of NSAID‐exacerbated respiratory disease (N‐ERD)‐a EAACI position paper. Allergy. 2019;74(1):28‐39. PubMed
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, et al. Comparing biologicals and small molecule drug therapies for chronic respiratory diseases: An EAACI taskforce on immunopharmacology position paper. Allergy. 2019;74(3):432‐448. PubMed
Woodruff PG, Boushey HA, Dolganov GM, et al. Genome‐wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci USA. 2007;104(40):15858‐15863. PubMed PMC
Alving K, Diamant Z, Lucas S, et al. Point‐of‐care biomarkers in asthma management: time to move forward. Allergy. 2020;75(4):995‐997. PubMed
Holguin F, Cardet JC, Chung KF, et al. Management of severe asthma: a European respiratory society/American thoracic society guideline. Eur Respir J. 2020;55(1):1900588 10.1183/13993003.00588-2019 PubMed DOI
Agache I, Akdis C, Akdis M, et al. EAACI Biologicals Guidelines ‐ Recommendations for severe asthma. Allergy. 2020. 10.1111/all.14425 PubMed DOI
Diamant Z, Boot JD, Mantzouranis E, Flohr R, Sterk PJ, Gerth van Wijk R. Biomarkers in asthma and allergic rhinitis. Pulm Pharmacol Ther. 2010;23(6):468‐481. PubMed
Calhoun WJ, Reed HE, Moest DR, Stevens CA. Enhanced superoxide production by alveolar macrophages and air‐space cells, airway inflammation, and alveolar macrophage density changes after segmental antigen bronchoprovocation in allergic subjects. Am Rev Respir Dis. 1992;145(2 Pt 1):317‐325. PubMed
Comhair SA, Bhathena PR, Dweik RA, Kavuru M, Erzurum SC. Rapid loss of superoxide dismutase activity during antigen‐induced asthmatic response. Lancet. 2000;355(9204):624. PubMed
Comhair SAA, Erzurum SC. Antioxidant responses to oxidant‐mediated lung diseases. Am J Physiol Lung Cell Mol Physiol. 2002;283(2):L246‐L255. PubMed
Aldakheel FM, Thomas PS, Bourke JE, Matheson MC, Dharmage SC, Lowe AJ. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review. Allergy. 2016;71(6):741‐757. PubMed
Thomas PS, Lowe AJ, Samarasinghe P, et al. Exhaled breath condensate in pediatric asthma: promising new advance or pouring cold water on a lot of hot air? A systematic review. Pediatr Pulmonol. 2013;48(5):419‐442. PubMed
McDowell PJ, Heaney LG. Different endotypes and phenotypes drive the heterogeneity in severe asthma. Allergy. 2020;75(2):302‐310. PubMed
Sze E, Bhalla A, Nair P. Mechanisms and therapeutic strategies for non‐T2 asthma. Allergy. 2020;75(2):311‐325. PubMed
Taylor SL, Leong LEX, Choo JM, et al. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. J Allergy Clin Immunol. 2018;141(1):94‐103. PubMed
Green BJ, Wiriyachaiporn S, Grainge C, et al. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma. PLoS One. 2014;9(6):e100645. PubMed PMC
Tliba O, Panettieri RA Jr. Paucigranulocytic asthma: uncoupling of airway obstruction from inflammation. J Allergy Clin Immunol. 2019;143(4):1287‐1294. PubMed PMC
Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716‐725. PubMed
Agusti A, Bafadhel M, Beasley R, et al. Precision medicine in airway diseases: moving to clinical practice. Eur Respir J. 2017;50(4):1701655. PubMed
Chung KF, Adcock IM. Precision medicine for the discovery of treatable mechanisms in severe asthma. Allergy. 2019;74(9):1649‐1659. PubMed
Simpson AJ, Hekking PP, Shaw DE, et al. Treatable traits in the European U‐BIOPRED adult asthma cohorts. Allergy. 2019;74(2):406‐411. PubMed PMC
Lefaudeux D, De Meulder B, Loza MJ, et al. U‐BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol. 2017;139(6):1797‐1807. PubMed
Schofield JPR, Burg D, Nicholas B, et al. Stratification of asthma phenotypes by airway proteomic signatures. J Allergy Clin Immunol. 2019;144(1):70‐82. PubMed
Ivanova O, Richards LB, Vijverberg SJ, et al. What did we learn from multiple omics studies in asthma? Allergy. 2019;74(11):2129‐2145. PubMed
Dunican EM, Elicker BM, Gierada DS, et al. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Investig. 2018;128(3):997‐1009. PubMed PMC
Erjefalt JS. Unravelling the complexity of tissue inflammation in uncontrolled and severe asthma. Curr Opin Pulm Med. 2019;25(1):79‐86. PubMed
Walter J, O'Mahony L. The importance of social networks‐An ecological and evolutionary framework to explain the role of microbes in the aetiology of allergy and asthma. Allergy. 2019;74(11):2248‐2251. PubMed
Savage JH, Lee‐Sarwar KA, Sordillo J, et al. A prospective microbiome‐wide association study of food sensitization and food allergy in early childhood. Allergy. 2018;73(1):145‐152. PubMed PMC
Kozik A, Huang YJ. Ecological interactions in asthma: from environment to microbiota and immune responses. Curr Opin Pulm Med. 2020;26(1):27‐32. PubMed PMC
Sokolowska M, Frei R, Lunjani N, Akdis CA, O'Mahony L. Microbiome and asthma. Asthma Res Pract. 2018;4:1. PubMed PMC
Sbihi H, Boutin RC, Cutler C, Suen M, Finlay BB, Turvey SE. Thinking bigger: How early‐life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease. Allergy. 2019;74(11):2103‐2115. PubMed
Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152. PubMed
Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187‐1191. PubMed PMC
Bannier M, van Best N, Bervoets L, et al. Gut microbiota in wheezing preschool children and the association with childhood asthma. Allergy. 2020;75(6):1473‐1476. PubMed PMC
Thorsen J, Rasmussen MA, Waage J, et al. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma. Nat Commun. 2019;10(1):5001 10.1038/s41467-019-12989-7 PubMed DOI PMC
Zhou Y, Jackson D, Bacharier LB, et al. The upper‐airway microbiota and loss of asthma control among asthmatic children. Nat Commun. 2019;10(1):5714. PubMed PMC
Huang YJ, Nariya S, Harris JM, et al. The airway microbiome in patients with severe asthma: associations with disease features and severity. J Allergy Clin Immunol. 2015;136(4):874‐884. PubMed PMC
Michalovich D, Rodriguez‐Perez N, Smolinska S, et al. Obesity and disease severity magnify disturbed microbiome‐immune interactions in asthma patients. Nat Commun. 2019;10(1):5711. PubMed PMC
Roduit C, Frei R, Ferstl R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019;74(4):799‐809. PubMed
Lewis G, Wang B, Shafiei Jahani P, et al. Dietary fiber‐induced microbial short chain fatty acids suppress ILC2‐dependent airway inflammation. Front Immunol. 2019;10:2051. PubMed PMC
Barcik W, Pugin B, Westermann P, et al. Histamine‐secreting microbes are increased in the gut of adult asthma patients. J Allergy Clin Immunol. 2016;138(5):1491‐1494. PubMed
Barcik W, Pugin B, Bresco MS, et al. Bacterial secretion of histamine within the gut influences immune responses within the lung. Allergy. 2019;74(5):899‐909. PubMed
Lee JJ, Kim SH, Lee MJ, et al. Different upper airway microbiome and their functional genes associated with asthma in young adults and elderly individuals. Allergy. 2019;74(4):709‐719. PubMed
Jobin C. Precision medicine using microbiota. Science. 2018;359(6371):32‐34. PubMed
Maurer M, Hawro T, Krause K, et al. Diagnosis and treatment of chronic inducible urticaria. Allergy. 2019;74(12):2550‐2553. PubMed
Bieber T, Traidl‐Hoffmann C, Schäppi G, Lauener R, Akdis C, Schmid‐Grendlmeier P. Unraveling the complexity of atopic dermatitis: The CK‐CARE approach toward precision medicine. Allergy. 2020;75(11):2936‐2938. PubMed
Thijs J, Krastev T, Weidinger S, et al. Biomarkers for atopic dermatitis: a systematic review and meta‐analysis. Curr Opin Allergy Clin Immunol. 2015;15(5):453‐460. PubMed
Venter C, Meyer RW, Nwaru BI, et al. EAACI position paper: Influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis. Allergy. 2019;74(8):1429‐1444. PubMed
