Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification

. 2020 Aug ; 10 (4) : 277-290. [epub] 20191105

Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32923005
Odkazy

PubMed 32923005
PubMed Central PMC7474127
DOI 10.1016/j.jpha.2019.11.002
PII: S2095-1779(19)30646-X
Knihovny.cz E-zdroje

The upsurge of multiple drug resistance (MDR) bacteria substantially diminishes the effectiveness of antibiotic arsenal and therefore intensifies the rate of therapeutic failure. The major factor in MDR is efflux pump-mediated resistance. A unique pump can make bacteria withstand a wide range of structurally diverse compounds. Therefore, their inhibition is a promising route to eliminate resistance phenomenon in bacteria. Phytochemicals are excellent alternatives as resistance-modifying agents. They can directly kill bacteria or interact with the crucial events of pathogenicity, thereby decreasing the ability of bacteria to develop resistance. Numerous botanicals display noteworthy efflux pumps inhibitory activities. Edible plants are of growing interest. Likewise, some plant families would be excellent sources of efflux pump inhibitors (EPIs) including Apocynaceae, Berberidaceae, Convolvulaceae, Cucurbitaceae, Fabaceae, Lamiaceae, and Zingiberaceae. Easily applicable methods for screening plant-derived EPIs include checkerboard synergy test, berberine uptake assay and ethidium bromide test. In silico high-throughput virtual detection can be evaluated as a criterion of excluding compounds with efflux substrate-like characteristics, thereby improving the selection process and extending the identification of EPIs. To ascertain the efflux activity inhibition, real-time PCR and quantitative mass spectrometry can be applied. This review emphasizes on efflux pumps and their roles in transmitting bacterial resistance and an update plant-derived EPIs and strategies for identification.

Zobrazit více v PubMed

Magiorakos A.P., Srinivasan A., Carey R.B. Multidrug-resistant, extensively drug-resistant and pan-drug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012;18:268–281. PubMed

WHO (World Health Organization) vol. 12. WHO/EMP/IAU/2017; 2017. (Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis).

Najafi A. There is no escape from the ESKAPE pathogens. 2016. https://emerypharma.com/blog/author/anajafi.

Ayukekbong J.A., Ntemgwa M., Atabe A.N. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob. Resist. Infect. Contr. 2017;6:1–8. PubMed PMC

Masi M., Refregiers M., Pos K.M. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat. Microbiol. 2017;2:17001. PubMed

Spengler G., Kincses A., Gajdacs M. New roads leading to old destinations: efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules. 2017;22:1–25. PubMed PMC

Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994;264:382–388. PubMed

Cowan M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999;12:564–582. PubMed PMC

Kuete V., Efferth T. Cameroonian medicinal plants: pharmacology and derived natural products. Front. Pharmacol. 2010;1:123. PubMed PMC

Seukep J.A., Fankam A.G., Djeussi D.E. Antibacterial activities of the methanol extracts of seven Cameroonian dietary plants against bacteria expressing MDR phenotypes. SpringerPlus. 2013;363:1–8. PubMed PMC

Seukep J.A., Sandjo L.P., Ngadjui B.T. Antibacterial and antibiotic-resistance modifying activity of the extracts and compounds from Nauclea pobeguinii against Gram-negative multi-drug resistant phenotypes. BMC Complement Altern. Med. 2016;16:193. PubMed PMC

Seukep J.A., Sandjo L.P., Ngadjui B.T. Antibacterial activities of the methanol extracts and compounds from Uapaca togoensis against Gram-negative multi-drug resistant phenotypes. South Afr. J. Bot. 2016;103:1–5.

