Neurobiology, Functions, and Relevance of Excitatory Amino Acid Transporters (EAATs) to Treatment of Refractory Epilepsy
Jazyk angličtina Země Nový Zéland Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
32926322
DOI
10.1007/s40263-020-00764-y
PII: 10.1007/s40263-020-00764-y
Knihovny.cz E-zdroje
- MeSH
- antikonvulziva farmakologie MeSH
- kyselina glutamová metabolismus MeSH
- lidé MeSH
- mozek patofyziologie MeSH
- nervový přenos účinky léků MeSH
- proteiny přenášející glutamát přes plazmatickou membránu metabolismus MeSH
- refrakterní epilepsie farmakoterapie patofyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antikonvulziva MeSH
- kyselina glutamová MeSH
- proteiny přenášející glutamát přes plazmatickou membránu MeSH
Epilepsy is one of the most prevalent and devastating neurological disorders characterized by episodes of unusual sensations, loss of awareness, and reoccurring seizures. The frequency and intensity of epileptic fits can vary to a great degree, with almost a third of all cases resistant to available therapies. At present, there is a major unmet need for effective and specific therapeutic intervention. Impairments of the exquisite balance between excitatory and inhibitory synaptic processes in the brain are considered key in the onset and pathophysiology of the disease. As the primary excitatory neurotransmitter in the central nervous system, glutamate has been implicated in the process, with the glutamatergic system holding center stage in the pathobiology as well as in developing disease-modifying therapies. Emerging data pinpoint impairments of glutamate clearance as one of the key causative factors in drug-resistant disease forms. Reinstatement of glutamate homeostasis using pharmacological and genetic modulation of glutamate clearance is therefore considered to be of major translational relevance. In this article, we review the neurobiological and clinical evidence suggesting complex aberrations in the activity and functions of excitatory amino acid transporters (EAATs) in epilepsy, with knock-on effects on glutamate homeostasis as a leading cause for the development of refractory forms. We consider the emerging data on pharmacological and genetic manipulations of EAATs, with reference to seizures and glutamate dyshomeostasis, and review their fundamental and translational relevance. We discuss the most recent advances in the EAATs research in human and animal models, along with numerous questions that remain open for debate and critical appraisal. Contrary to the widely held view on EAATs as a promising therapeutic target for management of refractory epilepsy as well as other neurological and psychiatric conditions related to glutamatergic hyperactivity and glutamate-induced cytotoxicity, we stress that the true relevance of EAAT2 as a target for medical intervention remains to be fully appreciated and verified. Despite decades of research, the emerging properties and functional characteristics of glutamate transporters and their relationship with neurophysiological and behavioral correlates of epilepsy challenge the current perception of this disease and fit unambiguously in neither EAATs functional deficit nor in reversal models. We stress the pressing need for new approaches and models for research and restoration of the physiological activity of glutamate transporters and synaptic transmission to achieve much needed therapeutic effects. The complex mechanism of EAATs regulation by multiple factors, including changes in the electrochemical environment and ionic gradients related to epileptic hyperactivity, impose major therapeutic challenges. As a final note, we consider the evolving views and present a cautious perspective on the key areas of future progress in the field towards better management and treatment of refractory disease forms.
Zobrazit více v PubMed
Meyer AC, Dua T, Ma J, Saxena S, Birbeck G. Global disparities in the epilepsy treatment gap: a systematic review. Bull World Health Organ. 2010;88(4):260–6. https://doi.org/10.2471/BLT.09.064147 . PubMed DOI
Moshe SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances. Lancet. 2015;385(9971):884–98. https://doi.org/10.1016/S0140-6736(14)60456-6 . PubMed DOI
Loscher W, Klitgaard H, Twyman RE, Schmidt D. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov. 2013;12(10):757–76. https://doi.org/10.1038/nrd4126 . PubMed DOI
Tang F, Hartz AMS, Bauer B. Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol. 2017;8:301. https://doi.org/10.3389/fneur.2017.00301 . PubMed DOI PMC
Barker-Haliski M, White HS. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb Perspect Med. 2015;5(8):a022863. https://doi.org/10.1101/cshperspect.a022863 . PubMed DOI PMC
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–96. https://doi.org/10.1124/pr.109.002451 . PubMed DOI PMC
