The effect of oral and nasal breathing on the deposition of inhaled particles in upper and tracheobronchial airways

. 2020 Dec ; 150 () : 105649. [epub] 20200828

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32904428
Odkazy

PubMed 32904428
PubMed Central PMC7455204
DOI 10.1016/j.jaerosci.2020.105649
PII: S0021-8502(20)30136-1
Knihovny.cz E-zdroje

The inhalation route has a substantial influence on the fate of inhaled particles. An outbreak of infectious diseases such as COVID-19, influenza or tuberculosis depends on the site of deposition of the inhaled pathogens. But the knowledge of respiratory deposition is important also for occupational safety or targeted delivery of inhaled pharmaceuticals. Simulations utilizing computational fluid dynamics are becoming available to a wide spectrum of users and they can undoubtedly bring detailed predictions of regional deposition of particles. However, if those simulations are to be trusted, they must be validated by experimental data. This article presents simulations and experiments performed on a geometry of airways which is available to other users and thus those results can be used for intercomparison between different research groups. In particular, three hypotheses were tested. First: Oral breathing and combined breathing are equivalent in terms of particle deposition in TB airways, as the pressure resistance of the nasal cavity is so high that the inhaled aerosol flows mostly through the oral cavity in both cases. Second: The influence of the inhalation route (nasal, oral or combined) on the regional distribution of the deposited particles downstream of the trachea is negligible. Third: Simulations can accurately and credibly predict deposition hotspots. The maximum spatial resolution of predicted deposition achievable by current methods was searched for. The simulations were performed using large-eddy simulation, the flow measurements were done by laser Doppler anemometry and the deposition has been measured by positron emission tomography in a realistic replica of human airways. Limitations and sources of uncertainties of the experimental methods were identified. The results confirmed that the high-pressure resistance of the nasal cavity leads to practically identical velocity profiles, even above the glottis for the mouth, and combined mouth and nose breathing. The distribution of deposited particles downstream of the trachea was not influenced by the inhalation route. The carina of the first bifurcation was not among the main deposition hotspots regardless of the inhalation route or flow rate. On the other hand, the deposition hotspots were identified by both CFD and experiments in the second bifurcation in both lungs, and to a lesser extent also in both the third bifurcations in the left lung.

Zobrazit více v PubMed

Amirav I., Borojeni A.A.T., Halamish A., Newhouse M.T., Golshahi L. Nasal versus oral aerosol delivery to the "lungs" in infants and toddlers. Pediatric Pulmonology. 2015;50(3):276–283. doi: 10.1002/ppul.22999. PubMed DOI

Balashazy I., Hofmann W., Heistracher T. Local particle deposition patterns may play a key role in the development of lung cancer. Journal of Applied Physiology. 2003;94(5):1719–1725. doi: 10.1152/japplphysiol.00527.2002. PubMed DOI

Bennett W.D., Zeman K.L. Effect of race on fine particle deposition for oral and nasal breathing. Inhalation Toxicology. 2005;17(12):641–648. doi: 10.1080/08958370500188984. PubMed DOI

Churg A., Vedal S. Carinal and tubular airway particle concentrations in the large airways of non-smokers in the general population: Evidence for high particle concentration at airway carinas. Occupational and Environmental Medicine. 1996;53(8):553–558. PubMed PMC

Elcner J., Lizal F., Jedelsky J., Jicha M., Chovancova M. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results. Biomechanics and Modeling in Mechanobiology. 2016;15(2):447–469. doi: 10.1007/s10237-015-0701-1. PubMed DOI

Elcner J., Lizal F., Jedelsky J., Tuhovcak J., Jicha M. Laminar-turbulent transition in a constricted tube: Comparison of Reynolds-averaged Navier-Stokes turbulence models and large eddy simulation with experiments. [Article] Advances in Mechanical Engineering. 2019;11(5):17. doi: 10.1177/1687814019852261. DOI

Everard M.L., Hardy J.G., Milner A.D. Comparison OF nebulized aerosol deposition IN the lungs OF healthy-adults following oral and nasal inhalation. Thorax. 1993;48(10):1045–1046. doi: 10.1136/thx.48.10.1045. PubMed DOI PMC

Fendrick A.M., Monto A.S., Nightengale B., Sarnes M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Archives of Internal Medicine. 2003;163(4):487–494. doi: 10.1001/archinte.163.4.487. PubMed DOI

Frederix E.M.A., Kuczaj A.K., Nordlund M., Belka M., Lizal F., Jedelsky J.…Geurts B.J. Simulation of size-dependent aerosol deposition in a realistic model of the upper human airways. [Article] Journal of Aerosol Science. 2018;115:29–45. doi: 10.1016/j.jaerosci.2017.10.007. DOI

Ghahramani E., Abouali O., Emdad H., Ahmadi G. Numerical analysis of stochastic dispersion of micro-particles in turbulent flows in a realistic model of human nasal/upper airway. Journal of Aerosol Science. 2014;67:188–206. doi: 10.1016/j.jaerosci2013.09.004. DOI

