Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care
Jazyk angličtina Země Dánsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
PubMed
31056763
PubMed Central
PMC6973012
DOI
10.1111/all.13851
Knihovny.cz E-zdroje
- Klíčová slova
- allergy, exposome, microbiome, neuroimmune, respiratory viral infections,
- MeSH
- alergeny imunologie MeSH
- alergie diagnóza epidemiologie etiologie terapie MeSH
- imunologická tolerance MeSH
- imunomodulace MeSH
- individualizovaná medicína MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- náchylnost k nemoci * MeSH
- neuroimunomodulace MeSH
- péče o pacienta * normy MeSH
- vystavení vlivu životního prostředí MeSH
- výzkum trendy MeSH
- zánět komplikace MeSH
- zdravotnické služby - potřeby a požadavky MeSH
- životní prostředí MeSH
- zlepšení kvality * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- alergeny MeSH
The specialties of allergy and clinical immunology have entered the era of precision medicine with the stratification of diseases into distinct disease subsets, specific diagnoses, and targeted treatment options, including biologicals and small molecules. This article reviews recent developments in research and patient care and future trends in the discipline. The section on basic mechanisms of allergic diseases summarizes the current status and defines research needs in structural biology, type 2 inflammation, immune tolerance, neuroimmune mechanisms, role of the microbiome and diet, environmental factors, and respiratory viral infections. In the section on diagnostic challenges, clinical trials, precision medicine and immune monitoring of allergic diseases, asthma, allergic and nonallergic rhinitis, and new approaches to the diagnosis and treatment of drug hypersensitivity reactions are discussed in further detail. In the third section, unmet needs and future research areas for the treatment of allergic diseases are highlighted with topics on food allergy, biologics, small molecules, and novel therapeutic concepts in allergen-specific immunotherapy for airway disease. Unknowns and future research needs are discussed at the end of each subsection.
Allergy Asthma and Clinical Immunology Service Alfred Health Melbourne Victoria Australia
Allergy Unit Regional University Hospital of Malaga IBIMA UMA ARADyAL Malaga Spain
Christine Kühne Center for Allergy Research and Education Davos Switzerland
Department of Immunology The University of Toronto Toronto Ontario Canada
Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
Sean N Parker Center for Allergy and Asthma Research Stanford University Stanford California
Swiss Institute of Allergy and Asthma Research University Zurich Davos Switzerland
Zobrazit více v PubMed
Rondon C, Blanca‐Lopez N, Campo P, et al. Specific immunotherapy in local allergic rhinitis: a randomized, double‐blind placebo‐controlled trial with Phleum pratense subcutaneous allergen immunotherapy. Allergy. 2018;73(4):905‐915. PubMed
Eckl‐Dorna J, Fröschl R, Lupinek C, et al. Intranasal administration of allergen increases specific IgE whereas intranasal omalizumab does not increase serum IgE levels‐A pilot study. Allergy. 2018;73(5):1003‐1012. PubMed PMC
Boligan KF, von Gunten S. Innate lymphoid cells in asthma: cannabinoids on the balance. Allergy. 2017;72(6):839‐841. PubMed
Terl M, Sedlák V, Cap P, et al. Asthma management: a new phenotype‐based approach using presence of eosinophilia and allergy. Allergy. 2017;72(9):1279‐1287. PubMed
Casale TB, Chipps BE, Rosén K, et al. Response to omalizumab using patient enrichment criteria from trials of novel biologics in asthma. Allergy. 2018;73(2):490‐497. PubMed PMC
Kaplan AP, Gimenez‐Arnau AM, Saini SS. Mechanisms of action that contribute to efficacy of omalizumab in chronic spontaneous urticaria. Allergy. 2017;72(4):519‐533. PubMed PMC
Paganin F, Mangiapan G, Proust A, et al. Lung function parameters in omalizumab responder patients: an interesting tool? Allergy. 2017;72(12):1953‐1961. PubMed
Staubach P, Metz M, Chapman‐Rothe N, et al. Omalizumab rapidly improves angioedema‐related quality of life in adult patients with chronic spontaneous urticaria: X‐ACT study data. Allergy. 2018;73(3):576‐584. PubMed PMC
Okubo K, Hashiguchi K, Takeda T, et al. A randomized controlled phase II clinical trial comparing ONO‐4053, a novel DP1 antagonist, with a leukotriene receptor antagonist pranlukast in patients with seasonal allergic rhinitis. Allergy. 2017;72(10):1565‐1575. PubMed PMC
Zellweger F, Gasser P, Brigger D, Buschor P, Vogel M, Eggel A. A novel bispecific DARPin targeting FcgammaRIIB and FcepsilonRI‐bound IgE inhibits allergic responses. Allergy 2017;72(8):1174‐1183. PubMed
Mosges R, Kasche EM, Raskopf E, et al. A randomized, double‐blind, placebo‐controlled, dose‐finding trial with Lolium perenne peptide immunotherapy. Allergy. 2018;73(4):896‐904. PubMed PMC
Hellings PW, Fokkens WJ, Bachert C, et al. Positioning the principles of precision medicine in care pathways for allergic rhinitis and chronic rhinosinusitis ‐ A EUFOREA‐ARIA‐EPOS‐AIRWAYS ICP statement. Allergy. 2017;72(9):1297‐1305. PubMed
Muraro A, Lemanske RF, Castells M, et al. Precision medicine in allergic disease‐food allergy, drug allergy, and anaphylaxis‐PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma and Immunology. Allergy. 2017;72(7):1006‐1021. PubMed