Albrecht J, Zielinska M. Mechanisms of excessive extracellular glutamate accumulation in temporal lobe epilepsy. Neurochem Res. 2017;42(6):1724–34. https://doi.org/10.1007/s11064-016-2105-8 . PubMed DOI
Eid T, Gruenbaum SE, Dhaher R, Lee TW, Zhou Y, Danbolt NC. The glutamate-glutamine cycle in epilepsy. Adv Neurobiol. 2016;13:351–400. https://doi.org/10.1007/978-3-319-45096-4_14 . PubMed DOI
Celli R, Santolini I, Van Luijtelaar G, Ngomba RT, Bruno V, Nicoletti F. Targeting metabotropic glutamate receptors in the treatment of epilepsy: rationale and current status. Expert Opin Ther Targets. 2019;23(4):341–51. https://doi.org/10.1080/14728222.2019.1586885 . PubMed DOI
Bouvier M, Szatkowski M, Amato A, Attwell D. The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature. 1992;360(6403):471–4. https://doi.org/10.1038/360471a0 . PubMed DOI
Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem. 1984;43(5):1369–74. DOI
Lehmann A, Isacsson H, Hamberger A. Effects of in vivo administration of kainic acid on the extracellular amino acid pool in the rabbit hippocampus. J Neurochem. 1983;40(5):1314–20. DOI
During MJ, Spencer DD. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet. 1993;341(8861):1607–10. https://doi.org/10.1016/0140-6736(93)90754-5 . PubMed DOI
Ovsepian SV, Blazquez-Llorca L, Freitag SV, Rodrigues EF, Herms J. Ambient glutamate promotes paroxysmal hyperactivity in cortical pyramidal neurons at amyloid plaques via presynaptic mGluR1 receptors. Cereb Cortex. 2017;27(10):4733–49. https://doi.org/10.1093/cercor/bhw267 . PubMed DOI
Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, et al. Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol. 2005;57(2):226–35. https://doi.org/10.1002/ana.20380 . PubMed DOI
Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ, Frosch MP, et al. A vicious cycle of beta amyloid-dependent neuronal hyperactivation. Science. 2019;365(6453):559–65. https://doi.org/10.1126/science.aay0198 . PubMed DOI PMC
Millan MH, Chapman AG, Meldrum BS. Extracellular amino acid levels in hippocampus during pilocarpine-induced seizures. Epilepsy Res. 1993;14(2):139–48. DOI
Szyndler J, Maciejak P, Turzynska D, Sobolewska A, Lehner M, Taracha E, et al. Changes in the concentration of amino acids in the hippocampus of pentylenetetrazole-kindled rats. Neurosci Lett. 2008;439(3):245–9. https://doi.org/10.1016/j.neulet.2008.05.002 . PubMed DOI
Pena F, Tapia R. Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels. Neuroscience. 2000;101(3):547–61. DOI
Kanamori K, Ross BD. Chronic electrographic seizure reduces glutamine and elevates glutamate in the extracellular fluid of rat brain. Brain Res. 2011;1371:180–91. https://doi.org/10.1016/j.brainres.2010.11.064 . PubMed DOI
Meurs A, Clinckers R, Ebinger G, Michotte Y, Smolders I. Seizure activity and changes in hippocampal extracellular glutamate, GABA, dopamine and serotonin. Epilepsy Res. 2008;78(1):50–9. https://doi.org/10.1016/j.eplepsyres.2007.10.007 . PubMed DOI
Thomas P, Phillips J, Delanty N, O’Connor W. Elevated extracellular levels of glutamate, aspartate and gamma-aminobutyric acid within the intraoperative, spontaneously epileptiform human hippocampus. Epilepsy Res. 2003;54(1):73–9. DOI
Urbanska EM, Czuczwar SJ, Kleinrok Z, Turski WA. Excitatory amino acids in epilepsy. Restor Neurol Neurosci. 1998;13(1, 2):25–39. PubMed
Ovsepian SV, O'Leary VB, Zaborszky L, Ntziachristos V, Dolly JO. Amyloid plaques of Alzheimer's disease as hotspots of glutamatergic activity. Neuroscientist. 2019;25(4):288–97. https://doi.org/10.1177/1073858418791128 . PubMed DOI
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacology. 2019. https://doi.org/10.1016/j.neuropharm.2019.03.002 . PubMed DOI PMC
Tanaka K. Cloning and expression of a glutamate transporter from mouse brain. Neurosci Lett. 1993;159(1):183–6. DOI
Pines G, Danbolt NC, Bjørås M, Zhang Y, Bendahan A, Eide L, et al. Cloning and expression of a rat brain L-glutamate transporter. Nature. 1992;360:464–7. https://doi.org/10.1038/360464a0 . PubMed DOI
Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature. 1992;360:467–71. https://doi.org/10.1038/360467a01992 . PubMed DOI
Fairman W, Vandenberg R, Arriza J, Kavanaught M, Amara S. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature. 1995;375:599–603. https://doi.org/10.1038/375599a01995 . PubMed DOI
Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci. 1997;94(8):4155–60. DOI
Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci. 1995;15(3):1835–53. DOI
Karki P, Lee E, Aschner M. Manganese neurotoxicity: a focus on glutamate transporters. Ann Occup Environ Med. 2013;25(1):4. https://doi.org/10.1186/2052-4374-25-4 . PubMed DOI PMC