Altunbulakli C, Reiger M, Neumann AU, et al. Relations between epidermal barrier dysregulation and Staphylococcus species‐dominated microbiome dysbiosis in patients with atopic dermatitis. J Allergy Clin Immunol. 2018;142(5):1643‐1647. PubMed
Moriwaki M, Iwamoto K, Niitsu Y, et al. Staphylococcus aureus from atopic dermatitis skin accumulates in the lysosomes of keratinocytes with induction of IL‐1α secretion via TLR9. Allergy. 2019;74(3):560‐571. PubMed
Reiger M, Traidl‐Hoffmann C, Neumann AU. The skin microbiome as a clinical biomarker in atopic eczema: promises, navigation, and pitfalls. J Allergy Clin Immunol. 2020;145(1):93‐96. PubMed
Gokkaya M, Damialis A, Nussbaumer T, et al. Defining biomarkers to predict symptoms in subjects with and without allergy under natural pollen exposure. J Allergy Clin Immunol. 2020;146(3):583‐594. PubMed
Gonzalez T, Stevens ML, Baatrebek Kyzy A, et al. Biofilm propensity of Staphylococcus aureus skin isolates is associated with increased atopic dermatitis severity and barrier dysfunction in the MPAACH pediatric cohort. Allergy. 2020. 10.1111/all.14489 PubMed DOI PMC
Hülpüsch C, Tremmel K, Hammel G, et al. Skin pH‐dependent Staphylococcus aureus abundance as predictor for increasing atopic dermatitis severity. Allergy. 2020. 10.1111/all.14461 PubMed DOI
Vitte J, Amadei L, Gouitaa M, et al. Paired acute‐baseline serum tryptase levels in perioperative anaphylaxis: an observational study. Allergy. 2019;74(6):1157‐1165. PubMed
Izuhara K, Nunomura S, Nanri Y, Ono J, Takai M, Kawaguchi A. Periostin: an emerging biomarker for allergic diseases. Allergy. 2019;74(11):2116‐2128. PubMed
Ando N, Nakamura Y, Ishimaru K, et al. Allergen‐specific basophil reactivity exhibits daily variations in seasonal allergic rhinitis. Allergy. 2015;70(3):319‐322. PubMed PMC
Zhong H, Fan XL, Yu QN, et al. Increased innate type 2 immune response in house dust mite‐allergic patients with allergic rhinitis. Clin Immunol. 2017;183:293‐299. PubMed
Dhariwal J, Cameron A, Trujillo‐Torralbo MB, et al. Mucosal type 2 innate lymphoid cells are a key component of the allergic response to aeroallergens. Am J Respir Crit Care Med. 2017;195(12):1586‐1596. PubMed PMC
Yu QN, Guo YB, Li X, et al. ILC2 frequency and activity are inhibited by glucocorticoid treatment via STAT pathway in patients with asthma. Allergy. 2018;73(9):1860‐1870. PubMed PMC
Tojima I, Matsumoto K, Kikuoka H, et al. Evidence for the induction of Th2 inflammation by group 2 innate lymphoid cells in response to prostaglandin D2 and cysteinyl leukotrienes in allergic rhinitis. Allergy. 2019;74(12):2417‐2426. PubMed
Iinuma T, Okamoto Y, Morimoto Y, et al. Pathogenicity of memory Th2 cells is linked to stage of allergic rhinitis. Allergy. 2018;73(2):479‐489. PubMed
North ML, Jones MJ, MacIsaac JL, et al. Blood and nasal epigenetics correlate with allergic rhinitis symptom development in the environmental exposure unit. Allergy. 2018;73(1):196‐205. PubMed
Cardenas A, Sordillo JE, Rifas‐Shiman SL, et al. The nasal methylome as a biomarker of asthma and airway inflammation in children. Nat Commun. 2019;10(1):3095. PubMed PMC
Panganiban RP, Wang Y, Howrylak J, et al. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J Allergy Clin Immunol. 2016;137(5):1423‐1432. PubMed
Panganiban RP, Lambert KA, Hsu MH, Laryea Z, Ishmael FT. Isolation and profiling of plasma microRNAs: biomarkers for asthma and allergic rhinitis. Methods. 2019;152:48‐54. PubMed
Ma GC, Wang TS, Wang J, Ma ZJ, Pu SB. Serum metabolomics study of patients with allergic rhinitis. Biomed Chromatogr. 2020;34(3):e4739 10.1002/bmc.4739 PubMed DOI
Choi GS, Shin SY, Kim JH, et al. Serum lactoferrin level as a serologic biomarker for allergic rhinitis. Clin Exp Allergy. 2010;40(3):403‐410. PubMed
Eguiluz‐Gracia I, Testera‐Montes A, Gonzalez M, et al. Safety and reproducibility of nasal allergen challenge. Allergy. 2019;74(6):1125‐1134. PubMed
Eguiluz‐Gracia I, Testera‐Montes A, Salas M, et al. Comparison of diagnostic accuracy of acoustic rhinometry and symptoms score for nasal allergen challenge monitoring. Allergy. 2020. 10.1111/all.14499 PubMed DOI
Gomez E, Campo P, Rondon C, et al. Role of the basophil activation test in the diagnosis of local allergic rhinitis. J Allergy Clin Immunol. 2013;132(4):975‐976. PubMed
Campo P, Rondon C, Gould HJ, Barrionuevo E, Gevaert P, Blanca M. Local IgE in non‐allergic rhinitis. Clin Exp Allergy. 2015;45(5):872‐881. PubMed
Duarte Ferreira R, Ornelas C, Silva S, et al. Contribution of in vivo and in vitro testing for the diagnosis of local allergic rhinitis. J Investig Allergol Clin Immunol. 2019;29(1):46‐48. PubMed
Eguiluz‐Gracia I, Fernandez‐Santamaria R, Testera‐Montes A, et al. Coexistence of nasal reactivity to allergens with and without IgE sensitization in patients with allergic rhinitis. Allergy. 2020;75(7):1689‐1698. PubMed
Bousquet J, Pfaar O, Togias A, et al. 2019 ARIA Care pathways for allergen immunotherapy. Allergy. 2019;74(11):2087‐2102. PubMed
Reitsma S, Subramaniam S, Fokkens WWJ, Wang Y. Recent developments and highlights in rhinitis and allergen immunotherapy. Allergy. 2018;73(12):2306‐2313. PubMed
Kortekaas Krohn I, Callebaut I, Alpizar YA, et al. MP29‐02 reduces nasal hyperreactivity and nasal mediators in patients with house dust mite‐allergic rhinitis. Allergy. 2018;73(5):1084‐1093. PubMed
Rittchen S, Heinemann A. Therapeutic potential of hematopoietic prostaglandin D2 synthase in allergic inflammation. Cells. 2019;8(6):619. PubMed PMC
Okubo K, Hashiguchi K, Takeda T, et al. A randomized controlled phase II clinical trial comparing ONO‐4053, a novel DP1 antagonist, with a leukotriene receptor antagonist pranlukast in patients with seasonal allergic rhinitis. Allergy. 2017;72(10):1565‐1575. PubMed PMC
Meng Y, Wang C, Zhang L. Recent developments and highlights in allergic rhinitis. Allergy. 2019;74(12):2320‐2328. PubMed
Eyerich S, Metz M, Bossios A, Eyerich K. New biological treatments for asthma and skin allergies. Allergy. 2020;75(3):546‐560. PubMed
Mukherjee M, Bakakos P, Loukides S. New paradigm in asthma management: switching between biologics! Allergy. 2020;75(4):743‐745. PubMed
Tsabouri S, Tseretopoulou X, Priftis K, Ntzani EE. Omalizumab for the treatment of inadequately controlled allergic rhinitis: a systematic review and meta‐analysis of randomized clinical trials. J Allergy Clin Immunol Pract. 2014;2(3):332‐340. PubMed
Kopp MV, Hamelmann E, Bendiks M, et al. Transient impact of omalizumab in pollen allergic patients undergoing specific immunotherapy. Pediatr Allergy Immunol. 2013;24(5):427‐433. PubMed
Weinstein SF, Katial R, Jayawardena S, et al. Efficacy and safety of dupilumab in perennial allergic rhinitis and comorbid asthma. J Allergy Clin Immunol. 2018;142(1):171‐177. PubMed
Breiteneder H, Diamant Z, Eiwegger T, et al. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy. 2019;74(12):2293‐2311. PubMed PMC
Murray CS, Poletti G, Kebadze T, et al. Study of modifiable risk factors for asthma exacerbations: virus infection and allergen exposure increase the risk of asthma hospital admissions in children. Thorax. 2006;61(5):376‐382. PubMed PMC
Akbarshahi H, Menzel M, Ramu S, Mahmutovic Persson I, Bjermer L, Uller L. House dust mite impairs antiviral response in asthma exacerbation models through its effects on TLR3. Allergy. 2018;73(5):1053‐1063. PubMed
Oliver BG, Robinson P, Peters M, Black J. Viral infections and asthma: an inflammatory interface? Eur Respir J. 2014;44(6):1666‐1681. PubMed