Agache I, Strasser DS, Klenk A, et al. Serum IL‐5 and IL‐13 consistently serve as the best predictors for the blood eosinophilia phenotype in adult asthmatics. Allergy. 2016;71(8):1192‐1202. PubMed
Shamji MH, Kappen JH, Akdis M, et al. Biomarkers for monitoring clinical efficacy of allergen immunotherapy for allergic rhinoconjunctivitis and allergic asthma: an EAACI Position Paper. Allergy. 2017;72(8):1156‐1173. PubMed
Bonertz A, Roberts GC, Hoefnagel M, et al. Challenges in the implementation of EAACI guidelines on allergen immunotherapy: a global perspective on the regulation of allergen products. Allergy. 2018;73(1):64‐76. PubMed
Brooks CR, van Dalen CJ, Hermans IF, Gibson PG, Simpson JL, Douwes J. Sputum basophils are increased in eosinophilic asthma compared with non‐eosinophilic asthma phenotypes. Allergy. 2017;72(10):1583‐1586. PubMed
Caillaud D, Chanez P, Escamilla R, et al. Asthma‐COPD overlap syndrome (ACOS) vs 'pure' COPD: a distinct phenotype? Allergy. 2017;72(1):137‐145. PubMed
Dall'antonia F, Pavkov‐Keller T, Zangger K, Keller W. Structure of allergens and structure based epitope predictions. Methods. 2014;66(1):3‐21. PubMed PMC
Meno KH, Kastrup JS, Kuo IC, Chua KY, Gajhede M. The structure of the mite allergen Blo t 1 explains the limited antibody cross‐reactivity to Der p 1. Allergy. 2017;72(4):665‐670. PubMed
Pfaar O, Lou H, Zhang Y, Klimek L, Zhang L. Recent developments and highlights in allergen immunotherapy. Allergy. 2018;73(12):2274‐2289. PubMed
Devanaboyina SC, Cornelius C, Lupinek C, et al. High‐resolution crystal structure and IgE recognition of the major grass pollen allergen Phl p 3. Allergy. 2014;69(12):1617‐1628. PubMed PMC
Breiteneder H. Mapping of conformational IgE epitopes of food allergens. Allergy. 2018;73(11):2107‐2109. PubMed
Niemi M, Jylha S, Laukkanen ML, et al. Molecular interactions between a recombinant IgE antibody and the beta‐lactoglobulin allergen. Structure. 2007;15(11):1413‐1421. PubMed
Padavattan S, Flicker S, Schirmer T, et al. High‐affinity IgE recognition of a conformational epitope of the major respiratory allergen Phl p 2 as revealed by X‐ray crystallography. J Immunol. 2009;182(4):2141‐2151. PubMed
Matricardi PM, Kleine‐Tebbe J, Hoffmann HJ, et al. EAACI molecular allergology user's guide. Pediatr Allergy Immunol. 2016;27(suppl 23):1‐250. PubMed
Profet M. The function of allergy: immunological defense against toxins. Q Rev Biol. 1991;66(1):23‐62. PubMed
Mukai K, Tsai M, Starkl P, Marichal T, Galli SJ. IgE and mast cells in host defense against parasites and venoms. Semin Immunopathol. 2016;38(5):581‐603. PubMed PMC
Matzinger P. The evolution of the danger theory. Interview by Lauren Constable, Commissioning Editor. Expert Rev Clin Immunol. 2012;8(4):311‐317. PubMed PMC
Palm NW, Rosenstein RK, Medzhitov R. Allergic host defences. Nature. 2012;484(7395):465‐472. PubMed PMC
Trompette A, Divanovic S, Visintin A, et al. Allergenicity resulting from functional mimicry of a Toll‐like receptor complex protein. Nature. 2009;457(7229):585‐588. PubMed PMC
Florsheim E, Yu S, Bragatto I, et al. Integrated innate mechanisms involved in airway allergic inflammation to the serine protease subtilisin. J Immunol. 2015;194(10):4621‐4630. PubMed PMC
Gour N, Lajoie S, Smole U, et al. Dysregulated invertebrate tropomyosin‐dectin‐1 interaction confers susceptibility to allergic diseases. Sci Immunol. 2018;3(20):eaam9841. PubMed PMC
Marichal T, Starkl P, Reber L, et al. A beneficial role for immunoglobulin E in host defense against honeybee venom. Immunity. 2013;39(5):963‐975. PubMed PMC
Palm NW, Rosenstein RK, Yu S, Schenten DD, Florsheim E, Medzhitov R. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. Immunity. 2013;39(5):976‐985. PubMed PMC
Pablos I, Eichhorn S, Machado Y, et al. Distinct epitope structures of defensin‐like proteins linked to proline‐rich regions give rise to differences in their allergenic activity. Allergy. 2018;73(2):431‐441. PubMed PMC
Järvå M, Lay FT, Phan TK, et al. X‐ray structure of a carpet‐like antimicrobial defensin‐phospholipid membrane disruption complex. Nat Commun. 2018;9(1):1962 10.1038/s41467-018-04434-y PubMed DOI PMC
Stern R. Hyaluronidases in cancer biology. Semin Cancer Biol. 2008;18(4):275‐280. PubMed
Smole U, Radauer C, Lengger N, et al. The major birch pollen allergen Bet v 1 induces different responses in dendritic cells of birch pollen allergic and healthy individuals. PLoS One. 2015;10(1):e0117904. PubMed PMC
Iinuma T, Okamoto Y, Morimoto Y, et al. Pathogenicity of memory Th2 cells is linked to stage of allergic rhinitis. Allergy. 2018;73(2):479‐489. PubMed
Gori S, Vermeulen M, Remes‐Lenicov F, et al. Acetylcholine polarizes dendritic cells toward a Th2‐promoting profile. Allergy. 2017;72(2):221‐231. PubMed
Kortekaas Krohn I, Shikhagaie MM, Golebski K, et al. Emerging roles of innate lymphoid cells in inflammatory diseases: clinical implications. Allergy. 2018;73(4):837‐850. PubMed
Flayer CH, Haczku A. The Th2 gene cluster unraveled: role of RHS6. Allergy. 2017;72(5):679‐681. PubMed PMC
Hong H‐Y, Chen F‐H, Sun Y‐Q, et al. Local IL‐25 contributes to Th2‐biased inflammatory profiles in nasal polyps. Allergy. 2018;73(2):459‐469. PubMed
Hwang SS, Jang SW, Lee KO, Kim HS, Lee GR. RHS6 coordinately regulates the Th2 cytokine genes by recruiting GATA3, SATB1, and IRF4. Allergy. 2017;72(5):772‐782. PubMed