Gupta P.D., Birdi T.J. Development of botanicals to combat antibiotic resistance. J. Ayurveda Integr. Med. 2017;8:266–275. PubMed PMC

Touani F.K., Seukep J.A., Djeussi D.E. Antibiotic-potentiation activities of four Cameroonian dietary plants against multidrug-resistant Gram-negative bacteria expressing efflux pumps. BMC Complement Altern. Med. 2014;14:258. PubMed PMC

Cheesman M.J., Ilanko A., Blonk B. Developing new antimicrobial therapies: are synergistic combinations of plants extracts/compounds with conventional antibiotics the solution? Pharmacogn. Rev. 2017;22:57–72. PubMed PMC

Tegos G., Stermitz F.R., Lomovskaya O. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother. 2002;46:3133–3141. PubMed PMC

Kaatz G.W. Inhibition of bacterial efflux pumps: a new strategy to combat increasing antimicrobial agent resistance. Expert Opin. Emerg. Drugs. 2002;7:223–233. PubMed

Mamedov N. Medicinal plants studies: history, challenges and prospective. Med. Aromatic Plants. 2012;1:1–2.

Sana M., Jameel H., Rahman M. Miracle remedy: inhibition of bacterial efflux pumps by natural products. J. Infect. Dis. Ther. 2015;3:213.

Kumar S., Varela M.F. Molecular mechanisms of bacterial resistance to antimicrobial agents. In: Méndez-Vilas A., editor. Microbial Pathogens and Strategies for Combating Them: Science, Technology, and Education. 2013. pp. 522–534.

Davies J., Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010;74:417–433. PubMed PMC

Duval M., Dar D., Carvalho F. HflXr, a homolog of a ribosome-splitting factor, mediates antibiotic resistance. Proc. Natl. Acad. Sci. USA. 2018;52:13359–13364. PubMed PMC

Poole K. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 2005;56:20–51. PubMed

Wright G.D. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv. Drug Deliv. Rev. 2005;10:1451–1470. PubMed

Paterson D.L. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Infect. Contr. 2006;34:64–73. PubMed

Lambert P.A. Bacterial resistance to antibiotics: modified target sites. Adv. Drug Deliv. Rev. 2005;57:1471–1485. PubMed

Wright G.D. Molecular mechanisms of antibiotic resistance. Chem. Commun. 2011;14:4055–4061. PubMed

Liu J.H., Pan Y.S., Yuan L. Genetic variations in the active efflux pump genes acrA/B and tolC in different drug-induced strains of Escherichia coli. Genet. Mol. Res. 2013;3:2829–2836. PubMed

Hassan K.A., Liu Q., Henderson P.J. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio. 2015;6 e1982–14. PubMed PMC

Nishino K., Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 2001;20:5803–5812. PubMed PMC

Paulsen I.T., Brown M.H., Skurray R.A. Proton-dependent multidrug efflux systems. Microbiol. Rev. 1996;4:575–608. PubMed PMC

Schindler B.D., Kaatz G.W. Multidrug efflux pumps of Gram-positive bacteria. Drug Resist. Updates. 2016;27:1–13. PubMed

Roca I., Marti S., Espinal P. CraA: an MFS efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2009;53:4013–4014. PubMed PMC

Srinivasan V.B., Singh B.B., Priyadarshi N. Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS One. 2014;9 PubMed PMC

Bay D.C., Rommens K.L., Turner R.J. Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim. Biophys. Acta. 2008;9:1814–1838. PubMed

Banigan J.R., Gayen A., Cho M.K. A structured loop modulates coupling between the substrate-binding and dimerization domains in the multidrug resistance transporter EmrE. J. Biol. Chem. 2015;2:805–814. PubMed PMC

Beketskaia M.S., Bay D.C., Turner R.J. Outer membrane protein OmpW participates with small multidrug resistance protein member EmrE in quaternary cationic compound efflux. J. Bacteriol. 2014;196:1408–1414. PubMed PMC

Takatsuka Y., Chen C., Nikaido H. Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc. Natl. Acad. Sci. USA. 2010;15:6559–6565. PubMed PMC

Takatsuka Y., Nikaido H. Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism. J. Bacteriol. 2009;6:1729–1737. PubMed PMC

Davidson A.L., Dassa E., Orelle C. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 2008;2:317–364. PubMed PMC

Schmitt L., Tampe R. Structure and mechanism of ABC transporters. Curr. Opin. Struct. Biol. 2002;6:754–760. PubMed

Gupta R.P., Kueppers P., Schmitt L. The multidrug transporter Pdr5: a molecular diode? Biol. Chem. 2011;12:53–60. PubMed