Johnston NW, Johnston SL, Duncan JM, et al. The September epidemic of asthma exacerbations in children: a search for etiology. J Allergy Clin Immunol. 2005;115(1):132‐138. PubMed PMC
Hasegawa K, Hoptay CE, Harmon B, et al. Association of type 2 cytokines in severe rhinovirus bronchiolitis during infancy with risk of developing asthma: a multicenter prospective study. Allergy. 2019;74(7):1374‐1377. PubMed PMC
Globinska A, Pawelczyk M, Piechota‐Polanczyk A, et al. Impaired virus replication and decreased innate immune responses to viral infections in nasal epithelial cells from patients with allergic rhinitis. Clin Exp Immunol. 2017;187(1):100‐112. PubMed PMC
Jeon YJ, Lim JH, An S, et al. Type III interferons are critical host factors that determine susceptibility to Influenza A viral infection in allergic nasal mucosa. Clin Exp Allergy. 2018;48(3):253‐265. PubMed
Gilles S, Blume C, Wimmer M, et al. Pollen exposure weakens innate defense against respiratory viruses. Allergy. 2020;75(3):576‐587. PubMed
Flayer CH, Haczku A. The Th2 gene cluster unraveled: role of RHS6. Allergy. 2017;72(5):679‐681. PubMed PMC
Hong HY, Chen FH, Sun YQ, et al. Local IL‐25 contributes to Th2‐biased inflammatory profiles in nasal polyps. Allergy. 2018;73(2):459‐469. PubMed
Tan KS, Andiappan AK, Lee B, et al. RNA sequencing of H3N2 influenza virus‐infected human nasal epithelial cells from multiple subjects reveals molecular pathways associated with tissue injury and complications. Cells. 2019;8(9):986. PubMed PMC
Roan F, Obata‐Ninomiya K, Ziegler SF. Epithelial cell‐derived cytokines: more than just signaling the alarm. J Clin Investig. 2019;129(4):1441‐1451. PubMed PMC
Tan KS, Ong HH, Yan Y, et al. In vitro model of fully differentiated human nasal epithelial cells infected with rhinovirus reveals epithelium‐initiated immune responses. J Infect Dis. 2018;217(6):906‐915. PubMed
Becker Y. Respiratory syncytial virus (RSV) evades the human adaptive immune system by skewing the Th1/Th2 cytokine balance toward increased levels of Th2 cytokines and IgE, markers of allergy–a review. Virus Genes. 2006;33(2):235‐252. PubMed
Malinczak CA, Rasky AJ, Fonseca W, et al. Upregulation of H3K27 demethylase KDM6 during respiratory syncytial virus infection enhances proinflammatory responses and immunopathology. J Immunol. 2020;204(1):159‐168. PubMed PMC
Scanlon ST, McKenzie AN. Type 2 innate lymphoid cells: new players in asthma and allergy. Curr Opin Immunol. 2012;24(6):707‐712. PubMed
Han JJ, Goldsmith AM, Hong JY, Sajjan U, Hershenson MB. Rhinovirus induces the expression of thymic stromal lymphopoietin in human airway epithelial cells. Am J Respir Crit Care Med. 2012;185:A6875.
Beale J, Jayaraman A, Jackson DJ, et al. Rhinovirus‐induced IL‐25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci Transl Med. 2014;6(256):256ra134. PubMed PMC
Shaw JL, Fakhri S, Citardi MJ, et al. IL‐33‐responsive innate lymphoid cells are an important source of IL‐13 in chronic rhinosinusitis with nasal polyps. Am J Respir Crit Care Med. 2013;188(4):432‐439. PubMed PMC
Jackson DJ, Makrinioti H, Rana BM, et al. IL‐33‐dependent type 2 inflammation during rhinovirus‐induced asthma exacerbations in vivo. Am J Respir Crit Care Med. 2014;190(12):1373‐1382. PubMed PMC
Bartemes KR, Kephart GM, Fox SJ, Kita H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol. 2014;134(3):671‐678. PubMed PMC
Tian T, Zi X, Peng Y, et al. H3N2 influenza virus infection enhances oncostatin M expression in human nasal epithelium. Exp Cell Res. 2018;371(2):322‐329. PubMed
Li L, Chong HC, Ng SY, et al. Angiopoietin‐like 4 increases pulmonary tissue leakiness and damage during influenza pneumonia. Cell Rep. 2015;10(5):654‐663. PubMed PMC
Taka S, Tzani‐Tzanopoulou P, Wanstall H, Papadopoulos NG. MicroRNAs in asthma and respiratory infections: identifying common pathways. Allergy Asthma Immunol Res. 2020;12(1):4‐23. PubMed PMC
Tiwari BS, Belenghi B, Levine A. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol. 2002;128(4):1271‐1281. PubMed PMC
Aizawa H, Koarai A, Shishikura Y, et al. Oxidative stress enhances the expression of IL‐33 in human airway epithelial cells. Respir Res. 2018;19(1):52. PubMed PMC
Manji J, Thamboo A, Tacey M, Garnis C, Chadha NK. The presence of Interleukin‐13 in nasal lavage may be a predictor of nasal polyposis in pediatric patients with cystic fibrosis. Rhinology. 2018;56(3):261‐267. PubMed
Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS‐24 and LIBERTY NP SINUS‐52): results from two multicentre, randomised, double‐blind, placebo‐controlled, parallel‐group phase 3 trials. Lancet. 2019;394(10209):1638‐1650. PubMed
Bachert C, Sousa AR, Lund VJ, et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: randomized trial. J Allergy Clin Immunol. 2017;140(4):1024‐1031. PubMed
Bachert C, Zinreich SJ, Hellings PW, et al. Dupilumab reduces opacification across all sinuses and related symptoms in patients with CRSwNP. Rhinology. 2020;58(1):10‐17. PubMed
Tomassen P, Vandeplas G, Van Zele T, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016;137(5):1449‐1456. PubMed
Fokkens WJ, Reitsma S. Medical algorithms: management of chronic rhinosinusitis. Allergy. 2019;74(7):1415‐1416. PubMed
Xu X, Ong YK, Wang Y. Novel findings in immunopathophysiology of chronic rhinosinusitis and their role in a model of precision medicine. Allergy. 2020;75(4):769‐780. PubMed
Arebro J, Drakskog C, Winqvist O, Bachert C, Kumlien Georen S, Cardell LO. Subsetting reveals CD16(high) CD62L(dim) neutrophils in chronic rhinosinusitis with nasal polyps. Allergy. 2019;74(12):2499‐2501. PubMed
Succar EF, Li P, Ely KA, Chowdhury NI, Chandra RK, Turner JH. Neutrophils are underrecognized contributors to inflammatory burden and quality of life in chronic rhinosinusitis. Allergy. 2020;75(3):713‐716. PubMed
Jonstam K, Westman M, Holtappels G, Holweg CTJ, Bachert C. Serum periostin, IgE, and SE‐IgE can be used as biomarkers to identify moderate to severe chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2017;140(6):1705‐1708. PubMed
Zhang Y, Derycke L, Holtappels G, et al. Th2 cytokines orchestrate the secretion of MUC5AC and MUC5B in IL‐5‐positive chronic rhinosinusitis with nasal polyps. Allergy. 2019;74(1):131‐140. PubMed
Ogasawara N, Klingler AI, Tan BK, et al. Epithelial activators of type 2 inflammation: Elevation of thymic stromal lymphopoietin, but not IL‐25 or IL‐33, in chronic rhinosinusitis with nasal polyps in Chicago. Illinois. Allergy. 2018;73(11):2251‐2254. PubMed PMC
Rouyar A, Classe M, Gorski R, et al. Type 2/Th2‐driven inflammation impairs olfactory sensory neurogenesis in mouse chronic rhinosinusitis model. Allergy. 2019;74(3):549‐559. PubMed PMC
Rimmer J, Hellings P, Lund VJ, et al. European position paper on diagnostic tools in rhinology. Rhinology. 2019;57(Suppl S28):1‐41. PubMed
Oakley GM, Christensen JM, Sacks R, Earls P, Harvey RJ. Characteristics of macrolide responders in persistent post‐surgical rhinosinusitis. Rhinology. 2018;56(2):111‐117. PubMed
Bidder T, Sahota J, Rennie C, Lund VJ, Robinson DS, Kariyawasam HH. Omalizumab treats chronic rhinosinusitis with nasal polyps and asthma together‐a real life study. Rhinology. 2018;56(1):42‐45. PubMed
Jonstam K, Swanson BN, Mannent LP, et al. Dupilumab reduces local type 2 pro‐inflammatory biomarkers in chronic rhinosinusitis with nasal polyposis. Allergy. 2019;74(4):743‐752. PubMed PMC
Tsetsos N, Goudakos JK, Daskalakis D, Konstantinidis I, Markou K. Monoclonal antibodies for the treatment of chronic rhinosinusitis with nasal polyposis: a systematic review. Rhinology. 2018;56(1):11‐21. PubMed