Ravanetti L, Dijkhuis A, Sabogal Pineros YS, et al. An early innate response underlies severe influenza‐induced exacerbations of asthma in a novel steroid‐insensitive and anti‐IL‐5‐responsive mouse model. Allergy. 2017;72(5):737‐753. PubMed
Prakash Babu S, Chen Y‐y k, Bonne‐Annee S, et al. Dysregulation of interleukin 5 expression in familial eosinophilia. Allergy. 2017;72(9):1338‐1345. PubMed PMC
Weller K, Church MK, Hawro T, et al. Updosing of bilastine is effective in moderate to severe chronic spontaneous urticaria: a real life study. Allergy. 2018;73(10):2073‐2075. PubMed
Boonpiyathad T, Meyer N, Moniuszko M, et al. High‐dose bee venom exposure induces similar tolerogenic B‐cell responses in allergic patients and healthy beekeepers. Allergy. 2017;72(3):407‐415. PubMed
Akdis CA, Akdis M. Advances in allergen immunotherapy: aiming for complete tolerance to allergens. Sci Transl Med. 2015;7(280):280ps6‐280ps6. PubMed
Schröder PC, Illi S, Casaca VI, et al. A switch in regulatory T cells through farm exposure during immune maturation in childhood. Allergy. 2017;72(4):604‐615. PubMed
Ferstl R, Frei R, Barcik W, et al. Histamine receptor 2 modifies iNKT cell activity within the inflamed lung. Allergy. 2017;72(12):1925‐1935. PubMed
Wirz OF, Głobińska A, Ochsner U, et al. Comparison of regulatory B cells in asthma and allergic rhinitis. Allergy. 2019;74(4):815‐818. PubMed
Aron JL, Akbari O. Regulatory T cells and type 2 innate lymphoid cell‐dependent asthma. Allergy. 2017;72(8):1148‐1155. PubMed
Voisin T, Bouvier A, Chiu IM. Neuro‐immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol. 2017;29(6):247‐261. PubMed PMC
Veres TZ, Rochlitzer S, Braun A. The role of neuro‐immune cross‐talk in the regulation of inflammation and remodelling in asthma. Pharmacol Ther. 2009;122(2):203‐214. PubMed
Chavan SS, Tracey KJ. Essential neuroscience in immunology. J Immunol. 2017;198(9):3389‐3397. PubMed PMC
Chesne J, Cardoso V, Veiga‐Fernandes H. Neuro‐immune regulation of mucosal physiology. Mucosal Immunol. 2019;12(1):10‐20. PubMed
Nassenstein C, Krasteva‐Christ G, Renz H. New aspects of neuroinflammation and neuroimmune crosstalk in the airways. J Allergy Clin Immunol. 2018;142(5):1415‐1422. PubMed
Nassenstein C, Kutschker J, Tumes D, Braun A. Neuro‐immune interaction in allergic asthma: role of neurotrophins. Biochem Soc Trans. 2006;34(Pt 4):591‐593. PubMed
Rochlitzer S, Veres TZ, Kuhne K, et al. The neuropeptide calcitonin gene‐related peptide affects allergic airway inflammation by modulating dendritic cell function. Clin Exp Allergy. 2011;41(11):1609‐1621. PubMed
Wallrapp A, Riesenfeld SJ, Burkett PR, et al. The neuropeptide NMU amplifies ILC2‐driven allergic lung inflammation. Nature. 2017;549(7672):351‐356. PubMed PMC
Lorton D, Bellinger DL. Molecular mechanisms underlying beta‐adrenergic receptor‐mediated cross‐talk between sympathetic neurons and immune cells. Int J Mol Sci. 2015;16(3):5635‐5665. PubMed PMC
Pongratz G, McAlees JW, Conrad DH, Erbe RS, Haas KM, Sanders VM. The level of IgE produced by a B cell is regulated by norepinephrine in a p38 MAPK‐ and CD23‐dependent manner. J Immunol. 2006;177(5):2926‐2938. PubMed
Gilles S, Akdis C, Lauener R, et al. The role of environmental factors in allergy: a critical reappraisal. Exp Dermatol. 2018;27(11):1193‐1200. PubMed
Bieber T, Akdis C, Lauener R, et al. Global Allergy Forum and 3rd Davos Declaration 2015: atopic dermatitis/Eczema: challenges and opportunities toward precision medicine. Allergy. 2016;71(5):588‐592. PubMed
Wang XD, Zheng M, Lou HF, et al. An increased prevalence of self‐reported allergic rhinitis in major Chinese cities from 2005 to 2011. Allergy. 2016;71(8):1170‐1180. PubMed PMC
Morgenstern V, Zutavern A, Cyrys J, et al. Atopic diseases, allergic sensitization, and exposure to traffic‐related air pollution in children. Am J Respir Crit Care Med. 2008;177(12):1331‐1337. PubMed
Fuertes E, Standl M, Cyrys J, et al. A longitudinal analysis of associations between traffic‐related air pollution with asthma, allergies and sensitization in the GINIplus and LISAplus birth cohorts. PeerJ. 2013;1 10.7717/peerj.193 PubMed DOI PMC
Zhao F, Durner J, Winkler JB, et al. Pollen of common ragweed (Ambrosia artemisiifolia L.): illumina‐based de novo sequencing and differential transcript expression upon elevated NO2/O3. Environ Pollut. 2017;224:503‐514. PubMed
Beck I, Jochner S, Gilles S, et al. High environmental ozone levels lead to enhanced allergenicity of birch pollen. PLoS One. 2013;8(11):e80147. PubMed PMC
Traidl‐Hoffmann C. [Allergy ‐ an environmental disease]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2017;60(6):584‐591. PubMed
Agache I, Miller R, Gern JE, et al. Emerging concepts and challenges in implementing the exposome paradigm in allergic diseases and asthma. Allergy. 2019;74(3):449‐463. PubMed
Damialis A, Häring F, Gökkaya M, et al. Human exposure to airborne pollen and relationships with symptoms and immune responses: indoors versus outdoors, circadian patterns and meteorological effects in alpine and urban environments. Sci Total Environ. 2018;653:190‐199. PubMed
Jatzlauk G, Bartel S, Heine H, Schloter M, Krauss‐Etschmann S. Influences of environmental bacteria and their metabolites on allergies, asthma, and host microbiota. Allergy. 2017;72(12):1859‐1867. PubMed