Parkin GM, Udawela M, Gibbons A, Dean B. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry. 2018;8(2):51–63. https://doi.org/10.5498/wjp.v8.i2.51 . PubMed DOI PMC
Schmitt A, Asan E, Lesch KP, Kugler P. A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: cloning and localization in rat nervous system. Neuroscience. 2002;109(1):45–61. DOI
Chen W, Mahadomrongkul V, Berger UV, Bassan M, DeSilva T, Tanaka K, et al. The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons. J Neurosci. 2004;24(5):1136–48. https://doi.org/10.1523/JNEUROSCI.1586-03.2004 . PubMed DOI PMC
Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, et al. Localization of neuronal and glial glutamate transporters. Neuron. 1994;13(3):713–25. DOI
Bjorn-Yoshimoto WE, Underhill SM. The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem Int. 2016;98:4–18. https://doi.org/10.1016/j.neuint.2016.05.007 . PubMed DOI PMC
Nagao S, Kwak S, Kanazawa I. EAAT4, a glutamate transporter with properties of a chloride channel, is predominantly localized in Purkinje cell dendrites, and forms parasagittal compartments in rat cerebellum. Neuroscience. 1997;78(4):929–33. DOI
Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, et al. Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol. 2011;226(10):2484–93. https://doi.org/10.1002/jcp.22609 . PubMed DOI PMC
Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science. 1997;276(5319):1699–702. DOI
Mookherjee P, Green PS, Watson G, Marques MA, Tanaka K, Meeker KD, et al. GLT-1 loss accelerates cognitive deficit onset in an Alzheimer's disease animal model. J Alzheimer's Dis. 2011;26(3):447–55. DOI
Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, et al. The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci. 2012;32(17):6000–133. https://doi.org/10.1523/JNEUROSCI.5347-11.2012 . PubMed DOI PMC
Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996;16(3):675–86. DOI
Tzingounis AV, Wadiche JI. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci. 2007;8(12):935–47. https://doi.org/10.1038/nrn2274 . PubMed DOI
Martinez-Lozada Z, Guillem AM, Robinson MB. Transcriptional regulation of glutamate transporters: from extracellular signals to transcription factors. Adv Pharmacol. 2016;76:103–45. https://doi.org/10.1016/bs.apha.2016.01.004 . PubMed DOI PMC
Sullivan R, Rauen T, Fischer F, Wiessner M, Grewer C, Bicho A, et al. Cloning, transport properties, and differential localization of two splice variants of GLT-1 in the rat CNS: implications for CNS glutamate homeostasis. Glia. 2004;45(2):155–69. https://doi.org/10.1002/glia.10317 . PubMed DOI
Utsunomiya-Tate N, Endou H, Kanai Y. Tissue specific variants of glutamate transporter GLT-1. FEBS Lett. 1997;416(3):312–6. DOI
Vallejo-Illarramendi A, Domercq M, Matute C. A novel alternative splicing form of excitatory amino acid transporter 1 is a negative regulator of glutamate uptake. J Neurochem. 2005;95(2):341–8. https://doi.org/10.1111/j.1471-4159.2005.03370.x . PubMed DOI
Jin XP, Peng JB, Huang F, Zhu YN, Fei J, Guo LH. A mRNA molecule encoding truncated excitatory amino acid carrier 1 (EAAC1) protein (EAAC2) is transcribed from an independent promoter but not an alternative splicing event. Cell Res. 2002;12(3–4):257–62. https://doi.org/10.1038/sj.cr.7290132 . PubMed DOI
Xu S, Han JC, Morales A, Menzie CM, Williams K, Fan YS. Characterization of 11p14-p12 deletion in WAGR syndrome by array CGH for identifying genes contributing to mental retardation and autism. Cytogenet Genome Res. 2008;122(2):181–7. https://doi.org/10.1159/000172086 . PubMed DOI
Epi KC, Epilepsy Phenome/Genome P, Allen AS, Berkovic SF, Cossette P, Delanty N, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217–21. https://doi.org/10.1038/nature12439 . DOI
Epi KC. De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am J Hum Genet. 2016;99(2):287–98. https://doi.org/10.1016/j.ajhg.2016.06.003 . DOI
Guella I, McKenzie MB, Evans DM, Buerki SE, Toyota EB, Van Allen MI, et al. De novo mutations in YWHAG cause early-onset epilepsy. Am J Hum Genet. 2017;101(2):300–10. https://doi.org/10.1016/j.ajhg.2017.07.004 . PubMed DOI PMC
Stergachis AB, Pujol-Gimenez J, Gyimesi G, Fuster D, Albano G, Troxler M, et al. Recurrent SLC1A2 variants cause epilepsy via a dominant negative mechanism. Ann Neurol. 2019;85(6):921–6. https://doi.org/10.1002/ana.25477 . PubMed DOI PMC
Jen JC, Wan J, Palos TP, Howard BD, Baloh RW. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology. 2005;65(4):529–34. https://doi.org/10.1212/01.wnl.0000172638.58172.5a . PubMed DOI
Poletti S, Riberto M, Vai B, Ghiglino D, Lorenzi C, Vitali A, et al. A glutamate transporter EAAT1 gene variant influences amygdala functional connectivity in bipolar disorder. J Mol Neurosci. 2018;65(4):536–45. https://doi.org/10.1007/s12031-018-1138-7 . PubMed DOI