Castan L, Bogh KL, Maryniak NZ, et al. Overview of in vivo and ex vivo endpoints in murine food allergy models: suitable for evaluation of the sensitizing capacity of novel proteins? Allergy. 2020;75(2):289‐301. PubMed PMC
Eiwegger T, Hung L, San Diego KE, O'Mahony L, Upton J. Recent developments and highlights in food allergy. Allergy. 2019;74(12):2355‐2367. PubMed
Ponce M, Diesner SC, Szepfalusi Z, Eiwegger T. Markers of tolerance development to food allergens. Allergy. 2016;71(10):1393‐1404. PubMed
Ashley SE, Tan HT, Vuillermin P, et al. The skin barrier function gene SPINK5 is associated with challenge‐proven IgE‐mediated food allergy in infants. Allergy. 2017;72(9):1356‐1364. PubMed
Tan HT, Hagner S, Ruchti F, et al. Tight junction, mucin, and inflammasome‐related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy. 2019;74(2):294‐307. PubMed
Leung DYM, Calatroni A, Zaramela LS, et al. The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Sci Transl Med. 2019;11(480):eaav2685 10.1126/scitranslmed.aav2685 PubMed DOI PMC
Goleva E, Berdyshev E, Leung DY. Epithelial barrier repair and prevention of allergy. J Clin Investig. 2019;129(4):1463‐1474. PubMed PMC
van Ginkel CD, Flokstra‐de Blok BM, Kollen BJ, Kukler J, Koppelman GH, Dubois AE. Loss‐of‐function variants of the filaggrin gene are associated with clinical reactivity to foods. Allergy. 2015;70(4):461‐464. PubMed
Suaini NHA, Wang Y, Soriano VX, et al. Genetic determinants of paediatric food allergy: a systematic review. Allergy. 2019;74(9):1631‐1648. PubMed
Kivisto JE, Clarke A, Dery A, et al. Genetic and environmental susceptibility to food allergy in a registry of twins. J Allergy Clin Immunol Pract. 2019;7(8):2916‐2918. PubMed
Marenholz I, Grosche S, Kalb B, et al. Genome‐wide association study identifies the SERPINB gene cluster as a susceptibility locus for food allergy. Nat Commun. 2017;8(1):1056. PubMed PMC
Do AN, Watson CT, Cohain AT, et al. Dual transcriptomic and epigenomic study of reaction severity in peanut‐allergic children. J Allergy Clin Immunol. 2020;145(4):1219‐1230. PubMed PMC
Mondoulet L, Dioszeghy V, Busato F, et al. Gata3 hypermethylation and Foxp3 hypomethylation are associated with sustained protection and bystander effect following epicutaneous immunotherapy in peanut‐sensitized mice. Allergy. 2019;74(1):152‐164. PubMed PMC
D'Argenio V, Del Monaco V, Paparo L, et al. Altered miR‐193a‐5p expression in children with cow's milk allergy. Allergy. 2018;73(2):379‐386. PubMed
Ruffner MA, Song L, Maurer K, et al. Toll‐like receptor 2 stimulation augments esophageal barrier integrity. Allergy. 2019;74(12):2449‐2460. PubMed PMC
Rahrig S, Dettmann JM, Brauns B, et al. Transient epidermal barrier deficiency and lowered allergic threshold in filaggrin‐hornerin (FlgHrnr(‐/‐) ) double‐deficient mice. Allergy. 2019;74(7):1327‐1339. PubMed
Mitamura Y, Nunomura S, Nanri Y, et al. The IL‐13/periostin/IL‐24 pathway causes epidermal barrier dysfunction in allergic skin inflammation. Allergy. 2018;73(9):1881‐1891. PubMed
Rinaldi AO, Morita H, Wawrzyniak P, et al. Direct assessment of skin epithelial barrier by electrical impedance spectroscopy. Allergy. 2019;74(10):1934‐1944. PubMed
Chauveau A, Dalphin ML, Mauny F, et al. Skin prick tests and specific IgE in 10‐year‐old children: agreement and association with allergic diseases. Allergy. 2017;72(9):1365‐1373. PubMed
Flinterman AE, Knol EF, Lencer DA, et al. Peanut epitopes for IgE and IgG4 in peanut‐sensitized children in relation to severity of peanut allergy. J Allergy Clin Immunol. 2008;121(3):737‐743. PubMed
Caubet JC, Lin J, Ahrens B, et al. Natural tolerance development in cow's milk allergic children: IgE and IgG4 epitope binding. Allergy. 2017;72(11):1677‐1685. PubMed
Cerecedo I, Zamora J, Shreffler WG, et al. Mapping of the IgE and IgG4 sequential epitopes of milk allergens with a peptide microarray‐based immunoassay. J Allergy Clin Immunol. 2008;122(3):589‐594. PubMed
Sackesen C, Suarez‐Farinas M, Silva R, et al. A new Luminex‐based peptide assay to identify reactivity to baked, fermented, and whole milk. Allergy. 2019;74(2):327‐336. PubMed
Suprun M, Getts R, Raghunathan R, et al. Novel bead‐based epitope assay is a sensitive and reliable tool for profiling epitope‐specific antibody repertoire in food allergy. Sci Rep. 2019;9(1):18425. PubMed PMC
Suarez‐Farinas M, Suprun M, Chang HL, et al. Predicting development of sustained unresponsiveness to milk oral immunotherapy using epitope‐specific antibody binding profiles. J Allergy Clin Immunol. 2019;143(3):1038‐1046. PubMed PMC
Monino‐Romero S, Lexmond WS, Singer J, et al. Soluble FcvarepsilonRI: a biomarker for IgE‐mediated diseases. Allergy. 2019;74(7):1381‐1384. PubMed PMC
Saidova A, Hershkop AM, Ponce M, Eiwegger T. Allergen‐specific T cells in IgE‐mediated food allergy. Arch Immunol Ther Exp (Warsz). 2018;66(3):161‐170. PubMed
Chiang D, Chen X, Jones SM, et al. Single‐cell profiling of peanut‐responsive T cells in patients with peanut allergy reveals heterogeneous effector TH2 subsets. J Allergy Clin Immunol. 2018;141(6):2107‐2120. PubMed PMC
Wambre E, Bajzik V, DeLong JH, et al. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci Transl Med. 2017;9(401):eaam9171 10.1126/scitranslmed.aam9171.186 PubMed DOI PMC
Heeringa JJ, Rijvers L, Arends NJ, et al. IgE‐expressing memory B cells and plasmablasts are increased in blood of children with asthma, food allergy, and atopic dermatitis. Allergy. 2018;73(6):1331‐1336. PubMed
Jimenez‐Saiz R, Ellenbogen Y, Bruton K, et al. Human BCR analysis of single‐sorted, putative IgE(+) memory B cells in food allergy. J Allergy Clin Immunol. 2019;144(1):336‐339. PubMed PMC
Nielsen SCA, Boyd SD. New technologies and applications in infant B cell immunology. Curr Opin Immunol. 2019;57:53‐57. PubMed PMC
Croote D, Darmanis S, Nadeau KC, Quake SR. High‐affinity allergen‐specific human antibodies cloned from single IgE B cell transcriptomes. Science. 2018;362(6420):1306‐1309. PubMed
Nielsen SCA, Roskin KM, Jackson KJL, et al. Shaping of infant B cell receptor repertoires by environmental factors and infectious disease. Sci Transl Med. 2019;11(481):eaat2004 10.1126/scitranslmed.aat2004 PubMed DOI PMC
Hoof I, Schulten V, Layhadi JA, et al. Allergen‐specific IgG(+) memory B cells are temporally linked to IgE memory responses. J Allergy Clin Immunol. 2020;146(1):180‐191. PubMed PMC
Heeringa JJ, McKenzie CI, Varese N, et al. Induction of IgG2 and IgG4 B‐cell memory following sublingual immunotherapy for ryegrass pollen allergy. Allergy. 2020;75(5):1121‐1132. PubMed PMC
Jimenez‐Saiz R, Ellenbogen Y, Koenig JFE, et al. IgG1(+) B‐cell immunity predates IgE responses in epicutaneous sensitization to foods. Allergy. 2019;74(1):165‐175. PubMed
Hoffmann HJ, Santos AF, Mayorga C, et al. The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allergy. 2015;70(11):1393‐1405. PubMed
Hemmings O, Kwok M, McKendry R, Santos AF. Basophil activation test: old and new applications in allergy. Curr Allergy Asthma Rep. 2018;18(12):77. PubMed PMC
Hung L, Obernolte H, Sewald K, Eiwegger T. Human ex vivo and in vitro disease models to study food allergy. Asia Pac Allergy. 2019;9(1):e4 10.5415/apallergy.2019.9.e4 PubMed DOI PMC
Santos AF, Couto‐Francisco N, Becares N, Kwok M, Bahnson HT, Lack G. A novel human mast cell activation test for peanut allergy. J Allergy Clin Immunol. 2018;142(2):689‐691. PubMed PMC
Bahri R, Custovic A, Korosec P, et al. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. J Allergy Clin Immunol. 2018;142(2):485‐496. PubMed PMC