Lunjani N, Satitsuksanoa P, Lukasik Z, Sokolowska M, Eiwegger T, O'Mahony L. Recent developments and highlights in mechanisms of allergic diseases: microbiome. Allergy. 2018;73(12):2314‐2327. PubMed
Sokolowska M, Frei R, Lunjani N, Akdis CA, O'Mahony L. Microbiome and asthma. Asthma Res Pract. 2018;4:1. PubMed PMC
Birzele LT, Depner M, Ege MJ, et al. Environmental and mucosal microbiota and their role in childhood asthma. Allergy. 2017;72(1):109‐119. PubMed
Stein MM, Hrusch CL, Gozdz J, et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N Engl J Med. 2016;375(5):411‐421. PubMed PMC
Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82‐343ra82. PubMed PMC
Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health. Science. 2018;362(6416):776‐780. PubMed
Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet‐induced extinctions in the gut microbiota compound over generations. Nature. 2016;529(7585):212‐215. PubMed PMC
Roduit C, Frei R, Ferstl R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019;74(4):799‐809. PubMed
Bianco A, Whiteman SC, Sethi SK, Allen JT, Knight RA, Spiteri MA. Expression of intercellular adhesion molecule‐1 (ICAM‐1) in nasal epithelial cells of atopic subjects: a mechanism for increased rhinovirus infection? Clin Exp Immunol. 2000;121(2):339‐345. PubMed PMC
Braciale TJ, Sun J, Kim TS. Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol. 2012;12(4):295‐305. PubMed PMC
Kolesnikova L, Heck S, Matrosovich T, Klenk HD, Becker S, Matrosovich M. Influenza virus budding from the tips of cellular microvilli in differentiated human airway epithelial cells. J Gen Virol. 2013;94(Pt 5):971‐976. PubMed
Wang DY, Li Y, Yan Y, Li C, Shi L. Upper airway stem cells: understanding the nose and role for future cell therapy. Curr Allergy Asthma Rep. 2015;15(1):490. PubMed PMC
Yan Y, Tan KS, Li C, et al. Human nasal epithelial cells derived from multiple subjects exhibit differential responses to H3N2 influenza virus infection in vitro. J Allergy Clin Immunol. 2016;138(1):276‐281. PubMed
Tan KS, Yan Y, Ong HH, Chow V, Shi L, Wang DY. Impact of respiratory virus infections in exacerbation of acute and chronic rhinosinusitis. Curr Allergy Asthma Rep. 2017;17(4):24. PubMed PMC
Ravanetti L, Dijkhuis A, Dekker T, et al. IL‐33 drives influenza‐induced asthma exacerbations by halting innate and adaptive antiviral immunity. J Allergy Clin Immunol. 2019;143(4):1355‐1370. PubMed
Kim MJ, Shim DH, Cha HR, et al. Chitinase 3‐like 1 protein plays a critical role in respiratory syncytial virus‐induced airway inflammation. Allergy. 2019;74(4):685‐697. PubMed PMC
Kast JI, McFarlane AJ, Głobińska A, et al. Respiratory syncytial virus infection influences tight junction integrity. Clin Exp Immunol. 2017;190(3):351‐359. PubMed PMC
Yeo NK, Jang YJ. Rhinovirus infection‐induced alteration of tight junction and adherens junction components in human nasal epithelial cells. Laryngoscope. 2010;120(2):346‐352. PubMed
Tian T, Zi X, Peng Y, et al. H3N2 influenza virus infection enhances oncostatin M expression in human nasal epithelium. Exp Cell Res. 2018;371(2):322‐329. PubMed
Tan KS, Ong HH, Yan Y, et al. In vitro model of fully differentiated human nasal epithelial cells infected with rhinovirus reveals epithelium‐initiated immune responses. J Infect Dis. 2018;217(6):906‐915. PubMed
Tan KS, Yan Y, Koh WLH, et al. Comparative transcriptomic and metagenomic analyses of influenza virus‐infected nasal epithelial cells from multiple individuals reveal specific nasal‐initiated signatures. Front Microbiol. 2018;9:2685. PubMed PMC
Aab A, Wirz O, van de Veen W, et al. Human rhinoviruses enter and induce proliferation of B lymphocytes. Allergy. 2017;72(2):232‐243. PubMed
Jurak LM, Xi Y, Landgraf M, Carroll ML, Murray L, Upham JW. Interleukin 33 selectively augments rhinovirus‐induced type 2 immune responses in asthmatic but not healthy people. Front Immunol. 2018;9:1895. PubMed PMC
Fedele G, Schiavoni I, Nenna R, et al. Analysis of the immune response in infants hospitalized with viral bronchiolitis shows different Th1/Th2 profiles associated with respiratory syncytial virus and human rhinovirus. Pediatr Allergy Immunol. 2018;29(5):555‐557. PubMed
Deng H, Sun Y, Wang W, et al. The hippo pathway effector Yes‐associated protein promotes epithelial proliferation and remodeling in chronic rhinosinusitis with nasal polyps. Allergy. 2019;74(4):731‐742. PubMed
Zhao L, Li YY, Li CW, et al. Increase of poorly proliferated p63(+) /Ki67(+) basal cells forming multiple layers in the aberrant remodeled epithelium in nasal polyps. Allergy. 2017;72(6):975‐984. PubMed
Luukkainen A, Puan KJ, Yusof N, et al. A co‐culture model of PBMC and stem cell derived human nasal epithelium reveals rapid activation of NK and innate T cells upon influenza A virus infection of the nasal epithelium. Front Immunol. 2018;9:2514. PubMed PMC
Bonertz A, Roberts G, Slater JE, et al. Allergen manufacturing and quality aspects for allergen immunotherapy in Europe and the United States: an analysis from the EAACI AIT Guidelines Project. Allergy. 2018;73(4):816‐826. PubMed
Englert L, May S, Kaul S, Vieths S. The therapy allergens ordinance ("Therapieallergene‐Verordnung"). Background and effects. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2012;55(3):351‐357. PubMed
German Society for Allergology and Clinical Immunology (DGAKI). http://www.dgaki.de/leitlinien/s2k-leitlinie-sit/. Accessed December 7, 2018.
