Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification
Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32923005
PubMed Central
PMC7474127
DOI
10.1016/j.jpha.2019.11.002
PII: S2095-1779(19)30646-X
Knihovny.cz E-zdroje
- Klíčová slova
- Edible plants, Efflux activity assays, Efflux pump inhibitors, Multidrug-resistant bacteria, Plant secondary metabolites,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The upsurge of multiple drug resistance (MDR) bacteria substantially diminishes the effectiveness of antibiotic arsenal and therefore intensifies the rate of therapeutic failure. The major factor in MDR is efflux pump-mediated resistance. A unique pump can make bacteria withstand a wide range of structurally diverse compounds. Therefore, their inhibition is a promising route to eliminate resistance phenomenon in bacteria. Phytochemicals are excellent alternatives as resistance-modifying agents. They can directly kill bacteria or interact with the crucial events of pathogenicity, thereby decreasing the ability of bacteria to develop resistance. Numerous botanicals display noteworthy efflux pumps inhibitory activities. Edible plants are of growing interest. Likewise, some plant families would be excellent sources of efflux pump inhibitors (EPIs) including Apocynaceae, Berberidaceae, Convolvulaceae, Cucurbitaceae, Fabaceae, Lamiaceae, and Zingiberaceae. Easily applicable methods for screening plant-derived EPIs include checkerboard synergy test, berberine uptake assay and ethidium bromide test. In silico high-throughput virtual detection can be evaluated as a criterion of excluding compounds with efflux substrate-like characteristics, thereby improving the selection process and extending the identification of EPIs. To ascertain the efflux activity inhibition, real-time PCR and quantitative mass spectrometry can be applied. This review emphasizes on efflux pumps and their roles in transmitting bacterial resistance and an update plant-derived EPIs and strategies for identification.
Zobrazit více v PubMed
Magiorakos A.P., Srinivasan A., Carey R.B. Multidrug-resistant, extensively drug-resistant and pan-drug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012;18:268–281. PubMed
WHO (World Health Organization) vol. 12. WHO/EMP/IAU/2017; 2017. (Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis).
Najafi A. There is no escape from the ESKAPE pathogens. 2016. https://emerypharma.com/blog/author/anajafi.
Ayukekbong J.A., Ntemgwa M., Atabe A.N. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob. Resist. Infect. Contr. 2017;6:1–8. PubMed PMC
Masi M., Refregiers M., Pos K.M. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat. Microbiol. 2017;2:17001. PubMed
Spengler G., Kincses A., Gajdacs M. New roads leading to old destinations: efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules. 2017;22:1–25. PubMed PMC
Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994;264:382–388. PubMed
Cowan M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999;12:564–582. PubMed PMC
Kuete V., Efferth T. Cameroonian medicinal plants: pharmacology and derived natural products. Front. Pharmacol. 2010;1:123. PubMed PMC
Seukep J.A., Fankam A.G., Djeussi D.E. Antibacterial activities of the methanol extracts of seven Cameroonian dietary plants against bacteria expressing MDR phenotypes. SpringerPlus. 2013;363:1–8. PubMed PMC
Seukep J.A., Sandjo L.P., Ngadjui B.T. Antibacterial and antibiotic-resistance modifying activity of the extracts and compounds from Nauclea pobeguinii against Gram-negative multi-drug resistant phenotypes. BMC Complement Altern. Med. 2016;16:193. PubMed PMC
Seukep J.A., Sandjo L.P., Ngadjui B.T. Antibacterial activities of the methanol extracts and compounds from Uapaca togoensis against Gram-negative multi-drug resistant phenotypes. South Afr. J. Bot. 2016;103:1–5.