Pouessel G, Beaudouin E, Tanno LK, et al. Food‐related anaphylaxis fatalities: analysis of the allergy vigilance network((R)) database. Allergy. 2019;74(6):1193‐1196. PubMed
Pouessel G, Turner PJ, Worm M, et al. Food‐induced fatal anaphylaxis: from epidemiological data to general prevention strategies. Clin Exp Allergy. 2018;48(12):1584‐1593. PubMed
De Schryver S, Halbrich M, Clarke A, et al. Tryptase levels in children presenting with anaphylaxis: temporal trends and associated factors. J Allergy Clin Immunol. 2016;137(4):1138‐1142. PubMed
Flores Kim J, McCleary N, Nwaru BI, Stoddart A, Sheikh A. Diagnostic accuracy, risk assessment, and cost‐effectiveness of component‐resolved diagnostics for food allergy: a systematic review. Allergy. 2018;73(8):1609‐1621. PubMed PMC
Eller E, Bindslev‐Jensen C. Clinical value of component‐resolved diagnostics in peanut‐allergic patients. Allergy. 2013;68(2):190‐194. PubMed
Klemans RJ, Otte D, Knol M, et al. The diagnostic value of specific IgE to Ara h 2 to predict peanut allergy in children is comparable to a validated and updated diagnostic prediction model. J Allergy Clin Immunol. 2013;131(1):157‐163. PubMed
Kukkonen AK, Pelkonen AS, Makinen‐Kiljunen S, Voutilainen H, Makela MJ. Ara h 2 and Ara 6 are the best predictors of severe peanut allergy: a double‐blind placebo‐controlled study. Allergy. 2015;70(10):1239‐1245. PubMed
Martinet J, Couderc L, Renosi F, Bobée V, Marguet C, Boyer O. Diagnostic value of antigen‐specific immunoglobulin E immunoassays against Ara h 2 and Ara h 8 peanut components in child food allergy. Int Arch Allergy Immunol. 2016;169(4):216‐222. PubMed
Holzhauser T, Wackermann O, Ballmer‐Weber BK, et al. Soybean (Glycine max) allergy in Europe: Gly m 5 (beta‐conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J Allergy Clin Immunol. 2009;123(2):452‐458. PubMed
Ebisawa M, Brostedt P, Sjolander S, Sato S, Borres MP, Ito K. Gly m 2S albumin is a major allergen with a high diagnostic value in soybean‐allergic children. J Allergy Clin Immunol. 2013;132(4):976‐978. PubMed
Klemans RJ, Knol EF, Michelsen‐Huisman A, et al. Components in soy allergy diagnostics: Gly m 2S albumin has the best diagnostic value in adults. Allergy. 2013;68(11):1396‐1402. PubMed
Masthoff LJ, Mattsson L, Zuidmeer‐Jongejan L, et al. Sensitization to Cor a 9 and Cor a 14 is highly specific for a hazelnut allergy with objective symptoms in Dutch children and adults. J Allergy Clin Immunol. 2013;132(2):393‐399. PubMed
Faber MA, De Graag M, Van Der Heijden C, et al. Cor a 14: missing link in the molecular diagnosis of hazelnut allergy? Int Arch Allergy Immunol. 2014;164(3):200‐206. PubMed
Datema MR, van Ree R, Asero R, et al. Component‐resolved diagnosis and beyond: multivariable regression models to predict severity of hazelnut allergy. Allergy. 2018;73(3):549‐559. PubMed
Beyer K, Grabenhenrich L, Hartl M, et al. Predictive values of component‐specific IgE for the outcome of peanut and hazelnut food challenges in children. Allergy. 2015;70(1):90‐98. PubMed
Ciprandi G, Pistorio A, Silvestri M, Rossi GA, Tosca MA. Walnut anaphylaxis: the usefulness of molecular‐based allergy diagnostics. Immunol Lett. 2014;161(1):138‐139. PubMed
Ballmer‐Weber BK, Lidholm J, Lange L, et al. Allergen recognition patterns in walnut allergy are age dependent and correlate with the severity of allergic reactions. J Allergy Clin Immunol Pract. 2019;7(5):1560‐1567. PubMed
Lee J, Jeong K, Jeon SA, Lee S. Component resolved diagnosis of walnut allergy in young children: Jug r 1 as a major walnut allergen. Asian Pac J Allergy Immunol. 2019. 10.12932/AP-161118-0443 PubMed DOI
Giovannini M, Comberiati P, Piazza M, et al. Retrospective definition of reaction risk in Italian children with peanut, hazelnut and walnut allergy through component‐resolved diagnosis. Allergol Immunopathol (Madr). 2019;47(1):73‐78. PubMed
Savvatianos S, Konstantinopoulos AP, Borga A, et al. Sensitization to cashew nut 2S albumin, Ana o 3, is highly predictive of cashew and pistachio allergy in Greek children. J Allergy Clin Immunol. 2015;136(1):192‐194. PubMed
van der Valk JP, Gerth van Wijk R, Vergouwe Y, et al. sIgE Ana o 1, 2 and 3 accurately distinguish tolerant from allergic children sensitized to cashew nuts. Clin Exp Allergy. 2017;47(1):113‐120. PubMed
Lange L, Lasota L, Finger A, et al. Ana o 3‐specific IgE is a good predictor for clinically relevant cashew allergy in children. Allergy. 2017;72(4):598‐603. PubMed
Dang TD, Peters RL, Koplin JJ, et al. Egg allergen specific IgE diversity predicts resolution of egg allergy in the population cohort HealthNuts. Allergy. 2019;74(2):318‐326. PubMed
Pascal M, Grishina G, Yang AC, et al. Molecular diagnosis of shrimp allergy: efficiency of several allergens to predict clinical reactivity. J Allergy Clin Immunol Pract. 2015;3(4):521‐529. PubMed
Fiocchi A, Brozek J, Schunemann H, et al. World allergy organization (WAO) diagnosis and rationale for action against cow's milk allergy (DRACMA) guidelines. Pediatr Allergy Immunol. 2010;21(Suppl 21):1‐125. PubMed
Cingolani A, Di Pillo S, Cerasa M, et al. Usefulness of nBos d 4, 5 and nBos d 8 specific IgE antibodies in cow's milk allergic children. Allergy Asthma Immunol Res. 2014;6(2):121‐125. PubMed PMC
Caubet J‐C, Nowak‐Węgrzyn A, Moshier E, Godbold J, Wang J, Sampson HA. Utility of casein‐specific IgE levels in predicting reactivity to baked milk. J Allergy Clin Immunol. 2013;131(1):222‐224. PubMed PMC
Agabriel C, Ghazouani O, Birnbaum J, et al. Ara h 2 and Ara h 6 sensitization predicts peanut allergy in Mediterranean pediatric patients. Pediatr Allergy Immunol. 2014;25(7):662‐667. PubMed
De Knop KJ, Verweij MM, Grimmelikhuijsen M, et al. Age‐related sensitization profiles for hazelnut (Corylus avellana) in a birch‐endemic region. Pediatr Allergy Immunol. 2011;22(1 Pt 2):e139‐e149. 10.1111/j.1399-3038.2011.01112.x PubMed DOI
Mayorga C, Fernandez TD, Montanez MI, Moreno E, Torres MJ. Recent developments and highlights in drug hypersensitivity. Allergy. 2019;74(12):2368‐2381. PubMed
Romano A, Atanaskovic‐Markovic M, Barbaud A, et al. Towards a more precise diagnosis of hypersensitivity to beta‐lactams ‐ an EAACI position paper. Allergy. 2020;75(6):1300‐1315. PubMed
Brockow K, Garvey LH, Aberer W, et al. Skin test concentrations for systemically administered drugs – an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy. 2013;68(6):702‐712. PubMed
Torres MJ, Celik GE, Whitaker P, et al. A EAACI drug allergy interest group survey on how European allergy specialists deal with β‐lactam allergy. Allergy. 2019;74(6):1052‐1062. PubMed
Dona I, Romano A, Torres MJ. Algorithm for betalactam allergy diagnosis. Allergy. 2019;74(9):1817‐1819. PubMed
Barbero N, Fernandez‐Santamaria R, Mayorga C, et al. Identification of an antigenic determinant of clavulanic acid responsible for IgE‐mediated reactions. Allergy. 2019;74(8):1490‐1501. PubMed
Torres MJ, Celik GE, Whitaker P, et al. A EAACI drug allergy interest group survey on how European allergy specialists deal with beta‐lactam allergy. Allergy. 2019;74(6):1052‐1062. PubMed
Yang MS, Kang DY, Seo B, et al. Incidence of cephalosporin‐induced anaphylaxis and clinical efficacy of screening intradermal tests with cephalosporins: a large multicenter retrospective cohort study. Allergy. 2018;73(9):1833‐1841. PubMed
Dona I, Perez‐Sanchez N, Salas M, et al. Clinical characterization and diagnostic approaches for patients reporting hypersensitivity reactions to quinolones. J Allergy Clin Immunol Pract. 2020;8(8):2707‐2714. PubMed