Dhami S, Nurmatov U, Arasi S, et al. Allergen immunotherapy for allergic rhinoconjunctivitis: a systematic review and meta‐analysis. Allergy. 2017;72(11):1597‐1631. PubMed
Pfaar O, Alvaro M, Cardona V, Hamelmann E, Mosges R, Kleine‐Tebbe J. Clinical trials in allergen immunotherapy: current concepts and future needs. Allergy. 2018;73(1):77‐92. PubMed PMC
Pfaar O, Demoly P, Gerth van Wijk R, et al. Recommendations for the standardization of clinical outcomes used in allergen immunotherapy trials for allergic rhinoconjunctivitis: an EAACI Position Paper. Allergy. 2014;69(7):854‐867. PubMed
Roberts G, Pfaar O, Akdis CA, et al. EAACI guidelines on allergen immunotherapy: allergic rhinoconjunctivitis. Allergy. 2018;73(4):765‐798. PubMed
Pfaar O, Bonini S, Cardona V, et al. Perspectives in allergen immunotherapy: 2017 and beyond. Allergy. 2018;73(suppl 104):5‐23. PubMed
Noon L. Prophylactic inoculation against hay fever. Lancet. 1911;1:1572‐1573.
Eguiluz‐Gracia I, Tay TR, Hew M, et al. Recent developments and highlights in biomarkers in allergic diseases and asthma. Allergy. 2018;73(1):2290‐2305. PubMed
Boyd SD, Hoh RA, Nadeau KC, Galli SJ. Immune monitoring for precision medicine in allergy and asthma. Curr Opin Immunol. 2017;48:82‐91. PubMed PMC
Tan HT, Sugita K, Akdis CA. Novel biologicals for the treatment of allergic diseases and asthma. Curr Allergy Asthma Rep. 2016;16(10):70. PubMed
Yu H, Zhang VW, Stray‐Pedersen A, et al. Rapid molecular diagnostics of severe primary immunodeficiency determined by using targeted next‐generation sequencing. J Allergy Clin Immunol. 2016;138(4):1142‐1151. PubMed
Ponsford MJ, Klocperk A, Pulvirenti F, et al. Hyper‐IgE in the allergy clinic–when is it primary immunodeficiency? Allergy. 2018;73(11):2122‐2136. PubMed
e GP. Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. Nat Genet. 2017;49(12):1664‐1670. PubMed PMC
Consortium EP . An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57‐74. PubMed PMC
Heeringa JJ, Rijvers L, Arends NJ, et al. IgE‐expressing memory B cells and plasmablasts are increased in blood of children with asthma, food allergy, and atopic dermatitis. Allergy. 2018;73(6):1331‐1336. PubMed
Rust BJ, Wambre E. Human immune monitoring techniques during food allergen immunotherapy. Curr Allergy Asthma Rep. 2017;17(4):22. PubMed
Mukai K, Gaudenzio N, Gupta S, et al. Assessing basophil activation by using flow cytometry and mass cytometry in blood stored 24 hours before analysis. J Allergy Clin Immunol. 2017;139(3):889‐899. PubMed PMC
Ryan JF, Hovde R, Glanville J, et al. Successful immunotherapy induces previously unidentified allergen‐specific CD4+ T‐cell subsets. Proc Natl Acad Sci USA. 2016;113(9):E1286‐1295. PubMed PMC
Larsen LF, Juel‐Berg N, Hansen KS, et al. A comparative study on basophil activation test, histamine release assay, and passive sensitization histamine release assay in the diagnosis of peanut allergy. Allergy. 2018;73(1):137‐144. PubMed
Obeso D, Mera‐Berriatua L, Rodriguez‐Coira J, et al. Multi‐omics analysis points to altered platelet functions in severe food‐associated respiratory allergy. Allergy. 2018;73(11):2137‐2149. PubMed
Datema MR, van Ree R, Asero R, et al. Component‐resolved diagnosis and beyond: multivariable regression models to predict severity of hazelnut allergy. Allergy. 2018;73(3):549‐559. PubMed
Papadopoulos NG, Bernstein JA, Demoly P, et al. Phenotypes and endotypes of rhinitis and their impact on management: a PRACTALL report. Allergy. 2015;70(5):474‐494. PubMed
Zuberbier T, Lotvall J, Simoens S, Subramanian SV, Church MK. Economic burden of inadequate management of allergic diseases in the European Union: a GA(2) LEN review. Allergy. 2014;69(10):1275‐1279. PubMed
Hellings PW, Klimek L, Cingi C, et al. Non‐allergic rhinitis: position paper of the European Academy of Allergy and Clinical Immunology. Allergy. 2017;72(11):1657‐1665. PubMed
Reitsma S, Subramaniam S, Fokkens WJ, Wang DY. Recent developments and highlights in rhinitis and allergen immunotherapy. Allergy. 2018;73(12):2306‐2313. PubMed
Meng Y, Lou H, Wang Y, et al. Endotypes of chronic rhinitis: a cluster analysis study. Allergy. 2019;74(4):720‐730. PubMed
Rondón C, Campo P, Galindo L, et al. Prevalence and clinical relevance of local allergic rhinitis. Allergy. 2012;67(10):1282‐1288. PubMed
Rondon C, Bogas G, Barrionuevo E, Blanca M, Torres MJ, Campo P. Nonallergic rhinitis and lower airway disease. Allergy. 2017;72(1):24‐34. PubMed
Rondon C, Campo P, Eguiluz‐Gracia I, et al. Local allergic rhinitis is an independent rhinitis phenotype: the results of a 10‐year follow‐up study. Allergy. 2018;73(2):470‐478. PubMed
Meng Y, Lou H, Wang Y, Wang C, Zhang L. The use of specific immunoglobulin E in nasal secretions for the diagnosis of allergic rhinitis. Laryngoscope. 2018;128(9):E311‐E315. PubMed
She W, Yang J, Wang C, Zhang L. Diagnostic value of nasal cytology in chronic rhinosinusitis assessed by a liquid‐based cytological technique. Am J Rhinol Allergy. 2018;32(3):181‐187. PubMed
Demoly P, Adkinson NF, Brockow K, et al. International consensus on drug allergy. Allergy. 2014;69(4):420‐437. PubMed
Brockow K, Ardern‐Jones MR, Mockenhaupt M, et al. EAACI position paper on how to classify cutaneous manifestations of drug hypersensitivity. Allergy. 2019;74(1):14‐27. PubMed