Ghosal S. An analysis of numerical errors in large-eddy simulations of turbulence. Journal of Computational Physics. 1996;125(1):187–206. doi: 10.1006/jcph.1996.0088. DOI

Gosman A.D., Ioannides E. AIAA Pap; 1981. Aspects of computer simulation of liquid-fuelled combustors. United States. DOI

Gralton J., Tovey E., McLaws M.L., Rawlinson W.D. The role of particle size in aerosolised pathogen transmission: A review. Journal of Infection. 2011;62(1):1–13. doi: 10.1016/j.jinf.2010.11.010. PubMed DOI PMC

Heyder J., Armbruster L., Gebhart J., Grein E., Stahlhofen W. Total deposition of aerosol particles in the human respiratory tract for nose and mouth breathing. Journal of Aerosol Science. 1975;6:311–328.

Hofmann W. Modelling inhaled particle deposition in the human lung-A review. Journal of Aerosol Science. 2011;42(10):693–724. doi: 10.1016/j.jaerosci.2011.05.007. DOI

Horschler I., Brucker C., Schroder W., Meinke M. Investigation of the impact of the geometry on the nose flow. European Journal of Mechanics - B: Fluids. 2006;25(4):471–490. doi: 10.1016/j.euromechflu.2005.11.006. DOI

ICRP Human respiratory tract model for radiological protection. A report of a task group of the international commission on radiological protection. Annals of the ICRP. 1994;24(1–3):1–482. PubMed

Ishmatov A.N. 2nd international electronic conference on environmental health sciences. November 2019. Enhanced condensational growth in the upper airways induced by specific climatic conditions as a major factor for increased deposition of inhaled aerosols: Short report; pp. 4–29.

Janke T., Koullapis P., Kassinos S.C., Bauer K. PIV measurements of the SimInhale benchmark case. European Journal of Pharmaceutical Sciences. 2019;133:183–189. doi: 10.1016/j.ejps.2019.03.025. PubMed DOI

Jedelsky J., Lizal F., Jicha M. Characteristics of turbulent particle transport in human airways under steady and cyclic flows. International Journal of Heat and Fluid Flow. 2012;35:84–92. doi: 10.1016/j.ijheatfluidflow.2012.01.003. 0. DOI

Katz I.M., Davis B.M., Martonen T.B. A numerical study of particle motion within the human larynx and trachea. [Article] Journal of Aerosol Science. 1999;30(2):173–183.

Kelly J.T., Asgharian B., Kimbell J.S., Wong B.A. Particle deposition in human nasal airway replicas manufactured by different methods. Part I: Inertial regime particles. Aerosol Science and Technology. 2004;38(11):1063–1071. doi: 10.1080/027868290883360. DOI

Kelly J.T., Asgharian B., Kimbell J.S., Wong B.A. Particle deposition in human nasal airway replicas manufactured by different methods. Part II: Ultrafine particles. Aerosol Science and Technology. 2004;38(11):1072–1079. doi: 10.1080/027868290883432. DOI

Kleinstreuer C., Zhang Z. Laminar-to-turbulent fluid-particle flows in a human airway model. International Journal of Multiphase Flow. 2003;29(2):271–289. doi: 10.1016/S0301-9322(02)00131-3. DOI

Koullapis P., Kassinos S.C., Muela J., Perez-Segarra C., Rigola J., Lehmkuhl O.…Nicolaou L. Regional aerosol deposition in the human airways: The SimInhale benchmark case and a critical assessment of in silico methods. European Journal of Pharmaceutical Sciences. 2018;113:77–94. doi: 10.1016/j.ejps.2017.09.003. PubMed DOI

Koullapis P., Lizal F., Jedelsky J., Nicolaou L., Bauer K., Sgrott O.…Kassinos S.C. Aerosol deposition in the human upper airways. Application Area 7: Biomedical Flows Retrieved 03/06, 2020. 2019. https://www.kbwiki.ercoftac.org/w/index.php?title=Abstr:AC7-01

Koullapis P.G., Nicolaou L., Kassinos S.C. In silico assessment of mouth-throat effects on regional deposition in the upper tracheobronchial airways. Journal of Aerosol Science. 2018;117:164–188. doi: 10.1016/j.jaerosci.2017.12.001. DOI

Lang J., Teleaga I. On LES modelling and numerical errors. 2008. https://www.wias-berlin.de/people/john/VMS/TALKS/VMS2008_Lang.pdf Retrieved from.