Porebski G, Pecaric‐Petkovic T, Groux‐Keller M, Bosak M, Kawabata TT, Pichler WJ. In vitro drug causality assessment in Stevens‐Johnson syndrome ‐ alternatives for lymphocyte transformation test. Clin Exp Allergy. 2013;43(9):1027‐1037. PubMed
Mayorga C, Celik G, Rouzaire P, et al. In vitro tests for drug hypersensitivity reactions: an ENDA/EAACI drug allergy interest group position paper. Allergy. 2016;71(8):1103‐1134. PubMed
Fontaine C, Mayorga C, Bousquet PJ, et al. Relevance of the determination of serum‐specific IgE antibodies in the diagnosis of immediate beta‐lactam allergy. Allergy. 2007;62(1):47‐52. PubMed
Johansson SG, Adedoyin J, van Hage M, Gronneberg R, Nopp A. False‐positive penicillin immunoassay: an unnoticed common problem. J Allergy Clin Immunol. 2013;132(1):235‐237. PubMed
Torres MJ, Padial A, Mayorga C, et al. The diagnostic interpretation of basophil activation test in immediate allergic reactions to betalactams. Clin Exp Allergy. 2004;34(11):1768‐1775. PubMed
Torres MJ, Ariza A, Mayorga C, et al. Clavulanic acid can be the component in amoxicillin‐clavulanic acid responsible for immediate hypersensitivity reactions. J Allergy Clin Immunol. 2010;125(2):502‐505. PubMed
Fernandez TD, Ariza A, Palomares F, et al. Hypersensitivity to fluoroquinolones: the expression of basophil activation markers depends on the clinical entity and the culprit fluoroquinolone. Medicine (Baltimore). 2016;95(23):e3679 10.1097/MD.0000000000003679 PubMed DOI PMC
Fernandez TD, Torres MJ, Blanca‐Lopez N, et al. Negativization rates of IgE radioimmunoassay and basophil activation test in immediate reactions to penicillins. Allergy. 2009;64(2):242‐248. PubMed
Van Gasse AL, Sabato V, Uyttebroek AP, et al. Immediate moxifloxacin hypersensitivity: is there more than currently meets the eye? Allergy. 2017;72(12):2039‐2043. PubMed
Fernandez‐Santamaria R, Palomares F, Salas M, et al. Expression of the Tim3‐galectin‐9 axis is altered in drug‐induced maculopapular exanthema. Allergy. 2019;74(9):1769‐1779. PubMed
Dona I, Perez‐Sanchez N, Eguiluz‐Gracia I, et al. Progress in understanding hypersensitivity reactions to nonsteroidal anti‐inflammatory drugs. Allergy. 2020;75(3):561‐575. PubMed
Dona I, Perez‐Sanchez N, Bogas G, Moreno E, Salas M, Torres MJ. Medical algorithm: Diagnosis and treatment of nonsteroidal antiinflammatory drugs hypersensitivityity. Allergy. 2020;75(4):1003‐1005. PubMed
Dona I, Barrionuevo E, Salas M, et al. NSAIDs‐hypersensitivity often induces a blended reaction pattern involving multiple organs. Sci Rep. 2018;8(1):16710. PubMed PMC
Blanca M, Oussalah A, Cornejo‐Garcia JA, et al. GNAI2 variants predict nonsteroidal anti‐inflammatory drug hypersensitivity in a genome‐wide study. Allergy. 2020;75(5):1250‐1253. PubMed
Lee HY, Ye YM, Kim SH, et al. Identification of phenotypic clusters of nonsteroidal anti‐inflammatory drugs exacerbated respiratory disease. Allergy. 2017;72(4):616‐626. PubMed
Hagan JB, Laidlaw TM, Divekar R, et al. Urinary leukotriene E4 to determine aspirin intolerance in asthma: a systematic review and meta‐analysis. J Allergy Clin Immunol Pract. 2017;5(4):990‐997. PubMed
Ban GY, Cho K, Kim SH, et al. Metabolomic analysis identifies potential diagnostic biomarkers for aspirin‐exacerbated respiratory disease. Clin Exp Allergy. 2017;47(1):37‐47. PubMed
Lei DK, Saltoun C. Allergen immunotherapy: definition, indications, and reactions. Allergy Asthma Proc. 2019;40(6):369‐371. PubMed
Miller JM, Davis CM, Anvari S. The clinical and immune outcomes after food allergen immunotherapy emphasizing the development of tolerance. Curr Opin Pediatr. 2019;31(6):821‐827. PubMed
Sindher SB, Long A, Acharya S, Sampath V, Nadeau KC. The use of biomarkers to predict aero‐allergen and food immunotherapy responses. Clin Rev Allergy Immunol. 2018;55(2):190‐204. PubMed PMC
Couroux P, Ipsen H, Stage BS, et al. A birch sublingual allergy immunotherapy tablet reduces rhinoconjunctivitis symptoms when exposed to birch and oak and induces IgG4 to allergens from all trees in the birch homologous group. Allergy. 2019;74(2):361‐369. PubMed PMC
Huang Y, Wang C, Wang X, Zhang L, Lou H. Efficacy and safety of subcutaneous immunotherapy with house dust mite for allergic rhinitis: a meta‐analysis of randomized controlled trials. Allergy. 2019;74(1):189‐192. PubMed
Schmitt J, Wustenberg E, Kuster D, Mucke V, Serup‐Hansen N, Tesch F. The moderating role of allergy immunotherapy in asthma progression: results of a population‐based cohort study. Allergy. 2020;75(3):596‐602. PubMed
Varona R, Ramos T, Escribese MM, et al. Persistent regulatory T‐cell response 2 years after 3 years of grass tablet SLIT: links to reduced eosinophil counts, sIgE levels, and clinical benefit. Allergy. 2019;74(2):349‐360. PubMed PMC
Wahn U, Bachert C, Heinrich J, Richter H, Zielen S. Real‐world benefits of allergen immunotherapy for birch pollen‐associated allergic rhinitis and asthma. Allergy. 2019;74(3):594‐604. PubMed PMC
Investigators PGoC , Vickery BP, Vereda A, et al. AR101 oral immunotherapy for peanut allergy. N Engl J Med. 2018;379(21):1991‐2001. PubMed
Virkud YV, Kelly RS, Wood C, Lasky‐Su JA. The nuts and bolts of omics for the clinical allergist. Ann Allergy Asthma Immunol. 2019;123(6):558‐563. PubMed PMC
van Zelm MC, McKenzie CI, Varese N, Rolland JM, O'Hehir RE. Recent developments and highlights in immune monitoring of allergen immunotherapy. Allergy. 2019;74(12):2342‐2354. PubMed
Kim EH, Yang L, Ye P, et al. Long‐term sublingual immunotherapy for peanut allergy in children: clinical and immunologic evidence of desensitization. J Allergy Clin Immunol. 2019;144(5):1320‐1326. PubMed PMC
Shamji MH, Kappen JH, Akdis M, et al. Biomarkers for monitoring clinical efficacy of allergen immunotherapy for allergic rhinoconjunctivitis and allergic asthma: an EAACI Position Paper. Allergy. 2017;72(8):1156‐1173. PubMed
Viswanathan RK, Busse WW. Allergen immunotherapy in allergic respiratory diseases: from mechanisms to meta‐analyses. Chest. 2012;141(5):1303‐1314. PubMed PMC
Datema MR, Eller E, Zwinderman AH, et al. Ratios of specific IgG4 over IgE antibodies do not improve prediction of peanut allergy nor of its severity compared to specific IgE alone. Clin Exp Allergy. 2019;49(2):216‐226. PubMed PMC
Kulis M, Yue X, Guo R, et al. High‐ and low‐dose oral immunotherapy similarly suppress pro‐allergic cytokines and basophil activation in young children. Clin Exp Allergy. 2019;49(2):180‐189. PubMed PMC
Chinthrajah RS, Purington N, Andorf S, et al. Sustained outcomes in oral immunotherapy for peanut allergy (POISED study): a large, randomised, double‐blind, placebo‐controlled, phase 2 study. Lancet. 2019;394(10207):1437‐1449. PubMed PMC
Feng M, Su Q, Lai X, et al. Functional and immunoreactive levels of IgG4 correlate with clinical responses during the maintenance phase of house dust mite immunotherapy. J Immunol. 2018;200(12):3897‐3904. PubMed
Fukano C, Ohashi‐Doi K, Lund K, Nakao A, Masuyama K, Matsuoka T. Establishment of enzyme‐linked immunosorbent facilitated antigen binding as a biomarker assay for Japanese cedar pollen allergy immunotherapy. J Pharmacol Sci. 2019;140(3):223‐227. PubMed
Chinthrajah RS, Purington N, Sampath V, et al. High dimensional immune biomarkers demonstrate differences in phenotypes and endotypes in food allergy and asthma. Ann Allergy Asthma Immunol. 2018;121(1):117‐119. PubMed PMC
Boonpiyathad T, Meyer N, Moniuszko M, et al. High‐dose bee venom exposure induces similar tolerogenic B‐cell responses in allergic patients and healthy beekeepers. Allergy. 2017;72(3):407‐415. PubMed