Mayorga C, Celik G, Rouzaire P, et al. In vitro tests for drug hypersensitivity reactions: an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy. 2016;71(8):1103‐1134. PubMed
Gomes ER, Brockow K, Kuyucu S, et al. Drug hypersensitivity in children: report from the pediatric task force of the EAACI Drug Allergy Interest Group. Allergy. 2016;71(2):149‐161. PubMed
Tanno LK, Torres MJ, Castells M, Demoly P, Joint AA. What can we learn in drug allergy management from World Health Organization's international classifications? Allergy. 2018;73(5):987‐992. PubMed
Pichler WJ. Immune pathomechanism and classification of drug hypersensitivity. Allergy. 2019;000:000‐000. PubMed
Chiriac AM, Rerkpattanapipat T, Bousquet PJ, Molinari N, Demoly P. Optimal step doses for drug provocation tests to prove beta‐lactam hypersensitivity. Allergy. 2017;72(4):552‐561. PubMed
Torres MJ, Romano A, Celik G, et al. Approach to the diagnosis of drug hypersensitivity reactions: similarities and differences between Europe and North America. Clin Transl Allergy. 2017;7:7. PubMed PMC
Gonzalez‐Estrada A, Archibald T, Dinsmore K, Mosier G, Campbell B, Brown S. Stability of diluted neuromuscular blocking agents utilized in perioperative hypersensitivity evaluation. Allergy. 2018;73(12):2398‐2400. PubMed
Van Gasse AL, Sabato V, Uyttebroek AP, et al. Immediate moxifloxacin hypersensitivity: is there more than currently meets the eye? Allergy. 2017;72(12):2039‐2043. PubMed
Salas M, Fernández‐Santamaría R, Mayorga C, et al. Use of the basophil activation test may reduce the need for drug provocation in amoxicillin‐clavulanic allergy. J Allergy Clin Immunol Pract. 2018;6(3):1010‐1018. PubMed
Trubiano JA, Thursky KA, Stewardson AJ, et al. Impact of an integrated antibiotic allergy testing program on antimicrobial stewardship: a multicenter evaluation. Clin Infect Dis. 2017;65(1):166‐174. PubMed PMC
Doña I, Caubet JC, Brockow K, et al. An EAACI task force report: recognising the potential of the primary care physician in the diagnosis and management of drug hypersensitivity. Clin Transl Allergy. 2018;8:16. PubMed PMC
Madrigal‐Burgaleta R, Bernal‐Rubio L, Berges‐Gimeno MP, et al. A large single‐hospital experience using drug provocation testing and rapid drug desensitization in hypersensitivity to antineoplastic and biological agents. J Allergy Clin Immunol Pract. 2019;7(2):618‐632. PubMed
Castells M. Drug hypersensitivity and anaphylaxis in cancer and chronic inflammatory diseases: the role of desensitizations. Front Immunol. 2017;8:1472. PubMed PMC
Cortellini G, Romano A, Santucci A, et al. Clinical approach on challenge and desensitization procedures with aspirin in patients with ischemic heart disease and nonsteroidal anti‐inflammatory drug hypersensitivity. Allergy. 2017;72(3):498‐506. PubMed
Investigators PGoC , Vickery BP, Vereda A, et al. AR101 oral immunotherapy for peanut allergy. N Engl J Med. 2018;379(21):1991‐2001. PubMed
Sampson HA, Shreffler WG, Yang WH, et al. Effect of varying doses of epicutaneous immunotherapy vs placebo on reaction to peanut protein exposure among patients with peanut sensitivity: a randomized clinical trial. JAMA. 2017;318(18):1798‐1809. PubMed PMC
Matthews JG, Zawadzki R, Haselkorn T, Rosen K. Clarification of epicutaneous immunotherapy trial phase 3 results and methods for qualitative survey design. Ann Allergy Asthma Immunol. 2018;121(5):641‐642. PubMed
Pajno GB, Fernandez‐Rivas M, Arasi S, et al. EAACI Guidelines on allergen immunotherapy: IgE‐mediated food allergy. Allergy. 2018;73(4):799‐815. PubMed
Nurmatov U, Dhami S, Arasi S, et al. Allergen immunotherapy for IgE‐mediated food allergy: a systematic review and meta‐analysis. Allergy. 2017;72(8):1133‐1147. PubMed
Bluemchen K, Eiwegger T. Oral peanut immunotherapy ‐ how much is too much? How much is enough? Allergy. 2019;74(2):220‐222. PubMed
Jappe U, Breiteneder H. Peanut allergy ‐ individual molecules as a key to precision medicine. Allergy. 2019;74(2):216‐219. PubMed
Cook QS, Burks AW. Peptide and recombinant allergen vaccines for food allergy. Clin Rev Allergy Immunol. 2018;55(2):162‐171. PubMed
Saidova A, Hershkop AM, Ponce M, Eiwegger T. Allergen‐specific T cells in IgE‐mediated food allergy. Arch Immunol Ther Exp. 2018;66(3):161‐170. PubMed
O'Hehir RE, Prickett SR, Rolland JM. T cell epitope peptide therapy for allergic diseases. Curr Allergy Asthma Rep. 2016;16(2):14. PubMed PMC
van der Kleij H, Warmenhoven H, van Ree R, et al. Chemically modified peanut extract shows increased safety while maintaining immunogenicity. Allergy. 2018. 10.1111/all.13687 PubMed DOI
Upton J, Nowak‐Wegrzyn A. The impact of baked egg and baked milk diets on IgE‐ and non‐IgE‐mediated allergy. Clin Rev Allergy Immunol. 2018;55(2):118‐138. PubMed
Bublin M, Kostadinova M, Radauer C, et al. Engineering of structural variants of the major peanut allergens Ara h 2 and Ara h 6 for allergen‐specific immunotherapy. J Allergy Clin Immunol. 2019;143(3):1226‐1229. PubMed
Srivastava KD, Siefert A, Fahmy TM, Caplan MJ, Li XM, Sampson HA. Investigation of peanut oral immunotherapy with CpG/peanut nanoparticles in a murine model of peanut allergy. J Allergy Clin Immunol. 2016;138(2):536‐543. PubMed
Dunn Galvin A, McMahon S, Ponsonby AL, Hsiao KC, Tang M, Team Ps . The longitudinal impact of probiotic and peanut oral immunotherapy on health‐related quality of life. Allergy. 2018;73(3):560‐568. PubMed