Lin C.L., Tawhai M.H., McLennan G., Hoffman E.A. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. [Article] Respiratory Physiology & Neurobiology. 2007;157(2–3):295–309. doi: 10.1016/j.resp.2007.02.006. PubMed DOI PMC

Lizal F., Belka M., Adam J., Jedelsky J., Jicha M. A method for in vitro regional aerosol deposition measurement in a model of the human tracheobronchial tree by the positron emission tomography. Proceedings of the Institution of Mechanical Engineers - Part H: Journal of Engineering in Medicine. 2015;229(10):750–757. doi: 10.1177/0954411915600005. PubMed DOI

Lizal F., Elcner J., Hopke P.K., Jedelsky J., Jicha M. Development of a realistic human airway model. Proceedings of the Institution of Mechanical Engineers - Part H: Journal of Engineering in Medicine. 2012;226(H3):197–207. doi: 10.1177/0954411911430188. PubMed DOI

Lizal F., Jedelsky J., Morgan K., Bauer K., Llop J., Cossio U.…Schnabel C. Experimental methods for flow and aerosol measurements in human airways and their replicas. European Journal of Pharmaceutical Sciences. 2018;113:95–131. doi: 10.1016/j.ejps.2017.08.021. PubMed DOI

Luo X.Y., Hinton J.S., Liew T.T., Tan K.K. LES modelling of flow in a simple airway model. Medical Engineering & Physics. 2004;26(5):403–413. PubMed

Mekonnen T., Cheng S., Kourmatzis A. Non-intrusive high resolution in-vitro measurement of regional drug powder deposition. International Journal of Pharmaceutics. 2020;582:119286. doi: 10.1016/j.ijpharm.2020.119286. PubMed DOI

Nordlund M., Belka M., Kuczaj A.K., Lizal F., Jedelsky J., Elcner J.…Hoeng J. Multicomponent aerosol particle deposition in a realistic cast of the human upper respiratory tract. Inhalation Toxicology. 2017;29(3):113–125. doi: 10.1080/08958378.2017.1315196. PubMed DOI

Olson D.E., Sudlow M.F., Horsfield K., Filley G.F. Convective patterns of flow during inspiration. Archives of Internal Medicine. 1973;131(1):51–57. doi: 10.1001/archinte.131.1.51. PubMed DOI

Phalen R.F., Oldham M.J., Nel A.E. Tracheobronchial particle dose considerations for in vitro toxicology studies. Toxicological Sciences. 2006;92(1):126–132. doi: 10.1093/toxsci/kfj182. PubMed DOI

Phuong N.L., Ito K. Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD. Building and Environment. 2015;94:504–515. doi: 10.1016/j.buildenv.2015.10.002. DOI

Prabhakar H.B., Rabinowitz C.B., Gibbons F.K., O'Donnell W.J., Shepard J.A.O., Aquino S.L. Imaging features of sarcoidosis on MDCT, FDG PET, and PET/CT. [Article] American Journal of Roentgenology. 2008;190(3):S1–S6. doi: 10.2214/ajr.07.7001. PubMed DOI

Putz R., Pabst R. Grada; Praha: 2007. Atlas of human anatomy sobotta (translation of 22nd edition, 1st Czech edition ed.)

Saksono P.H., Nithiarasu P., Sazonov I., Yeo S.Y. Computational flow studies in a subject-specific human upper airway using a one-equation turbulence model. Influence of the nasal cavity. International Journal for Numerical Methods in Engineering. 2011;87(1–5):96–114. doi: 10.1002/nme.2986. DOI

Sarangapani R., Wexler A.S. Modeling particle deposition in extrathoracic airways. Aerosol Science and Technology. 2000;32(1):72–89. doi: 10.1080/027868200303948. DOI

Schmidt A., Zidowitz S., Kriete A., Denhard T., Krass S., Peitgen H.O. A digital reference model of the human bronchial tree. [Article] Computerized Medical Imaging and Graphics. 2004;28(4):203–211. doi: 10.1016/j.compmedimag.2004.01.001. PubMed DOI

Subramaniam R.P., Richardson R.B., Morgan K.T., Kimbell J.S., Guilmette R.A. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhalation Toxicology. 1998;10(5):473–502.

Szturz P., Rehak Z., Koukalova R., Adam Z., Krejci M., Pour L.…Mayer J. Measuring diffuse metabolic activity on FDG-PET/CT: New method for evaluating Langerhans cell histiocytosis activity in pulmonary parenchyma. [Article] Nuclear Medicine and Biology. 2012;39(3):429–436. doi: 10.1016/j.nucmedbio.2011.10.002. PubMed DOI

Thomas R.J. Particle size and pathogenicity in the respiratory tract. Virulence. 2013;4(8):847–858. doi: 10.4161/viru.27172. PubMed DOI PMC

Tian G., Hindle M., Longest P.W. Targeted lung delivery of nasally administered aerosols. Aerosol Science and Technology. 2014;48(4):434–449. doi: 10.1080/02786826.2014.887829. PubMed DOI PMC

Tropea C., Yarin A.L., Foss J.F. Springer; Berlin: 2007. Springer handbook of experimental fluid mechanics.

Zhang Z., Kleinstreuer C. Computational analysis of airflow and nanoparticle deposition in a combined nasal-oral-tracheobronchial airway model. [Article] Journal of Aerosol Science. 2011;42(3):174–194. doi: 10.1016/j.jaerosci.2011.01.001. DOI

Zhou Y., Cheng Y.S. Particle deposition in a cast of human tracheobronchial airways. [Article] Aerosol Science and Technology. 2005;39(6):492–500. doi: 10.1080/027868291001385. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...