Gupta P.D., Birdi T.J. Development of botanicals to combat antibiotic resistance. J. Ayurveda Integr. Med. 2017;8:266–275. PubMed PMC
Touani F.K., Seukep J.A., Djeussi D.E. Antibiotic-potentiation activities of four Cameroonian dietary plants against multidrug-resistant Gram-negative bacteria expressing efflux pumps. BMC Complement Altern. Med. 2014;14:258. PubMed PMC
Cheesman M.J., Ilanko A., Blonk B. Developing new antimicrobial therapies: are synergistic combinations of plants extracts/compounds with conventional antibiotics the solution? Pharmacogn. Rev. 2017;22:57–72. PubMed PMC
Tegos G., Stermitz F.R., Lomovskaya O. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother. 2002;46:3133–3141. PubMed PMC
Kaatz G.W. Inhibition of bacterial efflux pumps: a new strategy to combat increasing antimicrobial agent resistance. Expert Opin. Emerg. Drugs. 2002;7:223–233. PubMed
Mamedov N. Medicinal plants studies: history, challenges and prospective. Med. Aromatic Plants. 2012;1:1–2.
Sana M., Jameel H., Rahman M. Miracle remedy: inhibition of bacterial efflux pumps by natural products. J. Infect. Dis. Ther. 2015;3:213.
Kumar S., Varela M.F. Molecular mechanisms of bacterial resistance to antimicrobial agents. In: Méndez-Vilas A., editor. Microbial Pathogens and Strategies for Combating Them: Science, Technology, and Education. 2013. pp. 522–534.
Davies J., Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010;74:417–433. PubMed PMC
Duval M., Dar D., Carvalho F. HflXr, a homolog of a ribosome-splitting factor, mediates antibiotic resistance. Proc. Natl. Acad. Sci. USA. 2018;52:13359–13364. PubMed PMC
Poole K. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 2005;56:20–51. PubMed
Wright G.D. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv. Drug Deliv. Rev. 2005;10:1451–1470. PubMed
Paterson D.L. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Infect. Contr. 2006;34:64–73. PubMed
Lambert P.A. Bacterial resistance to antibiotics: modified target sites. Adv. Drug Deliv. Rev. 2005;57:1471–1485. PubMed
Wright G.D. Molecular mechanisms of antibiotic resistance. Chem. Commun. 2011;14:4055–4061. PubMed
Liu J.H., Pan Y.S., Yuan L. Genetic variations in the active efflux pump genes acrA/B and tolC in different drug-induced strains of Escherichia coli. Genet. Mol. Res. 2013;3:2829–2836. PubMed
Hassan K.A., Liu Q., Henderson P.J. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio. 2015;6 e1982–14. PubMed PMC
Nishino K., Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 2001;20:5803–5812. PubMed PMC
Paulsen I.T., Brown M.H., Skurray R.A. Proton-dependent multidrug efflux systems. Microbiol. Rev. 1996;4:575–608. PubMed PMC
Schindler B.D., Kaatz G.W. Multidrug efflux pumps of Gram-positive bacteria. Drug Resist. Updates. 2016;27:1–13. PubMed
Roca I., Marti S., Espinal P. CraA: an MFS efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2009;53:4013–4014. PubMed PMC
Srinivasan V.B., Singh B.B., Priyadarshi N. Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS One. 2014;9 PubMed PMC
Bay D.C., Rommens K.L., Turner R.J. Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim. Biophys. Acta. 2008;9:1814–1838. PubMed
Banigan J.R., Gayen A., Cho M.K. A structured loop modulates coupling between the substrate-binding and dimerization domains in the multidrug resistance transporter EmrE. J. Biol. Chem. 2015;2:805–814. PubMed PMC
Beketskaia M.S., Bay D.C., Turner R.J. Outer membrane protein OmpW participates with small multidrug resistance protein member EmrE in quaternary cationic compound efflux. J. Bacteriol. 2014;196:1408–1414. PubMed PMC
Takatsuka Y., Chen C., Nikaido H. Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc. Natl. Acad. Sci. USA. 2010;15:6559–6565. PubMed PMC
Takatsuka Y., Nikaido H. Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism. J. Bacteriol. 2009;6:1729–1737. PubMed PMC
Davidson A.L., Dassa E., Orelle C. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 2008;2:317–364. PubMed PMC
Schmitt L., Tampe R. Structure and mechanism of ABC transporters. Curr. Opin. Struct. Biol. 2002;6:754–760. PubMed
Gupta R.P., Kueppers P., Schmitt L. The multidrug transporter Pdr5: a molecular diode? Biol. Chem. 2011;12:53–60. PubMed
Putman M., van Veen H., Konings W. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 2000;64:672–693. PubMed PMC
Kuroda T., Tsuchiya T. Multidrug efflux transporters in the MATE family. Biochim. Biophys. Acta. 2009;5:763–768. PubMed
Kaatz G.W., McAleese F., Seo S.M. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob. Agents Chemother. 2005;49:1857–1864. PubMed PMC
Waters C.M., Bassler B.L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005;21:319–346. PubMed
Xu G.M. Relationships between the regulatory systems of quorum sensing and multidrug resistance. Front. Microbiol. 2016;7:95–98. PubMed PMC
Rasamiravaka T., El Jaziri M. Quorum-sensing mechanisms and bacterial response to antibiotics in P. aeruginosa. Curr. Microbiol. 2016;73:747–753. PubMed
Poole K. Bacterial multidrug efflux pumps serve other functions. Microbe. 2008;3:179–185.