Cianferoni A, Saltzman R, Saretta F, et al. Invariant natural killer cells change after an oral allergy desensitization protocol for cow's milk. Clin Exp Allergy. 2017;47(11):1390‐1397. PubMed
Schulten V, Tripple V, Seumois G, et al. Allergen‐specific immunotherapy modulates the balance of circulating Tfh and Tfr cells. J Allergy Clin Immunol. 2018;141(2):775‐777. PubMed PMC
Yao Y, Wang ZC, Wang N, et al. Allergen immunotherapy improves defective follicular regulatory T cells in patients with allergic rhinitis. J Allergy Clin Immunol. 2019;144(1):118‐128. PubMed
Boonpiyathad T, Sokolowska M, Morita H, et al. Der p 1‐specific regulatory T‐cell response during house dust mite allergen immunotherapy. Allergy. 2019;74(5):976‐985. PubMed
Boonpiyathad T, van de Veen W, Wirz O, et al. Role of Der p 1‐specific B cells in immune tolerance during 2 years of house dust mite‐specific immunotherapy. J Allergy Clin Immunol. 2019;143(3):1077‐1086. PubMed
Sharif H, Singh I, Kouser L, et al. Immunologic mechanisms of a short‐course of Lolium perenne peptide immunotherapy: a randomized, double‐blind, placebo‐controlled trial. J Allergy Clin Immunol. 2019;144(3):738‐749. PubMed
Sage PT, Alvarez D, Godec J, von Andrian UH, Sharpe AH. Circulating T follicular regulatory and helper cells have memory‐like properties. J Clin Investig. 2014;124(12):5191‐5204. PubMed PMC
Gonzalez M, Dona I, Palomares F, et al. Dermatophagoides pteronyssinus immunotherapy changes the T‐regulatory cell activity. Sci Rep. 2017;7(1):11949. PubMed PMC
Sun L, Jin H, Li H. GARP: a surface molecule of regulatory T cells that is involved in the regulatory function and TGF‐β releasing. Oncotarget. 2016;7(27):42826‐42836. PubMed PMC
Caruso M, Cibella F, Emma R, et al. Basophil biomarkers as useful predictors for sublingual immunotherapy in allergic rhinitis. Int Immunopharmacol. 2018;60:50‐58. PubMed
Van Overtvelt L, Baron‐Bodo V, Horiot S, et al. Changes in basophil activation during grass‐pollen sublingual immunotherapy do not correlate with clinical efficacy. Allergy. 2011;66(12):1530‐1537. PubMed
Tsai M, Mukai K, Chinthrajah RS, Nadeau KC, Galli SJ. Sustained successful peanut oral immunotherapy associated with low basophil activation and peanut‐specific IgE. J Allergy Clin Immunol. 2020;145(3):885‐896. PubMed PMC
Burton OT, Logsdon SL, Zhou JS, et al. Oral immunotherapy induces IgG antibodies that act through FcgammaRIIb to suppress IgE‐mediated hypersensitivity. J Allergy Clin Immunol. 2014;134(6):1310‐1317. PubMed PMC
Frischmeyer‐Guerrerio PA, Masilamani M, Gu W, et al. Mechanistic correlates of clinical responses to omalizumab in the setting of oral immunotherapy for milk allergy. J Allergy Clin Immunol. 2017;140(4):1043‐1053. PubMed PMC
Vickery BP, Berglund JP, Burk CM, et al. Early oral immunotherapy in peanut‐allergic preschool children is safe and highly effective. J Allergy Clin Immunol. 2017;139(1):173‐181. PubMed PMC
Ryan JF, Hovde R, Glanville J, et al. Successful immunotherapy induces previously unidentified allergen‐specific CD4+ T‐cell subsets. Proc Natl Acad Sci USA. 2016;113(9):E1286‐E1295. 10.1073/pnas.1520180113 PubMed DOI PMC
Bedoret D, Singh AK, Shaw V, et al. Changes in antigen‐specific T‐cell number and function during oral desensitization in cow's milk allergy enabled with omalizumab. Mucosal Immunol. 2012;5(3):267‐276. PubMed PMC
Abdel‐Gadir A, Schneider L, Casini A, et al. Oral immunotherapy with omalizumab reverses the Th2 cell‐like programme of regulatory T cells and restores their function. Clin Exp Allergy. 2018;48(7):825‐836. PubMed PMC
Blumchen K, Trendelenburg V, Ahrens F, et al. Safety, and quality of life in a multicenter, randomized, placebo‐controlled trial of low‐dose peanut oral immunotherapy in children with peanut allergy. J Allergy Clin Immunol Pract. 2019;7(2):479‐491. PubMed
Syed IA, Sulaiman SA, Hassali MA, Syed SH, Shan LH, Lee CK. Factors associated with poor CD4 and viral load outcomes in patients with HIV/AIDS. J Med Virol. 2016;88(5):790‐797. PubMed
Berin MC, Grishin A, Masilamani M, et al. Egg‐specific IgE and basophil activation but not egg‐specific T‐cell counts correlate with phenotypes of clinical egg allergy. J Allergy Clin Immunol. 2018;142(1):149‐158. PubMed PMC
Gorelik M, Narisety SD, Guerrerio AL, et al. Suppression of the immunologic response to peanut during immunotherapy is often transient. J Allergy Clin Immunol. 2015;135(5):1283‐1292. PubMed PMC
Ihara F, Sakurai D, Yonekura S, et al. Identification of specifically reduced Th2 cell subsets in allergic rhinitis patients after sublingual immunotherapy. Allergy. 2018;73(9):1823‐1832. PubMed
Gueguen C, Luce S, Lombardi V, Baron‐Bodo V, Moingeon P, Mascarell L. IL‐10 mRNA levels in whole blood cells correlate with house dust mite allergen immunotherapy efficacy. Allergy. 2019;74(11):2223‐2226. PubMed
Potaczek DP, Harb H, Michel S, Alhamwe BA, Renz H, Tost J. Epigenetics and allergy: from basic mechanisms to clinical applications. Epigenomics. 2017;9(4):539‐571. PubMed
Zhang H, Kaushal A, Merid SK, et al. DNA methylation and allergic sensitizations: a genome‐scale longitudinal study during adolescence. Allergy. 2019;74(6):1166‐1175. PubMed PMC
Syed A, Garcia MA, Lyu SC, et al. Peanut oral immunotherapy results in increased antigen‐induced regulatory T‐cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol. 2014;133(2):500‐510. PubMed PMC
Simon D, Page B, Vogel M, et al. Evidence of an abnormal epithelial barrier in active, untreated and corticosteroid‐treated eosinophilic esophagitis. Allergy. 2018;73(1):239‐247. PubMed
Akdis CA, Arkwright PD, Bruggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582‐1605. PubMed
Kubo T, Wawrzyniak P, Morita H, et al. CpG‐DNA enhances the tight junction integrity of the bronchial epithelial cell barrier. J Allergy Clin Immunol. 2015;136(5):1413‐1416. PubMed
Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN‐gamma and IL‐4. J Allergy Clin Immunol. 2012;130(5):1087‐1096. PubMed
Wawrzyniak P, Wawrzyniak M, Wanke K, et al. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J Allergy Clin Immunol. 2017;139(1):93‐103. PubMed
Kortekaas Krohn I, Seys SF, Lund G, et al. Nasal epithelial barrier dysfunction increases sensitization and mast cell degranulation in the absence of allergic inflammation. Allergy. 2020;75(5):1155‐1164. PubMed
Werfel T, Allam JP, Biedermann T, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol. 2016;138(2):336‐349. PubMed
McAleer MA, Irvine AD. The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol. 2013;131(2):280‐291. PubMed
Jin Y, Lu L, Tu W, Luo T, Fu Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ. 2019;649:308‐317. PubMed
Hole AM, Draper A, Jolliffe G, Cullinan P, Jones M, Taylor AJ. Occupational asthma caused by bacillary amylase used in the detergent industry. Occup Environ Med. 2000;57(12):840‐842. PubMed PMC
Sugita K, Altunbulakli C, Morita H, et al. Human type 2 innate lymphoid cells disrupt skin keratinocyte tight junction barrier by IL‐13. Allergy. 2019;74(12):2534‐2537. PubMed
Zhou X, Wei T, Cox CW, Jiang Y, Roche WR, Walls AF. Mast cell chymase impairs bronchial epithelium integrity by degrading cell junction molecules of epithelial cells. Allergy. 2019;74(7):1266‐1276. PubMed
Steelant B, Wawrzyniak P, Martens K, et al. Blocking histone deacetylase activity as a novel target for epithelial barrier defects in patients with allergic rhinitis. J Allergy Clin Immunol. 2019;144(5):1242‐1253. PubMed
Kelleher MM, Dunn‐Galvin A, Gray C, et al. Skin barrier impairment at birth predicts food allergy at 2 years of age. J Allergy Clin Immunol. 2016;137(4):1111‐1116. PubMed