Reyes N, Ginter C, Boudker O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature. 2009;462(7275):880–5. https://doi.org/10.1038/nature08616 . PubMed DOI PMC
Kanai Y, Hediger MA. The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur J Pharmacol. 2003;479(1–3):237–47. DOI
Zerangue N, Kavanaugh MP. Flux coupling in a neuronal glutamate transporter. Nature. 1996;383(6601):634–7. https://doi.org/10.1038/383634a0 . PubMed DOI
Grewer C, Rauen T. Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr Biol. 2005;203(1):1–20. https://doi.org/10.1007/s00232-004-0731-6 . PubMed DOI PMC
Vandenberg RJ, Ryan RM. Mechanisms of glutamate transport. Physiol Rev. 2013;93(4):1621–57. https://doi.org/10.1152/physrev.00007.2013 . PubMed DOI
Jabaudon D, Scanziani M, Gahwiler BH, Gerber U. Acute decrease in net glutamate uptake during energy deprivation. Proc Natl Acad Sci USA. 2000;97(10):5610–5. https://doi.org/10.1073/pnas.97.10.5610 . PubMed DOI
Billups B, Attwell D. Modulation of non-vesicular glutamate release by pH. Nature. 1996;379(6561):171–4. https://doi.org/10.1038/379171a0 . PubMed DOI
Beck H, Elger CE. Epilepsy research: a window onto function to and dysfunction of the human brain. Dialogues Clin Neurosci. 2008;10(1):7–15. DOI
Jones RS, da Silva AB, Whittaker RG, Woodhall GL, Cunningham MO. Human brain slices for epilepsy research: pitfalls, solutions and future challenges. J Neurosci Methods. 2016;260:221–32. https://doi.org/10.1016/j.jneumeth.2015.09.021 . PubMed DOI
Tessler S, Danbolt NC, Faull RL, Storm-Mathisen J, Emson PC. Expression of the glutamate transporters in human temporal lobe epilepsy. Neuroscience. 1999;88(4):1083–91. DOI
Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JC, Malthankar GV, et al. Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet. 2004;363(9402):28–37. DOI
Bjornsen LP, Eid T, Holmseth S, Danbolt NC, Spencer DD, de Lanerolle NC. Changes in glial glutamate transporters in human epileptogenic hippocampus: inadequate explanation for high extracellular glutamate during seizures. Neurobiol Dis. 2007;25(2):319–30. https://doi.org/10.1016/j.nbd.2006.09.014 . PubMed DOI
Mathern GW, Mendoza D, Lozada A, Pretorius JK, Dehnes Y, Danbolt NC, et al. Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology. 1999;52(3):453–72. DOI
Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, et al. Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain. 2002;125(Pt 1):32–433. DOI
Hoogland G, van Oort RJ, Proper EA, Jansen GH, van Rijen PC, van Veelen CW, et al. Alternative splicing of glutamate transporter EAAT2 RNA in neocortex and hippocampus of temporal lobe epilepsy patients. Epilepsy Res. 2004;59(2–3):75–82. https://doi.org/10.1016/j.eplepsyres.2004.03.003 . PubMed DOI
Vasilev DS, Tumanova NL, Kim KK, Lavrentyeva VV, Lukomskaya NY, Zhuravin IA, et al. Transient morphological alterations in the hippocampus after pentylenetetrazole-induced seizures in rats. Neurochem Res. 2018. https://doi.org/10.1007/s11064-018-2583-y . PubMed DOI
Zaitsev AV, Kim KK, Vasilev DS, Lukomskaya NY, Lavrentyeva VV, Tumanova NL, et al. N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons. J Neurosci Res. 2015;93(3):454–65. https://doi.org/10.1002/jnr.23500 . PubMed DOI
Chen S, Zeng X, Zong W, Wang X, Chen L, Zhou L, et al. Aucubin alleviates seizures activity in li-pilocarpine-induced epileptic mice: involvement of inhibition of neuroinflammation and regulation of neurotransmission. Neurochem Res. 2019;44(2):472–84. https://doi.org/10.1007/s11064-018-2700-y . PubMed DOI
Zubareva OE, Kovalenko AA, Kalemenev SV, Schwarz AP, Karyakin VB, Zaitsev AV. Alterations in mRNA expression of glutamate receptor subunits and excitatory amino acid transporters following pilocarpine-induced seizures in rats. Neurosci Lett. 2018;686:94–100. https://doi.org/10.1016/j.neulet.2018.08.047 . PubMed DOI
Sarfi M, Elahdadi Salmani M, Goudarzi I, Lashkar Boluki T, Abrari K. Evaluating the role of astrocytes on beta-estradiol effect on seizures of Pilocarpine epileptic model. Eur J Pharmacol. 2017;797:32–8. https://doi.org/10.1016/j.ejphar.2017.01.005 . PubMed DOI
Crino PB, Jin H, Shumate MD, Robinson MB, Coulter DA, Brooks-Kayal AR. Increased expression of the neuronal glutamate transporter (EAAT3/EAAC1) in hippocampal and neocortical epilepsy. Epilepsia. 2002;43(3):211–8. DOI
Hubbard JA, Szu JI, Yonan JM, Binder DK. Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy. Exp Neurol. 2016;283(Pt A):85–96. https://doi.org/10.1016/j.expneurol.2016.05.003 . PubMed DOI PMC
Peterson AR, Binder DK. Regulation of synaptosomal GLT-1 and GLAST during epileptogenesis. Neuroscience. 2019;411:185–201. https://doi.org/10.1016/j.neuroscience.2019.05.048 . PubMed DOI