Putman M., van Veen H., Konings W. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 2000;64:672–693. PubMed PMC

Kuroda T., Tsuchiya T. Multidrug efflux transporters in the MATE family. Biochim. Biophys. Acta. 2009;5:763–768. PubMed

Kaatz G.W., McAleese F., Seo S.M. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob. Agents Chemother. 2005;49:1857–1864. PubMed PMC

Waters C.M., Bassler B.L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005;21:319–346. PubMed

Xu G.M. Relationships between the regulatory systems of quorum sensing and multidrug resistance. Front. Microbiol. 2016;7:95–98. PubMed PMC

Rasamiravaka T., El Jaziri M. Quorum-sensing mechanisms and bacterial response to antibiotics in P. aeruginosa. Curr. Microbiol. 2016;73:747–753. PubMed

Poole K. Bacterial multidrug efflux pumps serve other functions. Microbe. 2008;3:179–185.

Rahmati S., Yang S., Davidson A.L. Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol. Microbiol. 2002;43:677–685. PubMed

Varga Z.G., Szabo M.A., Kerenyi M. Interference in quorum sensing signal transmission amongst microbial species. Acta Microbiol. Immunol. Hung. 2012;59:475–484. PubMed

Shah D., Zhang Z., Khodursky A. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 2006;6:53. PubMed PMC

Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358:135–138. PubMed

Soto S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;4:223–229. PubMed PMC

Flemming H.C., Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 2010;8:623–633. PubMed

Gillis R.J., White K.G., Choi K.H. Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2005;49:3858–3867. PubMed PMC

J Pamp S., Gjermansen M., Johansen H.K. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells and depends on the pmr and mexAB-oprM genes. Mol. Microbiol. 2008;68:223–240. PubMed

Zhang L., Mah T.F. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J. Bacteriol. 2008;190:4447–4452. PubMed PMC

Wright G.D. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol. 2016;24:862–871. PubMed

González-Bello C. Antibiotic adjuvants – a strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett. 2017;27:4221–4228. PubMed

Israil A.M., Chifiriuc M.C. Asclepius House; 2009. Bacterial Communication: New Concepts in the Antimicrobial Therapy.

Rasmussen T.B., Bjarnsholt T., Skindersoe M.E. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J. Bacteriol. 2005;187:1799–1814. PubMed PMC

Chan B.K., Abedon S.T., Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013;6:769–783. PubMed

Kvist M., Hancock V., Klemm P. Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl. Environ. Microbiol. 2008;74:7376–7382. PubMed PMC

Preidis G.A., Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology. 2009;136:2015–2031. PubMed PMC

Pop C.S., Hussien M.D., Popa M. Metallic-based micro and nanostructures with antimicrobial activity. Curr. Top. Med. Chem. 2015;16:1577–1582. PubMed

Lazar V., Balotescu C., Cernat R. University of Bucharest Publishing House; 2005. Immunobiology.

Hammami R., Fliss I. Current trends in antimicrobial agent research: chemo- and bioinformatics approaches. Drug Discov. Today. 2010;1314:540–546. PubMed

Sardari S., Dezfulian M. Cheminformatics in anti-infective agents discovery. Mini Rev. Med. Chem. 2007;2:18–19. PubMed

Ramirez M.S., Nikolaidis N., Tolmasky M.E. Rise and dissemination of aminoglycoside resistance: the aac(60)-Ib paradigm. Front. Microbiol. 2013;4:121. PubMed PMC

Peters B.M., Shirtliff M.E., Jabra-Rizk M.A. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog. 2010;6:1001–1067. PubMed PMC

Chifiriuc M.C., Grumezescu A.M., Lazar V. Contribution of antimicrobial peptides to the development of new and efficient antimicrobial strategies. Curr. Proteomics. 2014;11:98–107.