Rahmati S., Yang S., Davidson A.L. Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol. Microbiol. 2002;43:677–685. PubMed
Varga Z.G., Szabo M.A., Kerenyi M. Interference in quorum sensing signal transmission amongst microbial species. Acta Microbiol. Immunol. Hung. 2012;59:475–484. PubMed
Shah D., Zhang Z., Khodursky A. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 2006;6:53. PubMed PMC
Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358:135–138. PubMed
Soto S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;4:223–229. PubMed PMC
Flemming H.C., Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 2010;8:623–633. PubMed
Gillis R.J., White K.G., Choi K.H. Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2005;49:3858–3867. PubMed PMC
J Pamp S., Gjermansen M., Johansen H.K. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells and depends on the pmr and mexAB-oprM genes. Mol. Microbiol. 2008;68:223–240. PubMed
Zhang L., Mah T.F. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J. Bacteriol. 2008;190:4447–4452. PubMed PMC
Wright G.D. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol. 2016;24:862–871. PubMed
González-Bello C. Antibiotic adjuvants – a strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett. 2017;27:4221–4228. PubMed
Israil A.M., Chifiriuc M.C. Asclepius House; 2009. Bacterial Communication: New Concepts in the Antimicrobial Therapy.
Rasmussen T.B., Bjarnsholt T., Skindersoe M.E. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J. Bacteriol. 2005;187:1799–1814. PubMed PMC
Chan B.K., Abedon S.T., Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013;6:769–783. PubMed
Kvist M., Hancock V., Klemm P. Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl. Environ. Microbiol. 2008;74:7376–7382. PubMed PMC
Preidis G.A., Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology. 2009;136:2015–2031. PubMed PMC
Pop C.S., Hussien M.D., Popa M. Metallic-based micro and nanostructures with antimicrobial activity. Curr. Top. Med. Chem. 2015;16:1577–1582. PubMed
Lazar V., Balotescu C., Cernat R. University of Bucharest Publishing House; 2005. Immunobiology.
Hammami R., Fliss I. Current trends in antimicrobial agent research: chemo- and bioinformatics approaches. Drug Discov. Today. 2010;1314:540–546. PubMed
Sardari S., Dezfulian M. Cheminformatics in anti-infective agents discovery. Mini Rev. Med. Chem. 2007;2:18–19. PubMed
Ramirez M.S., Nikolaidis N., Tolmasky M.E. Rise and dissemination of aminoglycoside resistance: the aac(60)-Ib paradigm. Front. Microbiol. 2013;4:121. PubMed PMC
Peters B.M., Shirtliff M.E., Jabra-Rizk M.A. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog. 2010;6:1001–1067. PubMed PMC
Chifiriuc M.C., Grumezescu A.M., Lazar V. Contribution of antimicrobial peptides to the development of new and efficient antimicrobial strategies. Curr. Proteomics. 2014;11:98–107.