Nonaka M, Kohmura E, Yamashita T, Shimada S, Tanaka K, Yoshimine T, et al. Increased transcription of glutamate-aspartate transporter (GLAST/GluT-1) mRNA following kainic acid-induced limbic seizure. Brain Res Mol Brain Res. 1998;55(1):54–60. DOI
Samuelsson C, Kumlien E, Flink R, Lindholm D, Ronne-Engstrom E. Decreased cortical levels of astrocytic glutamate transport protein GLT-1 in a rat model of posttraumatic epilepsy. Neurosci Lett. 2000;289(3):185–8. DOI
Ueda Y, Doi T, Tokumaru J, Yokoyama H, Nakajima A, Mitsuyama Y, et al. Collapse of extracellular glutamate regulation during epileptogenesis: down-regulation and functional failure of glutamate transporter function in rats with chronic seizures induced by kainic acid. J Neurochem. 2001;76(3):892–900. DOI
Ingram EM, Wiseman JW, Tessler S, Emson PC. Reduction of glial glutamate transporters in the parietal cortex and hippocampus of the EL mouse. J Neurochem. 2001;79(3):564–75. DOI
Yu YH, Xie W, Zhao YY. Effects of heterotherapy for homopathy on the metabolism path of glutamate in the pentylenetetrazol-kindled seizure rats' hippocampus. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2013;33(1):95–9. PubMed
Ghijsen WE, da Silva Aresta Belo AI, Zuiderwijk M, da Silva FHL. Compensatory change in EAAC1 glutamate transporter in rat hippocampus CA1 region during kindling epileptogenesis. Neurosci Lett. 1999;276(3):157–60. DOI
Takahashi DK, Vargas JR, Wilcox KS. Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol Dis. 2010;40(3):573–85. https://doi.org/10.1016/j.nbd.2010.07.018 . PubMed DOI PMC
Zhuravleva ZN, Zhuravlev GI, Samokhina EI. Changes in interactions between astrocytic processes and synaptic endings during the generation of epileptiform activity. Russ J Physiol. 2019;105(6):707–15. https://doi.org/10.1134/S0869813919060116 . DOI
Witcher MR, Park YD, Lee MR, Sharma S, Harris KM, Kirov SA. Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses. Glia. 2010;58(5):572–87. https://doi.org/10.1002/glia.20946 . PubMed DOI PMC
Ventura R, Harris KM. Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci. 1999;19(16):6897–906. DOI
Witcher MR, Kirov SA, Harris KM. Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia. 2007;55(1):13–23. https://doi.org/10.1002/glia.20415 . PubMed DOI
Bernardinelli Y, Muller D, Nikonenko I. Astrocyte-synapse structural plasticity. Neural Plast. 2014;2014:232105. https://doi.org/10.1155/2014/232105 . PubMed DOI PMC
Plata A, Lebedeva A, Denisov P, Nosova O, Postnikova TY, Pimashkin A, et al. Astrocytic atrophy following status epilepticus parallels reduced Ca( PubMed DOI PMC
Clarkson C, Smeal RM, Hasenoehrl MG, White JA, Rubio ME, Wilcox KS. Ultrastructural and functional changes at the tripartite synapse during epileptogenesis in a model of temporal lobe epilepsy. Exp Neurol. 2020;326:113196. https://doi.org/10.1016/j.expneurol.2020.113196 . PubMed DOI
Petr GT, Sun Y, Frederick NM, Zhou Y, Dhamne SC, Hameed MQ, et al. Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci. 2015;35(13):5187–201. https://doi.org/10.1523/JNEUROSCI.4255-14.2015 . PubMed DOI PMC
Kong Q, Takahashi K, Schulte D, Stouffer N, Lin Y, Lin CL. Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus. Neurobiol Dis. 2012;47(2):145–54. https://doi.org/10.1016/j.nbd.2012.03.032 . PubMed DOI PMC
Peghini P, Janzen J, Stoffel W. Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J. 1997;16(13):3822–32. https://doi.org/10.1093/emboj/16.13.3822 . PubMed DOI PMC
Sepkuty JP, Cohen AS, Eccles C, Rafiq A, Behar K, Ganel R, et al. A neuronal glutamate transporter contributes to neurotransmitter GABA synthesis and epilepsy. J Neurosci. 2002;22(15):6372–9. https://doi.org/10.1523/JNEUROSCI.22-15-06372.2002 . PubMed DOI PMC
Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, et al. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci. 1998;10(3):976–88. DOI
Watanabe T, Morimoto K, Hirao T, Suwaki H, Watase K, Tanaka K. Amygdala-kindled and pentylenetetrazole-induced seizures in glutamate transporter GLAST-deficient mice. Brain Res. 1999;845(1):92–6. DOI
Nagatomo K, Ueda Y, Doi T, Takaki M, Tsuru N. Functional role of GABA transporters for kindling development in GLAST KO mice. Neurosci Res. 2007;57(2):319–21. https://doi.org/10.1016/j.neures.2006.10.009 . PubMed DOI
Tsuru N, Ueda Y, Doi T. Amygdaloid kindling in glutamate transporter (GLAST) knockout mice. Epilepsia. 2002;43(8):805–11. DOI
Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433(7021):73–7. https://doi.org/10.1038/nature03180 . PubMed DOI
Lee E, Sidoryk-Wegrzynowicz M, Yin Z, Webb A, Son DS, Aschner M. Transforming growth factor-alpha mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes. Glia. 2012;60(7):1024–36. https://doi.org/10.1002/glia.22329 . PubMed DOI PMC
Lee SG, Su ZZ, Emdad L, Gupta P, Sarkar D, Borjabad A, et al. Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem. 2008;283(19):13116–23. https://doi.org/10.1074/jbc.M707697200 . PubMed DOI PMC