Sindher S, Alkotob SS, Shojinaga MN, et al. Pilot study measuring transepidermal water loss (TEWL) in children suggests trilipid cream is more effective than a paraffin‐based emollient. Allergy. 2020. 10.1111/all.14275 PubMed DOI PMC
Antonov D, Schliemann S, Elsner P. Methods for the assessment of barrier function. Curr Probl Dermatol. 2016;49:61‐70. PubMed
Birgersson U, Birgersson E, Aberg P, Nicander I, Ollmar S. Non‐invasive bioimpedance of intact skin: mathematical modeling and experiments. Physiol Meas. 2011;32(1):1‐18. PubMed
Fasano A, Shea‐Donohue T. Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol. 2005;2(9):416‐422. PubMed
Mu Q, Kirby J, Reilly CM, Luo XM. Leaky gut as a danger signal for autoimmune diseases. Front Immunol. 2017;8:598. PubMed PMC
Jiminez JA, Uwiera TC, Douglas Inglis G, Uwiera RR. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog. 2015;7:29. PubMed PMC
Camara‐Lemarroy CR, Silva C, Greenfield J, Liu WQ, Metz LM, Yong VW. Biomarkers of intestinal barrier function in multiple sclerosis are associated with disease activity. Mult Scler. 2019;1352458519863133 10.1177/1352458519863133 PubMed DOI
Bosi E, Molteni L, Radaelli MG, et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia. 2006;49(12):2824‐2827. PubMed
Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci. 2012;1258:25‐33. PubMed PMC
Kiecolt‐Glaser JK, Wilson SJ, Bailey ML, et al. Marital distress, depression, and a leaky gut: translocation of bacterial endotoxin as a pathway to inflammation. Psychoneuroendocrinology. 2018;98:52‐60. PubMed PMC
Alinaghi M, Nguyen DN, Sangild PT, Bertram HC. Direct implementation of intestinal permeability test in NMR metabolomics for simultaneous biomarker discovery‐a feasibility study in a preterm piglet model. Metabolites. 2020;10(1):22 10.3390/metabo10010022 PubMed DOI PMC
Muraro A, Roberts G, Halken S, et al. EAACI guidelines on allergen immunotherapy: executive statement. Allergy. 2018;73(4):739‐743. PubMed
European Medicines Agency . Committee for medicinal products for human use (CHMP): guideline on the clinical development of products for specific immunotherapy for the treatment of allergic diseases (CHMP/EWP/18504/2006). http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003605.pdf; 2008.
Bonertz A, Roberts G, Slater JE, et al. Allergen manufacturing and quality aspects for allergen immunotherapy in Europe and the United States: an analysis from the EAACI AIT Guidelines Project. Allergy. 2018;73(4):816‐826. PubMed
Kaul S, Englert L, May S, Vieths S. Regulatory aspects of specific immunotherapy in Europe. Curr Opin Allergy Clin Immunol. 2010;10(6):594‐602. PubMed
Englert L, May S, Kaul S, Vieths S. The therapy allergens ordinance ("Therapieallergene‐Verordnung"). Background and effects. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2012;55(3):351‐357. PubMed
Mahler V, Esch RE, Kleine‐Tebbe J, et al. Understanding differences in allergen immunotherapy products and practices in North America and Europe. J Allergy Clin Immunol. 2019;143(3):813‐828. PubMed
Pfaar O, Agache I, de Blay F, et al. Perspectives in allergen immunotherapy: 2019 and beyond. Allergy. 2019;74(Suppl 108):3‐25. PubMed
Dhami S, Nurmatov U, Arasi S, et al. Allergen immunotherapy for allergic rhinoconjunctivitis: a systematic review and meta‐analysis. Allergy. 2017;72(11):1597‐1631. PubMed
German Society for Allergology and Clinical Immunology (DGAKI) . http://www.dgaki.de/leitlinien/s2k‐leitlinie‐sit/ (accessed on 07 Dec 2018).
Roberts G, Pfaar O, Akdis CA, et al. EAACI guidelines on allergen immunotherapy: allergic rhinoconjunctivitis. Allergy. 2018;73(4):765‐798. PubMed
Pfaar O, Alvaro M, Cardona V, Hamelmann E, Mosges R, Kleine‐Tebbe J. Clinical trials in allergen immunotherapy: current concepts and future needs. Allergy. 2018;73(9):1775‐1783. PubMed PMC
https://www.clinicaltrialsregister.eu/ctr‐search/search?query=2016‐000051‐27
Auge J, Vent J, Agache I, et al. EAACI Position paper on the standardization of nasal allergen challenges. Allergy. 2018;73(8):1597‐1608. PubMed
Fauquert JL, Jedrzejczak‐Czechowicz M, Rondon C, et al. Conjunctival allergen provocation test: guidelines for daily practice. Allergy. 2017;72(1):43‐54. PubMed
Pfaar O, Demoly P, Gerth van Wijk R, et al. Recommendations for the standardization of clinical outcomes used in allergen immunotherapy trials for allergic rhinoconjunctivitis: an EAACI Position Paper. Allergy. 2014;69(7):854‐867. PubMed
Mosges R, Bachert C, Panzner P, et al. Short course of grass allergen peptides immunotherapy over 3 weeks reduces seasonal symptoms in allergic rhinoconjunctivitis with/without asthma: a randomized, multicenter, double‐blind, placebo‐controlled trial. Allergy. 2018;73(9):1842‐1850. PubMed PMC
Vély F, Barlogis V, Vallentin B, et al. Evidence of innate lymphoid cell redundancy in humans. Nat Immunol. 2016;17(11):1291. PubMed PMC
Pfaar O, Bachert C, Kuna P, et al. Sublingual allergen immunotherapy with a liquid birch pollen product in patients with seasonal allergic rhinoconjunctivitis with or without asthma. J Allergy Clin Immunol. 2019;143(3):970‐977. PubMed
Pfaar O, Gerth van Wijk R, Klimek L, Bousquet J, Creticos P. Clinical trials in allergen immunotherapy in the age group of children and adolescents: current concepts and future needs. Clin Transl Allergy. 2020;10:1‐8. PubMed PMC
Pfaar O, Bastl K, Berger U, et al. Defining pollen exposure times for clinical trials of allergen immunotherapy for pollen‐induced rhinoconjunctivitis ‐ an EAACI position paper. Allergy. 2017;72(5):713‐722. PubMed
Karatzas K, Riga M, Berger U, Werchan M, Pfaar O, Bergmann KC. Computational validation of the recently proposed pollen season definition criteria. Allergy. 2018;73(1):5‐7. PubMed
Pfaar O, Karatzas K, Bastl K, et al. Pollen season is reflected on symptom load for grass and birch pollen‐induced allergic rhinitis in different geographic areas‐An EAACI task force report. Allergy. 2020;75(5):1099–1106. PubMed
Pfaar O, Agache I, Bergmann K, et al. Placebo effects in allergen immunotherapy–an EAACI task force position paper. Allergy. 2020. 10.1111/all.14331 PubMed DOI
Pfaar O, Bonini S, Cardona V, et al. Perspectives in allergen immunotherapy: 2017 and beyond. Allergy. 2018;73(Suppl 104):5‐23. PubMed
Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924‐926. PubMed PMC
Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383‐394. PubMed
Santesso N, Glenton C, Dahm P, et al. GRADE guidelines 26: Informative statements to communicate the findings of systematic reviews of interventions. J Clin Epidemiol. 2020;119:126‐135. PubMed
Agache I, Beltran J, Akdis C, et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. A systematic review for the EAACI Guidelines‐recommendations on the use of biologicals in severe asthma. Allergy. 2020;75(5):1023‐1042. PubMed
Agache I, Rocha C, Beltran J, et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab and omalizumab) for severe allergic asthma: a systematic review for the EAACI Guidelines ‐ recommendations on the use of biologicals in severe asthma. Allergy. 2020;75(5):1043‐1057. PubMed
Agache I, Song Y, Rocha C, et al. Efficacy and safety of treatment with dupilumab for severe asthma: a systematic review of the EAACI guidelines‐Recommendations on the use of biologicals in severe asthma. Allergy. 2020;75(5):1058‐1068. PubMed
Agache I, Lau S, Akdis CA, et al. EAACI Guidelines on Allergen Immunotherapy: house dust mite‐driven allergic asthma. Allergy. 2019;74(5):855‐873. PubMed
Digital tools in allergy and respiratory care