Martins M., Viveiros M., Couto I. Identification of efflux pump-mediated multidrug-resistant bacteria by the ethidium bromide-agar cartwheel method. In Vivo. 2011;25:171–178. PubMed
Negi N., Prakash P., Gupta M.L. Possible role of curcumin as an efflux pump inhibitor in multi drug resistant clinical isolates of Pseudomonas aeruginosa. J. Clin. Diagn. Res. 2014;10:04–07. PubMed PMC
Joshi P., Singh S., Wani A. Osthol and curcumin as inhibitors of human Pgp and multidrug efflux pumps of Staphylococcus aureus: reversing the resistance against frontline antibacterial drugs. Med. Chem. Commun. 2014;5:1540–1547.
Kakarla P., Floyd J., Mukherjee M. Inhibition of the multidrug efflux pump LmrS from Staphylococcus aureus by cumin spice Cuminum cyminum. Arch. Microbiol. 2017;199:465–474. PubMed
Garvey M., Rahman M., Gibbons S. Medicinal plant extracts with efflux inhibitory activity against Gram-negative bacteria. Int. J. Antimicrob. Agents. 2011;37:145–151. PubMed
Mahamoud A., Chevalier J., Libert-Franco S. Antibiotic efflux pumps in Gram-negative bacteria: the inhibitory response strategy. J. Antimicrob. Chemother. 2007;59:1223–1229. PubMed
Siriyong T., Srimanote P., Chusri S. Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. BMC Complement Altern. Med. 2017;17:405. PubMed PMC
Ponnusamy K., Ramasamy M., Savarimuthu I. Indirubin potentiates ciprofloxacin activity in the NorA efflux pump of Staphylococcus aureus. Scand. J. Infect. Dis. 2010;42:500–505. PubMed
Dwivedi G.R., Tyagi R., Sanchita Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa. J. Biomol. Struct. Dyn. 2018;36:4270–4284. PubMed
Stermitz F.R., Beeson T.D., Mueller P.J. Staphylococcus aureus MDR efflux pump inhibitors from a Berberis and a Mahonia (sensu strictu) species. Biochem. Syst. Ecol. 2001;29:793–798. PubMed
Liu K.C.S., Yang S.L., Roberts M.F. Antimalarial activity of Artemisia annua flavonoids from whole plants and cell cultures. Plant Cell Rep. 1992;11:637–640. PubMed
Fiamegos Y.C., Kastritis P.L., Exarchou V. Antimicrobial and efflux pump inhibitory activity of caffeoylquinic acids from Artemisia absinthium against Gram-positive pathogenic bacteria. PLoS One. 2011;4:812–817. PubMed PMC
Stermitz F., Scriven L.N., Tegos G. Two flavonols from Artemisia annua, which potentiate the activity of berberine and norfloxacin against a resistant strain of Staphylococcus aureus. Planta Med. 2002;68:1140–1141. PubMed
Aghayan S.S., Mogadam K.H., Fazli M. The effects of berberine and palmatine on efflux pumps inhibition with different gene patterns in Pseudomonas aeruginosa isolated from burn infections. Avicenna J. Med. Biotechnol. (AJMB) 2017;9:2–7. PubMed PMC
Stermitz F.R., Tawara-Matsuda J., Lorenz P. 5’- Methoxyhydnocarpin-D and pheophorbide A: Berberis species components that potentiate berberine growth inhibition of resistant Staphylococcus aureus. J. Nat. Prod. 2000;63:1146–1149. PubMed
Musumeci R., Speciale A., Costanzo R. Berberis aetnensis C. Presl. extracts: antimicrobial properties and interaction with ciprofloxacin. Int. J. Antimicrob. Agents. 2003;22:48–53. PubMed
Bame J.R., Graf T.N., Junio H.A. Sarothrin from Alkanna orientalis is an antimicrobial agent and efflux pump inhibitor. Planta Med. 2013;79:327–329. PubMed PMC
Chérigo L., Pereda M.R., Fragoso S.M. Inhibitors of bacterial multidrug efflux pumps from the resin glycosides of Ipomoea murucoides. J. Nat. Prod. 2008;71:1037–1045. PubMed
Bag A., Chattopadhyay R.R. Efflux-pump inhibitory activity of a gallotannin from Terminalia chebula fruit against multidrug-resistant uropathogenic Escherichia coli. Nat. Prod. Res. 2014;28:1280–1283. PubMed
Pereda-Miranda R., Kaatz G.W., Gibbons S. Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus. J. Nat. Prod. 2006;69:406–409. PubMed
Maurya A., Dwivedi G., Darokar M. Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli. Chem. Biol. Drug Des. 2013;81:484–490. PubMed
Ramalhete C., Spengler G., Martins A. Inhibition of efflux pumps in methicillin-resistant Staphylococcus aureus and Enterococcus faecalis resistant strains by triterpenoids from Momordica balsamina. Int. J. Antimicrob. Agents. 2011;37:70–74. PubMed
Smith E.C., Kaatz G.W., Seo S.M. The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrob. Agents Chemother. 2007;51:4480–4483. PubMed PMC
Mukanganyama S., Chirisa E., Hazra B. Antimycobacterial activity of diospyrin and its derivatives against Mycobacterium aurum. Res. Pharm. 2012;2:1–13.