Zaitsev AV, Malkin SL, Postnikova TY, Smolensky IV, Zubareva OE, Romanova IV, et al. Ceftriaxone treatment affects EAAT2 expression and glutamatergic neurotransmission and exerts a weak anticonvulsant effect in young rats. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20235852 . PubMed DOI PMC
Uyanikgil Y, Ozkeskek K, Cavusoglu T, Solmaz V, Tumer MK, Erbas O. Positive effects of ceftriaxone on pentylenetetrazol-induced convulsion model in rats. Int J Neurosci. 2016;126(1):70–5. https://doi.org/10.3109/00207454.2014.991821 . PubMed DOI
Hussein AM, Ghalwash M, Magdy K, Abulseoud OA. Beta lactams antibiotic ceftriaxone modulates seizures, oxidative stress and connexin 43 expression in hippocampus of pentylenetetrazole kindled rats. J Epilepsy Res. 2016;6(1):8–15. https://doi.org/10.14581/jer.16002 . PubMed DOI PMC
Jelenkovic AV, Jovanovic MD, Stanimirovic DD, Bokonjic DD, Ocic GG, Boskovic BS. Beneficial effects of ceftriaxone against pentylenetetrazole-evoked convulsions. Exp Biol Med (Maywood). 2008;233(11):1389–94. https://doi.org/10.3181/0803-RM-83 . DOI
Soni N, Koushal P, Reddy BV, Deshmukh R, Kumar P. Effect of GLT-1 modulator and P2X7 antagonists alone and in combination in the kindling model of epilepsy in rats. Epilepsy Behav. 2015;48:4–14. https://doi.org/10.1016/j.yebeh.2015.04.056 . PubMed DOI
Goodrich GS, Kabakov AY, Hameed MQ, Dhamne SC, Rosenberg PA, Rotenberg A. Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. J Neurotrauma. 2013;30(16):1434–41. https://doi.org/10.1089/neu.2012.2712 . PubMed DOI PMC
Hameed MQ, Hsieh TH, Morales-Quezada L, Lee HHC, Damar U, MacMullin PC, et al. Ceftriaxone treatment preserves cortical inhibitory interneuron function via transient salvage of GLT-1 in a rat traumatic brain injury model. Cereb Cortex. 2018. https://doi.org/10.1093/cercor/bhy328 . DOI PMC
Lai PC, Huang YT, Wu CC, Lai CJ, Wang PJ, Chiu TH. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats. J Biomed Sci. 2011;18:69. https://doi.org/10.1186/1423-0127-18-69 . PubMed DOI PMC
Thone-Reineke C, Neumann C, Namsolleck P, Schmerbach K, Krikov M, Schefe JH, et al. The beta-lactam antibiotic, ceftriaxone, dramatically improves survival, increases glutamate uptake and induces neurotrophins in stroke. J Hypertens. 2008;26(12):2426–35. https://doi.org/10.1097/HJH.0b013e328313e403 . PubMed DOI
Hu YY, Xu J, Zhang M, Wang D, Li L, Li WB. Ceftriaxone modulates uptake activity of glial glutamate transporter-1 against global brain ischemia in rats. J Neurochem. 2015;132(2):194–205. https://doi.org/10.1111/jnc.12958 . PubMed DOI
Krzyzanowska W, Pomierny B, Budziszewska B, Filip M, Pera J. N-Acetylcysteine and ceftriaxone as preconditioning strategies in focal brain ischemia: influence on glutamate transporters expression. Neurotox Res. 2016;29(4):539–50. https://doi.org/10.1007/s12640-016-9602-z . PubMed DOI PMC
Loewen JL, Albertini G, Dahle EJ, Sato H, Smolders IJ, Massie A, et al. Genetic and pharmacological manipulation of glial glutamate transporters does not alter infection-induced seizure activity. Exp Neurol. 2019;318:50–60. https://doi.org/10.1016/j.expneurol.2019.04.010 . PubMed DOI
Zelenaia O, Schlag BD, Gochenauer GE, Ganel R, Song W, Beesley JS, et al. Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-kappaB. Mol Pharmacol. 2000;57(4):667–78. https://doi.org/10.1124/mol.57.4.667 . PubMed DOI
Tian G, Lai L, Guo H, Lin Y, Butchbach ME, Chang Y, et al. Translational control of glial glutamate transporter EAAT2 expression. J Biol Chem. 2007;282(3):1727–37. https://doi.org/10.1074/jbc.M609822200 . PubMed DOI
Wen ZH, Wu GJ, Chang YC, Wang JJ, Wong CS. Dexamethasone modulates the development of morphine tolerance and expression of glutamate transporters in rats. Neuroscience. 2005;133(3):807–17. https://doi.org/10.1016/j.neuroscience.2005.03.015 . PubMed DOI
Karki P, Smith K, Johnson J Jr, Lee E. Astrocyte-derived growth factors and estrogen neuroprotection: role of transforming growth factor-alpha in estrogen-induced upregulation of glutamate transporters in astrocytes. Mol Cell Endocrinol. 2014;389(1–2):58–64. https://doi.org/10.1016/j.mce.2014.01.010 . PubMed DOI PMC
Fang Q, Hu WW, Wang XF, Yang Y, Lou GD, Jin MM, et al. Histamine up-regulates astrocytic glutamate transporter 1 and protects neurons against ischemic injury. Neuropharmacology. 2014;77:156–66. https://doi.org/10.1016/j.neuropharm.2013.06.012 . PubMed DOI
Ganel R, Ho T, Maragakis NJ, Jackson M, Steiner JP, Rothstein JD. Selective up-regulation of the glial Na+-dependent glutamate transporter GLT1 by a neuroimmunophilin ligand results in neuroprotection. Neurobiol Dis. 2006;21(3):556–67. https://doi.org/10.1016/j.nbd.2005.08.014 . PubMed DOI