Martins M., Viveiros M., Couto I. Identification of efflux pump-mediated multidrug-resistant bacteria by the ethidium bromide-agar cartwheel method. In Vivo. 2011;25:171–178. PubMed

Negi N., Prakash P., Gupta M.L. Possible role of curcumin as an efflux pump inhibitor in multi drug resistant clinical isolates of Pseudomonas aeruginosa. J. Clin. Diagn. Res. 2014;10:04–07. PubMed PMC

Joshi P., Singh S., Wani A. Osthol and curcumin as inhibitors of human Pgp and multidrug efflux pumps of Staphylococcus aureus: reversing the resistance against frontline antibacterial drugs. Med. Chem. Commun. 2014;5:1540–1547.

Kakarla P., Floyd J., Mukherjee M. Inhibition of the multidrug efflux pump LmrS from Staphylococcus aureus by cumin spice Cuminum cyminum. Arch. Microbiol. 2017;199:465–474. PubMed

Garvey M., Rahman M., Gibbons S. Medicinal plant extracts with efflux inhibitory activity against Gram-negative bacteria. Int. J. Antimicrob. Agents. 2011;37:145–151. PubMed

Mahamoud A., Chevalier J., Libert-Franco S. Antibiotic efflux pumps in Gram-negative bacteria: the inhibitory response strategy. J. Antimicrob. Chemother. 2007;59:1223–1229. PubMed

Siriyong T., Srimanote P., Chusri S. Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. BMC Complement Altern. Med. 2017;17:405. PubMed PMC

Ponnusamy K., Ramasamy M., Savarimuthu I. Indirubin potentiates ciprofloxacin activity in the NorA efflux pump of Staphylococcus aureus. Scand. J. Infect. Dis. 2010;42:500–505. PubMed

Dwivedi G.R., Tyagi R., Sanchita Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa. J. Biomol. Struct. Dyn. 2018;36:4270–4284. PubMed

Stermitz F.R., Beeson T.D., Mueller P.J. Staphylococcus aureus MDR efflux pump inhibitors from a Berberis and a Mahonia (sensu strictu) species. Biochem. Syst. Ecol. 2001;29:793–798. PubMed

Liu K.C.S., Yang S.L., Roberts M.F. Antimalarial activity of Artemisia annua flavonoids from whole plants and cell cultures. Plant Cell Rep. 1992;11:637–640. PubMed

Fiamegos Y.C., Kastritis P.L., Exarchou V. Antimicrobial and efflux pump inhibitory activity of caffeoylquinic acids from Artemisia absinthium against Gram-positive pathogenic bacteria. PLoS One. 2011;4:812–817. PubMed PMC

Stermitz F., Scriven L.N., Tegos G. Two flavonols from Artemisia annua, which potentiate the activity of berberine and norfloxacin against a resistant strain of Staphylococcus aureus. Planta Med. 2002;68:1140–1141. PubMed

Aghayan S.S., Mogadam K.H., Fazli M. The effects of berberine and palmatine on efflux pumps inhibition with different gene patterns in Pseudomonas aeruginosa isolated from burn infections. Avicenna J. Med. Biotechnol. (AJMB) 2017;9:2–7. PubMed PMC

Stermitz F.R., Tawara-Matsuda J., Lorenz P. 5’- Methoxyhydnocarpin-D and pheophorbide A: Berberis species components that potentiate berberine growth inhibition of resistant Staphylococcus aureus. J. Nat. Prod. 2000;63:1146–1149. PubMed

Musumeci R., Speciale A., Costanzo R. Berberis aetnensis C. Presl. extracts: antimicrobial properties and interaction with ciprofloxacin. Int. J. Antimicrob. Agents. 2003;22:48–53. PubMed

Bame J.R., Graf T.N., Junio H.A. Sarothrin from Alkanna orientalis is an antimicrobial agent and efflux pump inhibitor. Planta Med. 2013;79:327–329. PubMed PMC

Chérigo L., Pereda M.R., Fragoso S.M. Inhibitors of bacterial multidrug efflux pumps from the resin glycosides of Ipomoea murucoides. J. Nat. Prod. 2008;71:1037–1045. PubMed

Bag A., Chattopadhyay R.R. Efflux-pump inhibitory activity of a gallotannin from Terminalia chebula fruit against multidrug-resistant uropathogenic Escherichia coli. Nat. Prod. Res. 2014;28:1280–1283. PubMed