Marquez B., Neuville L., Moreau N.J. Multidrug resistance reversal agent from Jatropha elliptica. Phytochemistry. 2005;66:1804–1811. PubMed
Perumal S., Mahmud R. Chemical analysis, inhibition of biofilm formation and biofilm eradication potential of Euphorbia hirta against clinical isolates and standard strains. BMC Complement Altern. Med. 2013;13:346. PubMed PMC
Junwei W., Jing Z., Sanxia L. 2013. Application of liquiritin in preparing Escherichia coli fluoroquinolone efflux pump inhibitor. Chinese Patent CN 102988400.
Belofsky G., Carreno R., Lewis K. Metabolites of the ‘smoke tree’, Dalea spinosa, potentiate antibiotic activity against multidrug-resistant Staphylococcus aureus. J. Nat. Prod. 2006;69:261–264. PubMed
Ahmad A., Khan K.A., Ahmad V.U. Antibacterial activity of juliflorine isolated from Prosopis juliflora. Planta Med. 1986;4:285–288. PubMed
Morel C., Stermitz F.R., Tegos G. Isoflavones as potentiators of antibacterial activity. J. Agric. Food Chem. 2003;51:5677–5679. PubMed
Belofsky G., Percivill D., Lewis K. Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic bacteria. J. Nat. Prod. 2004;67:481–484. PubMed
Stermitz F.R., Cashman K.K., Halligan K.M. Polyacylated neohesperidosides from Geranium caespitosum: bacterial multidrug resistance pump inhibitors. Bioorg. Med. Chem. Lett. 2003;13:1915–1918. PubMed
Roy S.K., Kumari N., Pahwa S. NorA efflux pump inhibitory activity of coumarins from Mesua ferrea. Fitoterapia. 2013;90:140–150. PubMed
Shiu W.K., Malkinson J.P., Rahman M.M. A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. Int. J. Antimicrob. Agents. 2013;42:513–518. PubMed
Oluwatuyi M., Kaatz G.W., Gibbons S. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry. 2004;65:3249–3254. PubMed
Fujita M., Shiota S., Kuroda T. Remarkable synergies between baicalein and tetracycline, and baicalein and ß-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol. 2005;49:391–396. PubMed
Chan B.C., Ip M., Lau C.B. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol. 2011;137:767–773. PubMed
Gibbons S., Oluwatuyi M., Veitch N. Bacterial resistance modifying agents from Lycopus europaeus. Phytochemistry. 2003;62:83–87. PubMed
Chovanová R., Mezovská J., Vavebrková Š. The inhibition of TetK efflux pump of tetracycline resistant Staphylococcus epidermidis by essential oils from three Salvia species. Lett. Appl. Microbiol. 2015;61:58–62. PubMed
Holler J.G., Christensen S.B., Slotved H. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees. J. Antimicrob. Chemother. 2012;67:1138–1144. PubMed
Mambe T.F., Na-Iya J., Fotso W.G. Antibacterial and antibiotic modifying potential of crude extracts, fractions, and compounds from Acacia polyacantha Willd. against MDR Gram-negative bacteria. Evid. Based Complement Alternat. Med. 2019 7507459. PubMed PMC
Dey D., Debnath S., Hazra S. Pomegranate pericarp extract enhances the antibacterial activity of ciprofloxacin against extended-spectrum ß- lactamase (ESBL) and metallo-ß-lactamase (MBL) producing Gram-negative bacilli. Food Chem. Toxicol. 2012;50:4302–4309. PubMed
Dwivedi G.R., Upadhyay H.C., Yadav D.K. 4-Hydroxy-α-tetralone and its derivative as drug resistance reversal agents in multidrug resistant Escherichia coli. Chem. Biol. Drug Des. 2014;3:482–492. PubMed
Falcão-silva V., Silva D.A., de Souza M.F. Modulation of drug resistance in Staphylococcus aureus by a kaempferol glycoside from Herissantia tiubae (Malvaceae) Phytother. Resm. 2009;10:1367–1370. PubMed