Rial MJ, Barroso B, Sastre J. Dupilumab for treatment of food allergy. J Allergy Clin Immunol Pract. 2019;7(2):673‐674. PubMed
Brandstrom J, Vetander M, Lilja G, et al. Individually dosed omalizumab: an effective treatment for severe peanut allergy. Clin Exp Allergy. 2017;47(4):540‐550. PubMed
Andorf S, Purington N, Block WM, et al. Anti‐IgE treatment with oral immunotherapy in multifood allergic participants: a double‐blind, randomised, controlled trial. Lancet Gastroenterol Hepatol. 2018;3(2):85‐94. PubMed PMC
Smaldini PL, Trejo F, Cohen JL, Piaggio E, Docena GH. Systemic IL‐2/anti‐IL‐2Ab complex combined with sublingual immunotherapy suppresses experimental food allergy in mice through induction of mucosal regulatory T cells. Allergy. 2018;73(4):885‐895. PubMed
Blumchen K, Trendelenburg V, Ahrens F, et al. Efficacy, safety, and quality of life in a multi‐center, randomized, placebo‐controlled trial of low‐dose peanut oral immunotherapy in peanut allergic children. J Allergy Clin Immunol Pract. 2019;7(2):479‐479. PubMed
Nagakura KI, Yanagida N, Sato S, et al. Low‐dose oral immunotherapy for children with anaphylactic peanut allergy in Japan. Pediatr Allergy Immunol. 2018;29(5):512‐518. PubMed
Croote D, Darmanis S, Nadeau KC, Quake SR. High‐affinity allergen‐specific human antibodies cloned from single IgE B cell transcriptomes. Science. 2018;362(6420):1306‐1309. PubMed
Trischler J, Lieb A, Arnold M, et al. Omalizumab effectively protects against early and late allergic responses in asthma after 4 weeks. Allergy. 2017;72(12):1912‐1915. PubMed
Zuberbier T, Aberer W, Asero R, et al. The EAACI/GA(2)LEN/EDF/WAO guideline for the definition, classification, diagnosis and management of urticaria. Allergy. 2018;73(7):1393‐1414. PubMed
Castro M, Corren J, Pavord ID, et al. Dupilumab efficacy and safety in moderate‐to‐severe uncontrolled asthma. N Engl J Med. 2018;378(26):2486‐2496. PubMed
Rabe KF, Nair P, Brusselle G, et al. Efficacy and safety of dupilumab in glucocorticoid‐dependent severe asthma. N Engl J Med. 2018;378(26):2475‐2485. PubMed
Bachert C, Sousa AR, Lund VJ, et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: randomized trial. J Allergy Clin Immunol. 2017;140(4):1024‐1031. PubMed
Simpson EL, Bieber T, Guttman‐Yassky E, et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2016;375(24):2335‐2348. PubMed
Ortega HG, Yancey SW, Mayer B, et al. Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. Lancet Respir Med. 2016;4(7):549‐556. PubMed
Castro M, Zangrilli J, Wechsler ME, et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double‐blind, randomised, placebo‐controlled, phase 3 trials. Lancet Respir Med. 2015;3(5):355‐366. PubMed
Bleecker ER, FitzGerald JM, Chanez P, et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high‐dosage inhaled corticosteroids and long‐acting beta2‐agonists (SIROCCO): a randomised, multicentre, placebo‐controlled phase 3 trial. Lancet. 2016;388(10056):2115‐2127. PubMed
FitzGerald JM, Bleecker ER, Nair P, et al. Benralizumab, an anti‐interleukin‐5 receptor alpha monoclonal antibody, as add‐on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double‐blind, placebo‐controlled phase 3 trial. Lancet. 2016;388(10056):2128‐2141. PubMed
Tsetsos N, Goudakos JK, Daskalakis D, Konstantinidis I, Markou K. Monoclonal antibodies for the treatment of chronic rhinosinusitis with nasal polyposis: a systematic review. Rhinology J. 2018;56(1):11‐21. PubMed
Wollenberg A, Barbarot S, Bieber T, et al. Consensus‐based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part II. J Eur Acad Dermatol Venereol. 2018;32(6):850‐878. PubMed
Wollenberg A, Barbarot S, Bieber T, et al. Consensus‐based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol. 2018;32(5):657‐682. PubMed
Bachert C, Mannent L, Naclerio RM, et al. Effect of subcutaneous dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis: a randomized clinical trial. JAMA. 2016;315(5):469‐479. PubMed
Jonstam K, Swanson BN, Mannent LP, et al. Dupilumab reduces local type 2 pro‐inflammatory biomarkers in chronic rhinosinusitis with nasal polyposis. Allergy. 2019;74(4):743‐752. PubMed PMC
Broesby‐Olsen S, Vestergaard H, Mortz CG, et al. Omalizumab prevents anaphylaxis and improves symptoms in systemic mastocytosis: efficacy and safety observations. Allergy. 2018;73(1):230‐238. PubMed
Corren J, Parnes JR, Wang L, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017;377(10):936‐946. PubMed
Furue M, Yamamura K, Kido‐Nakahara M, Nakahara T, Fukui Y. Emerging role of interleukin‐31 and interleukin‐31 receptor in pruritus in atopic dermatitis. Allergy. 2018;73(1):29‐36. PubMed
Uchida M, Anderson EL, Squillace DL, et al. Oxidative stress serves as a key checkpoint for IL‐33 release by airway epithelium. Allergy. 2017;72(10):1521‐1531. PubMed PMC
Colás C, Brosa M, Antón E, et al. Estimate of the total costs of allergic rhinitis in specialized care based on real‐world data: the FERIN Study. Allergy. 2017;72(6):959‐966. PubMed
Tavakoli H, FitzGerald JM, Chen W, et al. Ten‐year trends in direct costs of asthma: a population‐based study. Allergy. 2017;72(2):291‐299. PubMed
Thyssen JP, Hamann CR, Linneberg A, et al. Atopic dermatitis is associated with anxiety, depression, and suicidal ideation, but not with psychiatric hospitalization or suicide. Allergy. 2018;73(1):214‐220. PubMed