Pereda-Miranda R., Kaatz G.W., Gibbons S. Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus. J. Nat. Prod. 2006;69:406–409. PubMed

Maurya A., Dwivedi G., Darokar M. Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli. Chem. Biol. Drug Des. 2013;81:484–490. PubMed

Ramalhete C., Spengler G., Martins A. Inhibition of efflux pumps in methicillin-resistant Staphylococcus aureus and Enterococcus faecalis resistant strains by triterpenoids from Momordica balsamina. Int. J. Antimicrob. Agents. 2011;37:70–74. PubMed

Smith E.C., Kaatz G.W., Seo S.M. The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrob. Agents Chemother. 2007;51:4480–4483. PubMed PMC

Mukanganyama S., Chirisa E., Hazra B. Antimycobacterial activity of diospyrin and its derivatives against Mycobacterium aurum. Res. Pharm. 2012;2:1–13.

Marquez B., Neuville L., Moreau N.J. Multidrug resistance reversal agent from Jatropha elliptica. Phytochemistry. 2005;66:1804–1811. PubMed

Perumal S., Mahmud R. Chemical analysis, inhibition of biofilm formation and biofilm eradication potential of Euphorbia hirta against clinical isolates and standard strains. BMC Complement Altern. Med. 2013;13:346. PubMed PMC

Junwei W., Jing Z., Sanxia L. 2013. Application of liquiritin in preparing Escherichia coli fluoroquinolone efflux pump inhibitor. Chinese Patent CN 102988400.

Belofsky G., Carreno R., Lewis K. Metabolites of the ‘smoke tree’, Dalea spinosa, potentiate antibiotic activity against multidrug-resistant Staphylococcus aureus. J. Nat. Prod. 2006;69:261–264. PubMed

Ahmad A., Khan K.A., Ahmad V.U. Antibacterial activity of juliflorine isolated from Prosopis juliflora. Planta Med. 1986;4:285–288. PubMed

Morel C., Stermitz F.R., Tegos G. Isoflavones as potentiators of antibacterial activity. J. Agric. Food Chem. 2003;51:5677–5679. PubMed

Belofsky G., Percivill D., Lewis K. Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic bacteria. J. Nat. Prod. 2004;67:481–484. PubMed

Stermitz F.R., Cashman K.K., Halligan K.M. Polyacylated neohesperidosides from Geranium caespitosum: bacterial multidrug resistance pump inhibitors. Bioorg. Med. Chem. Lett. 2003;13:1915–1918. PubMed

Roy S.K., Kumari N., Pahwa S. NorA efflux pump inhibitory activity of coumarins from Mesua ferrea. Fitoterapia. 2013;90:140–150. PubMed

Shiu W.K., Malkinson J.P., Rahman M.M. A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. Int. J. Antimicrob. Agents. 2013;42:513–518. PubMed

Oluwatuyi M., Kaatz G.W., Gibbons S. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry. 2004;65:3249–3254. PubMed

Fujita M., Shiota S., Kuroda T. Remarkable synergies between baicalein and tetracycline, and baicalein and ß-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol. 2005;49:391–396. PubMed

Chan B.C., Ip M., Lau C.B. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol. 2011;137:767–773. PubMed

Gibbons S., Oluwatuyi M., Veitch N. Bacterial resistance modifying agents from Lycopus europaeus. Phytochemistry. 2003;62:83–87. PubMed

Chovanová R., Mezovská J., Vavebrková Š. The inhibition of TetK efflux pump of tetracycline resistant Staphylococcus epidermidis by essential oils from three Salvia species. Lett. Appl. Microbiol. 2015;61:58–62. PubMed

Holler J.G., Christensen S.B., Slotved H. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees. J. Antimicrob. Chemother. 2012;67:1138–1144. PubMed

Mambe T.F., Na-Iya J., Fotso W.G. Antibacterial and antibiotic modifying potential of crude extracts, fractions, and compounds from Acacia polyacantha Willd. against MDR Gram-negative bacteria. Evid. Based Complement Alternat. Med. 2019 7507459. PubMed PMC