Piddock L.J.V., Garvey M.I., Rahman M.M. Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in Gram-negative bacteria. J. Antimicrob. Chemother. 2010;65:1215–1223. PubMed
Chitemerere T.A., Mukanganyama S. Evaluation of cell membrane integrity as a potential antimicrobial target for plant products. BMC Complement Altern. Med. 2014;14:278. PubMed PMC
Dwivedi G.R., Maurya A., Yadav D.K. Drug resistance reversal potential of ursolic acid derivatives against nalidixic acid- and multidrug-resistant Escherichia coli. Chem. Biol. Drug Des. 2015;86:272–283. PubMed
Michalet S., Cartier G., David B. N-Caffeoylphenalkylamide derivates as bacterial efflux pump inhibitors. Bioorg. Med. Chem. Lett. 2007;17:1755–1758. PubMed
Smith E., Williamson E., Zloh M. Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus. Phytother Res. 2005;19:538–542. PubMed
Sharma S., Kumar M., Sharma S. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2010;65:1694–1701. PubMed
Chan B.C., Han X., Lui S. Combating against methicillin-resistant Staphylococcus aureus—two fatty acids from purslane (Portulaca oleracea L.) exhibit synergistic effects with erythromycin. J. Pharm. Pharmacol. 2015;67:107–116. PubMed
Mohtar M., Johari S.A., Li A.R. Inhibitory and resistance-modifying potential of plant-based alkaloids against methicillin-resistant Staphylococcus aureus (MRSA) Curr. Microbiol. 2009;59:181–186. PubMed
Abulrob A.N., Suller M.T.E., Gumbleton M. Identification and biological evaluation of grapefruit oil components as potential novel efflux pump modulators in methicillin-resistant Staphylococcus aureus bacterial strains. Phytochemistry. 2004;65:3021–3027. PubMed
Cabral V., Luo X., Junqueira E. Enhancing activity of antibiotics against Staphylococcus aureus: Zanthoxylum capense constituents and derivatives. Phytomedicine. 2015;22:469–476. PubMed
Price C.T.D., Kaatz G.W., Gustafson J.E. The multidrug efflux pump NorA is not required for salicylate-induced reduction in drug accumulation by Staphylococcus aureus. Int. J. Antimicrob. Agents. 2002;20:206–213. PubMed
Kalia N.P., Mahajan P., Mehra R. Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. J. Antimicrob. Chemother. 2012;67:2401–2408. PubMed
Sudeno Roccaro A., Blanco A.R., Giuliano F. Epigallocatechin-gallate enhances the activity of tetracyclines in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob. Agents Chemother. 2004;48:1968–1973. PubMed PMC
Groblacher B., Kunert O., Bucar F. Compounds of Alpinia katsumadai as potential efflux inhibitors in Mycobacterium smegmatis. Bioorg. Med. Chem. 2012;20:2701–2706. PubMed
Roy S.K., Pahwa S., Nandanwar H. Phenylpropanoids of Alpinia galanga as efflux pump inhibitors in Mycobacterium smegmatis mc2 155. Fitoterapia. 2012;83:1248–1255. PubMed
Dos Santos J.F., Tintino S.R., de Freitas T.S. In vitro and in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid. Comp. Immunol. Microbiol. Infect. Dis. 2018;57:22–28. PubMed
Chusri S., Villanueva I., Voravuthikunchai S.P. Enhancing antibiotic activity: a strategy to control acinetobacter infections. J. Antimicrob. Chemother. 2009;64:1203–1211. PubMed
Miladi H., Zmantar T., Chaabouni Y. Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microb. Pathog. 2009;99:95–100. PubMed
Jin J., Zhang J., Guo N. Farnesol, a potential efflux pump inhibitor in Mycobacterium smegmatis. Molecules. 2010;15:7750–7762. PubMed PMC