Rao PS, Goodwani S, Bell RL, Wei Y, Boddu SH, Sari Y. Effects of ampicillin, cefazolin and cefoperazone treatments on GLT-1 expressions in the mesocorticolimbic system and ethanol intake in alcohol-preferring rats. Neuroscience. 2015;295:164–74. https://doi.org/10.1016/j.neuroscience.2015.03.038 . PubMed DOI PMC
Hassel B, Iversen EG, Gjerstad L, Tauboll E. Up-regulation of hippocampal glutamate transport during chronic treatment with sodium valproate. J Neurochem. 2001;77(5):1285–92. https://doi.org/10.1046/j.1471-4159.2001.00349.x . PubMed DOI
Mao QX, Yang TD. Amitriptyline upregulates EAAT1 and EAAT2 in neuropathic pain rats. Brain Res Bull. 2010;81(4–5):424–7. https://doi.org/10.1016/j.brainresbull.2009.09.006 . PubMed DOI
Fontana AC, de Oliveira Beleboni R, Wojewodzic MW, Ferreira Dos Santos W, Coutinho-Netto J, Grutle NJ, et al. Enhancing glutamate transport: mechanism of action of Parawixin1, a neuroprotective compound from Parawixia bistriata spider venom. Mol Pharmacol. 2007;72(5):1228–377. https://doi.org/10.1124/mol.107.037127 . PubMed DOI
Mortensen OV, Liberato JL, Coutinho-Netto J, Dos Santos WF, Fontana AC. Molecular determinants of transport stimulation of EAAT2 are located at interface between the trimerization and substrate transport domains. J Neurochem. 2015;133(2):199–21010. https://doi.org/10.1111/jnc.13047 . PubMed DOI
Danbolt NC, Storm-Mathisen J, Kanner BI. An [Na PubMed DOI
Fumagalli E, Funicello M, Rauen T, Gobbi M, Mennini T. Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur J Pharmacol. 2008;578(2–3):171–6. https://doi.org/10.1016/j.ejphar.2007.10.023 . PubMed DOI
Kong Q, Chang LC, Takahashi K, Liu Q, Schulte DA, Lai L, et al. Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. J Clin Invest. 2014;124(3):1255–67. https://doi.org/10.1172/JCI66163 . PubMed DOI PMC
Eadie MJ. The evolution of J. Hughlings Jackson's thought on epilepsy. Clin Exp Neurol. 1990;27:29–41. PubMed
York GK 3rd, Steinberg DA. Hughlings Jackson's neurological ideas. Brain. 2011;134(Pt 10):3106–13. https://doi.org/10.1093/brain/awr219 . PubMed DOI
Ovsepian SV, Dolly JO. Dendritic SNAREs add a new twist to the old neuron theory. Proc Natl Acad Sci USA. 2011;108(48):19113–20. https://doi.org/10.1073/pnas.1017235108 . PubMed DOI
Jiang J, Amara SG. New views of glutamate transporter structure and function: advances and challenges. Neuropharmacology. 2011;60(1):172–81. https://doi.org/10.1016/j.neuropharm.2010.07.019 . PubMed DOI
Canul-Tec JC, Assal R, Cirri E, Legrand P, Brier S, Chamot-Rooke J, et al. Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature. 2017;544(7651):446–51. https://doi.org/10.1038/nature22064 . PubMed DOI PMC
Kiryk A, Aida T, Tanaka K, Banerjee P, Wilczynski GM, Meyza K, et al. Behavioral characterization of GLT1 (+/−) mice as a model of mild glutamatergic hyperfunction. Neurotox Res. 2008;13(1):19–30. https://doi.org/10.1007/BF03033364 . PubMed DOI
Nothmann D, Leinenweber A, Torres-Salazar D, Kovermann P, Hotzy J, Gameiro A, et al. Hetero-oligomerization of neuronal glutamate transporters. J Biol Chem. 2011;286(5):3935–43. https://doi.org/10.1074/jbc.M110.187492 . PubMed DOI
Lehre KP, Danbolt NC. The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci. 1998;18(21):8751–7. DOI
Bar-Peled O, Ben-Hur H, Biegon A, Groner Y, Dewhurst S, Furuta A, et al. Distribution of glutamate transporter subtypes during human brain development. J Neurochem. 1997;69(6):2571–80. https://doi.org/10.1046/j.1471-4159.1997.69062571.x . PubMed DOI
Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, Grutle NJ, et al. A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience. 2008;157(1):80–94. https://doi.org/10.1016/j.neuroscience.2008.08.043 . PubMed DOI PMC
Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci. 1998;18(10):3606–19. DOI
Pow DV, Barnett NL. Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina. Neurosci Lett. 2000;280(1):21–4. https://doi.org/10.1016/s0304-3940(99)00988-x . PubMed DOI
Rao PS, Bell RL, Engleman EA, Sari Y. Targeting glutamate uptake to treat alcohol use disorders. Front Neurosci. 2015;9:144. https://doi.org/10.3389/fnins.2015.00144 . PubMed DOI PMC
Li LB, Toan SV, Zelenaia O, Watson DJ, Wolfe JH, Rothstein JD, et al. Regulation of astrocytic glutamate transporter expression by Akt: evidence for a selective transcriptional effect on the GLT-1/EAAT2 subtype. J Neurochem. 2006;97(3):759–71. https://doi.org/10.1111/j.1471-4159.2006.03743.x . PubMed DOI
Zschocke J, Bayatti N, Clement AM, Witan H, Figiel M, Engele J, et al. Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. J Biol Chem. 2005;280(41):34924–32. https://doi.org/10.1074/jbc.M502581200 . PubMed DOI
Chang KH, Yeh CM, Yeh CY, Huang CC, Hsu KS. Neonatal dexamethasone treatment exacerbates hypoxic-ischemic brain injury. Mol Brain. 2013;6:18. https://doi.org/10.1186/1756-6606-6-18 . PubMed DOI PMC