Dey D., Debnath S., Hazra S. Pomegranate pericarp extract enhances the antibacterial activity of ciprofloxacin against extended-spectrum ß- lactamase (ESBL) and metallo-ß-lactamase (MBL) producing Gram-negative bacilli. Food Chem. Toxicol. 2012;50:4302–4309. PubMed

Dwivedi G.R., Upadhyay H.C., Yadav D.K. 4-Hydroxy-α-tetralone and its derivative as drug resistance reversal agents in multidrug resistant Escherichia coli. Chem. Biol. Drug Des. 2014;3:482–492. PubMed

Falcão-silva V., Silva D.A., de Souza M.F. Modulation of drug resistance in Staphylococcus aureus by a kaempferol glycoside from Herissantia tiubae (Malvaceae) Phytother. Resm. 2009;10:1367–1370. PubMed

Piddock L.J.V., Garvey M.I., Rahman M.M. Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in Gram-negative bacteria. J. Antimicrob. Chemother. 2010;65:1215–1223. PubMed

Chitemerere T.A., Mukanganyama S. Evaluation of cell membrane integrity as a potential antimicrobial target for plant products. BMC Complement Altern. Med. 2014;14:278. PubMed PMC

Dwivedi G.R., Maurya A., Yadav D.K. Drug resistance reversal potential of ursolic acid derivatives against nalidixic acid- and multidrug-resistant Escherichia coli. Chem. Biol. Drug Des. 2015;86:272–283. PubMed

Michalet S., Cartier G., David B. N-Caffeoylphenalkylamide derivates as bacterial efflux pump inhibitors. Bioorg. Med. Chem. Lett. 2007;17:1755–1758. PubMed

Smith E., Williamson E., Zloh M. Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus. Phytother Res. 2005;19:538–542. PubMed

Sharma S., Kumar M., Sharma S. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2010;65:1694–1701. PubMed

Chan B.C., Han X., Lui S. Combating against methicillin-resistant Staphylococcus aureus—two fatty acids from purslane (Portulaca oleracea L.) exhibit synergistic effects with erythromycin. J. Pharm. Pharmacol. 2015;67:107–116. PubMed

Mohtar M., Johari S.A., Li A.R. Inhibitory and resistance-modifying potential of plant-based alkaloids against methicillin-resistant Staphylococcus aureus (MRSA) Curr. Microbiol. 2009;59:181–186. PubMed

Abulrob A.N., Suller M.T.E., Gumbleton M. Identification and biological evaluation of grapefruit oil components as potential novel efflux pump modulators in methicillin-resistant Staphylococcus aureus bacterial strains. Phytochemistry. 2004;65:3021–3027. PubMed

Cabral V., Luo X., Junqueira E. Enhancing activity of antibiotics against Staphylococcus aureus: Zanthoxylum capense constituents and derivatives. Phytomedicine. 2015;22:469–476. PubMed

Price C.T.D., Kaatz G.W., Gustafson J.E. The multidrug efflux pump NorA is not required for salicylate-induced reduction in drug accumulation by Staphylococcus aureus. Int. J. Antimicrob. Agents. 2002;20:206–213. PubMed

Kalia N.P., Mahajan P., Mehra R. Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. J. Antimicrob. Chemother. 2012;67:2401–2408. PubMed

Sudeno Roccaro A., Blanco A.R., Giuliano F. Epigallocatechin-gallate enhances the activity of tetracyclines in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob. Agents Chemother. 2004;48:1968–1973. PubMed PMC

Groblacher B., Kunert O., Bucar F. Compounds of Alpinia katsumadai as potential efflux inhibitors in Mycobacterium smegmatis. Bioorg. Med. Chem. 2012;20:2701–2706. PubMed

Roy S.K., Pahwa S., Nandanwar H. Phenylpropanoids of Alpinia galanga as efflux pump inhibitors in Mycobacterium smegmatis mc2 155. Fitoterapia. 2012;83:1248–1255. PubMed

Dos Santos J.F., Tintino S.R., de Freitas T.S. In vitro and in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid. Comp. Immunol. Microbiol. Infect. Dis. 2018;57:22–28. PubMed