Choudhury D., Talukdar A.D., Chetia P. Screening of natural products and derivatives for the identification of RND efflux pump inhibitors. Comb. Chem. High Throughput Screen. 2016;19:705–713. PubMed
Pagès J.M., Amaral L. Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim. Biophys. Acta. 2009;1794:826–833. PubMed
Stavri M., Piddock L., Gibbons S. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother. 2007;59:1247–1260. PubMed
Lee M.D., Galazzo J.L., Staley A.L. Microbial fermentation-derived inhibitors of efflux-pump mediated drug resistance. Farmaco. 2001;56:81–85. PubMed
Coutinho H.D.M., Vasconcellos A., Lima M.A. Termite usage associated with antibiotic therapy: enhancement of aminoglycoside antibiotic activity by natural products of Nasutitermes corniger (Motschulsky 1855), BMC Complement. Altern. Med. 2009;9:35. PubMed PMC
Chaves T.P., Clementino E.L.C., Felismino D.C. Antibiotic resistance modulation by natural products obtained from Nasutitermes corniger (Motschulsky, 1855) and its nest. Saudi J. Biol. Sci. 2015;22:404–408. PubMed PMC
Sorres J., Sabri A., Brel O. Ilicicolinic acids and ilicicolinal derivatives from the fungus Neonectria discophora SNB-CN63 isolated from the nest of the termite Nasutitermes corniger found in French Guiana show antimicrobial activity. Phytochemistry. 2018;151:69–77. PubMed
Kaatz G.W., Moudgal V.V., Seo S.M. Phenylpiperidine selective serotonin reuptake inhibitors interfere with multidrug efflux pump activity in Staphylococcus aureus. Int. J. Antimicrob. Agents. 2003;22:254–261. PubMed
Coutinho H.D.M., Vasconcellos A., Freire-Pessoa H.L. Natural products from the termite Nasutitermes corniger lower aminoglycoside minimum inhibitory concentrations. Pharmacogn. Mag. 2010;6:1–4. PubMed PMC
Blair J.M., Piddock L.J. How to measure export via bacterial multidrug resistance efflux pumps. mBio. 2016;7 e00840-16. PubMed PMC
Schweizer H.P. Understanding efflux in Gram-negative bacteria: opportunities for drug discovery. Expert Opin. Drug Discov. 2012;7:633–642. PubMed
Krishnan V.R., Cacciotto P., Malloci G. Multidrug efflux pumps and their inhibitors characterized by computational modeling. In: Li X.Z., Elkins C.A., Zgurskaya H.I., editors. Efflux Mediated Antimicrobial Resistance in Bacteria. Springer; Switzerland: 2016. pp. 797–831.
Dreier J., Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front. Microbiol. 2015;6:660. PubMed PMC
Ivnitski-Steele I., Holmes A.R., Lamping E. Identification of nile red as a fluorescent substrate of the Candida albicans ATP-binding cassette transporters Cdr1p and Cdr2p and the major facilitator superfamily transporter Mdr1p. Anal. Biochem. 2009;394:87–91. PubMed PMC
Rajendran R., Mowat E., McCulloch E. Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity. Antimicrob. Agents Chemother. 2011;55:2092–2097. PubMed PMC
Bohnert J.A., Schuster S., Szymaniak-Vits M. Determination of real-time efflux phenotypes in Escherichia coli AcrB binding pocket phenylalanine mutants using a 1,20-dinaphthylamine efflux assay. PLoS One. 2011;6 PubMed PMC
Bohnert J.A., Karamian B., Nikaido H. Optimized Nile Red efflux assay of AcrAB-TolC multidrug efflux system shows competition between substrates. Antimicrob. Agents Chemother. 2010;54:3770–3775. PubMed PMC
Viveiros M., Martins A., Paixão L. Demonstration of intrinsic efflux activity of Escherichia coli K-12 AG100 by an automated ethidium bromide method. Int. J. Antimicrob. Agents. 2008;31:458–462. PubMed
Nelson M.L. Modulation of antibiotic efflux in bacteria. Anti-Infect. Agents Med. Chem. 2002;1:35–54.