Pawlak J, Brito V, Kuppers E, Beyer C. Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Brain Res Mol Brain Res. 2005;138(1):1–7. https://doi.org/10.1016/j.molbrainres.2004.10.043 . PubMed DOI
Johnson J Jr, Pajarillo EAB, Taka E, Reams R, Son DS, Aschner M, et al. Valproate and sodium butyrate attenuate manganese-decreased locomotor activity and astrocytic glutamate transporters expression in mice. Neurotoxicology. 2018;64:230–9. https://doi.org/10.1016/j.neuro.2017.06.007 . PubMed DOI
Yoshizumi M, Eisenach JC, Hayashida K. Valproate prevents dysregulation of spinal glutamate and reduces the development of hypersensitivity in rats after peripheral nerve injury. J Pain. 2013;14(11):1485–91. https://doi.org/10.1016/j.jpain.2013.07.007 . PubMed DOI
Perisic T, Zimmermann N, Kirmeier T, Asmus M, Tuorto F, Uhr M, et al. Valproate and amitriptyline exert common and divergent influences on global and gene promoter-specific chromatin modifications in rat primary astrocytes. Neuropsychopharmacology. 2010;35(3):792–805. https://doi.org/10.1038/npp.2009.188 . PubMed DOI
Ueda Y, Willmore LJ. Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis. Exp Brain Res. 2000;133(3):334–9. https://doi.org/10.1007/s002210000443 . PubMed DOI
Tai YH, Wang YH, Wang JJ, Tao PL, Tung CS, Wong CS. Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in morphine-tolerant rats. Pain. 2006;124(1–2):77–86. https://doi.org/10.1016/j.pain.2006.03.018 . PubMed DOI
Tai YH, Wang YH, Tsai RY, Wang JJ, Tao PL, Liu TM, et al. Amitriptyline preserves morphine's antinociceptive effect by regulating the glutamate transporter GLAST and GLT-1 trafficking and excitatory amino acids concentration in morphine-tolerant rats. Pain. 2007;129(3):343–54. https://doi.org/10.1016/j.pain.2007.01.031 . PubMed DOI
Urbani A, Belluzzi O. Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci. 2000;12(10):3567–74. https://doi.org/10.1046/j.1460-9568.2000.00242.x . PubMed DOI
Zona C, Siniscalchi A, Mercuri NB, Bernardi G. Riluzole interacts with voltage-activated sodium and potassium currents in cultured rat cortical neurons. Neuroscience. 1998;85(3):931–8. https://doi.org/10.1016/s0306-4522(97)00604-0 . PubMed DOI
Noh KM, Hwang JY, Shin HC, Koh JY. A novel neuroprotective mechanism of riluzole: direct inhibition of protein kinase C. Neurobiol Dis. 2000;7(4):375–83. https://doi.org/10.1006/nbdi.2000.0297 . PubMed DOI
Dunlop J, Beal McIlvain H, She Y, Howland DS. Impaired spinal cord glutamate transport capacity and reduced sensitivity to riluzole in a transgenic superoxide dismutase mutant rat model of amyotrophic lateral sclerosis. J Neurosci. 2003;23(5):1688–96. DOI
Moretto MB, Arteni NS, Lavinsky D, Netto CA, Rocha JB, Souza DO, et al. Hypoxic-ischemic insult decreases glutamate uptake by hippocampal slices from neonatal rats: prevention by guanosine. Exp Neurol. 2005;195(2):400–6. https://doi.org/10.1016/j.expneurol.2005.06.005 . PubMed DOI
Frizzo ME, Lara DR, Prokopiuk Ade S, Vargas CR, Salbego CG, Wajner M, et al. Guanosine enhances glutamate uptake in brain cortical slices at normal and excitotoxic conditions. Cell Mol Neurobiol. 2002;22(3):353–63. https://doi.org/10.1023/a:1020728203682 . PubMed DOI
Nishida A, Iwata H, Kudo Y, Kobayashi T, Matsuoka Y, Kanai Y, et al. Nicergoline enhances glutamate uptake via glutamate transporters in rat cortical synaptosomes. Biol Pharm Bull. 2004;27(6):817–20. https://doi.org/10.1248/bpb.27.817 . PubMed DOI
Shimada F, Shiga Y, Morikawa M, Kawazura H, Morikawa O, Matsuoka T, et al. The neuroprotective agent MS-153 stimulates glutamate uptake. Eur J Pharmacol. 1999;386(2–3):263–70. https://doi.org/10.1016/s0014-2999(99)00735-9 . PubMed DOI
Uenishi H, Huang CS, Song JH, Marszalec W, Narahashi T. Ion channel modulation as the basis for neuroprotective action of MS-153. Ann N Y Acad Sci. 1999;890:385–99. https://doi.org/10.1111/j.1749-6632.1999.tb08018.x . PubMed DOI
Fontana AC, Guizzo R, de Oliveira BR, Meirelles ESAR, Coimbra NC, Amara SG, et al. Purification of a neuroprotective component of Parawixia bistriata spider venom that enhances glutamate uptake. Br J Pharmacol. 2003;139(7):1297–309. https://doi.org/10.1038/sj.bjp.0705352 . PubMed DOI PMC
Falcucci RM, Wertz R, Green JL, Meucci O, Salvino J, Fontana ACK. Novel positive allosteric modulators of glutamate transport have neuroprotective properties in an in vitro excitotoxic model. ACS Chem Neurosci. 2019;10(8):3437–53. https://doi.org/10.1021/acschemneuro.9b00061 . PubMed DOI PMC
Kortagere S, Mortensen OV, Xia J, Lester W, Fang Y, Srikanth Y, et al. Identification of novel allosteric modulators of glutamate transporter EAAT2. ACS Chem Neurosci. 2018;9(3):522–34. https://doi.org/10.1021/acschemneuro.7b00308 . PubMed DOI