Chusri S., Villanueva I., Voravuthikunchai S.P. Enhancing antibiotic activity: a strategy to control acinetobacter infections. J. Antimicrob. Chemother. 2009;64:1203–1211. PubMed

Miladi H., Zmantar T., Chaabouni Y. Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microb. Pathog. 2009;99:95–100. PubMed

Jin J., Zhang J., Guo N. Farnesol, a potential efflux pump inhibitor in Mycobacterium smegmatis. Molecules. 2010;15:7750–7762. PubMed PMC

Choudhury D., Talukdar A.D., Chetia P. Screening of natural products and derivatives for the identification of RND efflux pump inhibitors. Comb. Chem. High Throughput Screen. 2016;19:705–713. PubMed

Pagès J.M., Amaral L. Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim. Biophys. Acta. 2009;1794:826–833. PubMed

Stavri M., Piddock L., Gibbons S. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother. 2007;59:1247–1260. PubMed

Lee M.D., Galazzo J.L., Staley A.L. Microbial fermentation-derived inhibitors of efflux-pump mediated drug resistance. Farmaco. 2001;56:81–85. PubMed

Coutinho H.D.M., Vasconcellos A., Lima M.A. Termite usage associated with antibiotic therapy: enhancement of aminoglycoside antibiotic activity by natural products of Nasutitermes corniger (Motschulsky 1855), BMC Complement. Altern. Med. 2009;9:35. PubMed PMC

Chaves T.P., Clementino E.L.C., Felismino D.C. Antibiotic resistance modulation by natural products obtained from Nasutitermes corniger (Motschulsky, 1855) and its nest. Saudi J. Biol. Sci. 2015;22:404–408. PubMed PMC

Sorres J., Sabri A., Brel O. Ilicicolinic acids and ilicicolinal derivatives from the fungus Neonectria discophora SNB-CN63 isolated from the nest of the termite Nasutitermes corniger found in French Guiana show antimicrobial activity. Phytochemistry. 2018;151:69–77. PubMed

Kaatz G.W., Moudgal V.V., Seo S.M. Phenylpiperidine selective serotonin reuptake inhibitors interfere with multidrug efflux pump activity in Staphylococcus aureus. Int. J. Antimicrob. Agents. 2003;22:254–261. PubMed

Coutinho H.D.M., Vasconcellos A., Freire-Pessoa H.L. Natural products from the termite Nasutitermes corniger lower aminoglycoside minimum inhibitory concentrations. Pharmacogn. Mag. 2010;6:1–4. PubMed PMC

Blair J.M., Piddock L.J. How to measure export via bacterial multidrug resistance efflux pumps. mBio. 2016;7 e00840-16. PubMed PMC

Schweizer H.P. Understanding efflux in Gram-negative bacteria: opportunities for drug discovery. Expert Opin. Drug Discov. 2012;7:633–642. PubMed

Krishnan V.R., Cacciotto P., Malloci G. Multidrug efflux pumps and their inhibitors characterized by computational modeling. In: Li X.Z., Elkins C.A., Zgurskaya H.I., editors. Efflux Mediated Antimicrobial Resistance in Bacteria. Springer; Switzerland: 2016. pp. 797–831.

Dreier J., Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front. Microbiol. 2015;6:660. PubMed PMC

Ivnitski-Steele I., Holmes A.R., Lamping E. Identification of nile red as a fluorescent substrate of the Candida albicans ATP-binding cassette transporters Cdr1p and Cdr2p and the major facilitator superfamily transporter Mdr1p. Anal. Biochem. 2009;394:87–91. PubMed PMC

Rajendran R., Mowat E., McCulloch E. Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity. Antimicrob. Agents Chemother. 2011;55:2092–2097. PubMed PMC

Bohnert J.A., Schuster S., Szymaniak-Vits M. Determination of real-time efflux phenotypes in Escherichia coli AcrB binding pocket phenylalanine mutants using a 1,20-dinaphthylamine efflux assay. PLoS One. 2011;6 PubMed PMC

Bohnert J.A., Karamian B., Nikaido H. Optimized Nile Red efflux assay of AcrAB-TolC multidrug efflux system shows competition between substrates. Antimicrob. Agents Chemother. 2010;54:3770–3775. PubMed PMC

Viveiros M., Martins A., Paixão L. Demonstration of intrinsic efflux activity of Escherichia coli K-12 AG100 by an automated ethidium bromide method. Int. J. Antimicrob. Agents. 2008;31:458–462. PubMed

Nelson M.L. Modulation of antibiotic efflux in bacteria. Anti-Infect. Agents Med. Chem. 2002;1:35–54.