Askoura M., Mottawea W., Abujamel T. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa. Libyan J. Med. 2011;6 doi: 10.3402/ljm.v6i0.5870. PubMed DOI PMC
Ahmed M., Borsch C.M., Neyfakh A.A. Mutants of the Bacillus subtilis multidrug transporter Bmr with altered sensitivity to the antihypertensive alkaloid reserpine. J. Biol. Chem. 1993;268:11086–11089. PubMed
Garvey M.I., Piddock L.J.V. The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob. Agents Chemother. 2008;52:1677–1685. PubMed PMC
Orhan G., Bayram A., Zer Y. Synergy tests by E-test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J. Clin. Microbiol. Infect. 2005;43:140–143. PubMed PMC
Odds F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003;52:1. PubMed
EUCAST Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 2000;6:503–508. PubMed
Fratini F., Mancini S., Turchi B. A novel interpretation of the fractional inhibitory concentration index: the case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiol. Res. 2017;195:11–17. PubMed
Paixão L., Rodrigues L., Couto I. Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli. J. Biol. Eng. 2009;3:18. PubMed PMC
Coldham N.G., Webber M., Woodward M.J. A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J. Antimicrob. Chemother. 2010;65:1655–1663. PubMed
Cai H., Rose K., Liang L.H. Development of a liquid chromatography/mass spectrometry-based drug accumulation assay in Pseudomonas aeruginosa. Anal. Biochem. 2009;385:321–325. PubMed
Piddock L.J., Jin Y.F., Ricci V. Quinolone accumulation by Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. J. Antimicrob. Chemother. 1999;43:61–70. PubMed
Matsumoto Y., Hayama K., Sakakihara S. Evaluation of multidrug efflux pump inhibitors by a new method using microfluidic channels. PLoS One. 2011;6 PubMed PMC
Martins M., McCusker M.P., Viveiros M. A simple method for assessment of MDR bacteria for over-expressed efflux pumps. Open Microbiol. J. 2013;7:72–82. PubMed PMC
Rao M., Padyana S., Dipin K.M. Antimicrobial compounds of plant origin as efflux pump inhibitors: new avenues for controlling multidrug resistant pathogens. J. Antimicrob. Agents. 2018;4:1–6.
Aparna V., Dineshkumar K., Mohanalakshmi N. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One. 2014;7 PubMed PMC
Ramaswamy V.K., Cacciotto P., Malloci G. Computational modelling of efflux pumps and their inhibitors. Essays Biochem. 2017;61:141–156. PubMed
Brown A.R., Ettefagh K.A., Todd D. A mass spectrometry-based assay for improved quantitative measurements of efflux pump inhibition. PLoS One. 2015;10 PubMed PMC
Zgurskaya H.I., Lopez C.A., Gnanakaran S. Permeability barrier of Gram-negative cell envelopes and approaches to bypass it. ACS Infect. Dis. 2015;1:512–522. PubMed PMC
Wang Y., Venter H., Ma S. Efflux pump inhibitors: a novel approach to combat efflux-mediated drug resistance in bacteria. Curr. Drug Targets. 2016;17:702–719. PubMed
Barbara Z., Versace I. Inhibitors of multidrug-resistant efflux systems in bacteria. Recent Pat. Anti-Infect. Drug Discov. 2009;4:37–50. PubMed
Nargotra A., Koul S., Sharma S. Quantitative-structure-activity relationship (QSAR) of aryl alkenyl amides/imines for bacterial efflux pump inhibitors. Eur. J. Med. Chem. 2008;44:229–238. PubMed
Klyachko K.A., Schuldiner S., Neyfakh A.A. Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter. J. Bacteriol. 1997;179:2189–2193. PubMed PMC