Hilvering B, Vijverberg SJH, Jansen J, et al. Diagnosing eosinophilic asthma using a multivariate prediction model based on blood granulocyte responsiveness. Allergy. 2017;72(8):1202‐1211. PubMed
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, et al. Comparing biologicals and small molecule drug therapies for chronic respiratory diseases. Allergy. 2019;74(3):432‐448. PubMed
Diamant Z, Mantzouranis E, Bjermer L. Montelukast in the treatment of asthma and beyond. Expert Rev Clin Immunol. 2009;5(6):639‐658. PubMed
Chauhan BF, Jeyaraman MM, Singh Mann A, et al. Addition of anti‐leukotriene agents to inhaled corticosteroids for adults and adolescents with persistent asthma. Cochrane Database Syst Rev. 2017;3:CD010347. PubMed PMC
Diamant Z, Aalders W, Parulekar A, Bjermer L, Hanania NA. Targeting lipid mediators in asthma: time for reappraisal. Curr Opin Pulm Med. 2019;25(1):121‐127. PubMed
Domingo C, Palomares O, Sandham DA, Erpenbeck VJ, Altman P. The prostaglandin D2 receptor 2 pathway in asthma: a key player in airway inflammation. Respir Res. 2018;19(1):189. PubMed PMC
Singh D, Cadden P, Hunter M, et al. Inhibition of the asthmatic allergen challenge response by the CRTH2 antagonist OC000459. Eur Respir J. 2013;41(1):46‐52. PubMed
Diamant Z, Sidharta PN, Singh D, et al. Setipiprant, a selective CRTH2 antagonist, reduces allergen‐induced airway responses in allergic asthmatics. Clin Exp Allergy. 2014;44(8):1044‐1052. PubMed
Fajt ML, Gelhaus SL, Freeman B, et al. Prostaglandin D(2) pathway upregulation: relation to asthma severity, control, and TH2 inflammation. J Allergy Clin Immunol. 2013;131(6):1504‐1512. PubMed PMC
Kuna P, Bjermer L, Tornling G. Two Phase II randomized trials on the CRTh2 antagonist AZD1981 in adults with asthma. Drug Des Devel Ther. 2016;10:2759‐2770. PubMed PMC
Hall IP, Fowler AV, Gupta A, et al. Efficacy of BI 671800, an oral CRTH2 antagonist, in poorly controlled asthma as sole controller and in the presence of inhaled corticosteroid treatment. Pulm Pharmacol Ther. 2015;32:37‐44. PubMed
Bateman ED, Guerreros AG, Brockhaus F, et al. Fevipiprant, an oral prostaglandin DP2 receptor (CRTh2) antagonist, in allergic asthma uncontrolled on low‐dose inhaled corticosteroids. Eur Respir J. 2017;50(2). 10.1183/13993003.00670-2017 PubMed DOI
Gonem S, Berair R, Singapuri A, et al. Fevipiprant, a prostaglandin D2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: a single‐centre, randomised, double‐blind, parallel‐group, placebo‐controlled trial. Lancet Respir Med. 2016;4(9):699‐707. PubMed
Pettipher R, Hunter MG, Perkins CM, et al. Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459. Allergy. 2014;69(9):1223‐1232. PubMed
Dhami S, Kakourou A, Asamoah F, et al. Allergen immunotherapy for allergic asthma: a systematic review and meta‐analysis. Allergy. 2017;72(12):1825‐1848. PubMed
Cardona V, Luengo O, Labrador‐Horrillo M. Immunotherapy in allergic rhinitis and lower airway outcomes. Allergy. 2017;72(1):35‐42. PubMed
Di Bona D, Plaia A, Leto‐Barone MS, La Piana S, Macchia L, Di Lorenzo G. Efficacy of allergen immunotherapy in reducing the likelihood of developing new allergen sensitizations: a systematic review. Allergy. 2017;72(5):691‐704. PubMed
Ponce M, Schroeder F, Bannert C, et al. Preventive sublingual immunotherapy with House Dust Mite extract modulates epitope diversity in pre‐school children. Allergy. 2019;74(4):780‐787. PubMed
Asaria M, Dhami S, van Ree R, et al. Health economic analysis of allergen immunotherapy for the management of allergic rhinitis, asthma, food allergy and venom allergy: a systematic overview. Allergy. 2018;73(2):269‐283. PubMed
Hesse L, van Ieperen N, Habraken C, et al. Subcutaneous immunotherapy with purified Der p1 and 2 suppresses type 2 immunity in a murine asthma model. Allergy. 2018;73(4):862‐874. PubMed PMC
Huang Y, Wang C, Wang X, Zhang L, Lou H. Efficacy and safety of subcutaneous immunotherapy with house dust mite for allergic rhinitis: a meta‐analysis of randomized controlled trials. Allergy. 2019;74(1):189‐192. PubMed
Couroux P, Ipsen H, Stage BS, et al. A birch sublingual allergy immunotherapy tablet reduces rhinoconjunctivitis symptoms when exposed to birch and oak and induces IgG4 to allergens from all trees in the birch homologous group. Allergy. 2019;74(2):361‐369. PubMed PMC
Ihara F, Sakurai D, Yonekura S, et al. Identification of specifically reduced Th2 cell subsets in allergic rhinitis patients after sublingual immunotherapy. Allergy. 2018;73(9):1823‐1832. PubMed
Masuyama K, Okamoto Y, Okamiya K, et al. Efficacy and safety of SQ house dust mite sublingual immunotherapy‐tablet in Japanese children. Allergy. 2018;73(12):2352‐2363. PubMed
Hoffmann HJ, Valovirta E, Pfaar O, et al. Novel approaches and perspectives in allergen immunotherapy. Allergy. 2017;72(7):1022‐1034. PubMed
Pohlit H, Bellinghausen I, Frey H, Saloga J. Recent advances in the use of nanoparticles for allergen‐specific immunotherapy. Allergy. 2017;72(10):1461‐1474. PubMed
Augé J, Vent J, Agache I, et al. EAACI Position paper on the standardization of nasal allergen challenges. Allergy. 2018;73(8):1597‐1608. PubMed
Larenas‐Linnemann DES, Antolín‐Amérigo D, Parisi C, et al. National clinical practice guidelines for allergen immunotherapy: an international assessment applying AGREE‐II. Allergy. 2018;73(3):664‐672. PubMed