Askoura M., Mottawea W., Abujamel T. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa. Libyan J. Med. 2011;6 doi: 10.3402/ljm.v6i0.5870. PubMed DOI PMC

Ahmed M., Borsch C.M., Neyfakh A.A. Mutants of the Bacillus subtilis multidrug transporter Bmr with altered sensitivity to the antihypertensive alkaloid reserpine. J. Biol. Chem. 1993;268:11086–11089. PubMed

Garvey M.I., Piddock L.J.V. The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob. Agents Chemother. 2008;52:1677–1685. PubMed PMC

Orhan G., Bayram A., Zer Y. Synergy tests by E-test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J. Clin. Microbiol. Infect. 2005;43:140–143. PubMed PMC

Odds F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003;52:1. PubMed

EUCAST Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 2000;6:503–508. PubMed

Fratini F., Mancini S., Turchi B. A novel interpretation of the fractional inhibitory concentration index: the case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiol. Res. 2017;195:11–17. PubMed

Paixão L., Rodrigues L., Couto I. Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli. J. Biol. Eng. 2009;3:18. PubMed PMC

Coldham N.G., Webber M., Woodward M.J. A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J. Antimicrob. Chemother. 2010;65:1655–1663. PubMed

Cai H., Rose K., Liang L.H. Development of a liquid chromatography/mass spectrometry-based drug accumulation assay in Pseudomonas aeruginosa. Anal. Biochem. 2009;385:321–325. PubMed

Piddock L.J., Jin Y.F., Ricci V. Quinolone accumulation by Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. J. Antimicrob. Chemother. 1999;43:61–70. PubMed

Matsumoto Y., Hayama K., Sakakihara S. Evaluation of multidrug efflux pump inhibitors by a new method using microfluidic channels. PLoS One. 2011;6 PubMed PMC

Martins M., McCusker M.P., Viveiros M. A simple method for assessment of MDR bacteria for over-expressed efflux pumps. Open Microbiol. J. 2013;7:72–82. PubMed PMC

Rao M., Padyana S., Dipin K.M. Antimicrobial compounds of plant origin as efflux pump inhibitors: new avenues for controlling multidrug resistant pathogens. J. Antimicrob. Agents. 2018;4:1–6.

Aparna V., Dineshkumar K., Mohanalakshmi N. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One. 2014;7 PubMed PMC

Ramaswamy V.K., Cacciotto P., Malloci G. Computational modelling of efflux pumps and their inhibitors. Essays Biochem. 2017;61:141–156. PubMed

Brown A.R., Ettefagh K.A., Todd D. A mass spectrometry-based assay for improved quantitative measurements of efflux pump inhibition. PLoS One. 2015;10 PubMed PMC

Zgurskaya H.I., Lopez C.A., Gnanakaran S. Permeability barrier of Gram-negative cell envelopes and approaches to bypass it. ACS Infect. Dis. 2015;1:512–522. PubMed PMC

Wang Y., Venter H., Ma S. Efflux pump inhibitors: a novel approach to combat efflux-mediated drug resistance in bacteria. Curr. Drug Targets. 2016;17:702–719. PubMed

Barbara Z., Versace I. Inhibitors of multidrug-resistant efflux systems in bacteria. Recent Pat. Anti-Infect. Drug Discov. 2009;4:37–50. PubMed

Nargotra A., Koul S., Sharma S. Quantitative-structure-activity relationship (QSAR) of aryl alkenyl amides/imines for bacterial efflux pump inhibitors. Eur. J. Med. Chem. 2008;44:229–238. PubMed

Klyachko K.A., Schuldiner S., Neyfakh A.A. Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter. J. Bacteriol. 1997;179:2189–2193. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace