Closed Shell Iron(IV) Oxo Complex with an Fe-O Triple Bond: Computational Design, Synthesis, and Reactivity
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
CoG No. 682275
H2020 European Research Council
LTAUSA19148
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32926539
PubMed Central
PMC7756500
DOI
10.1002/anie.202009347
Knihovny.cz E-resources
- Keywords
- ion spectroscopy, iron oxo complexes, ligand design, spin state,
- Publication type
- Journal Article MeSH
Iron(IV)-oxo intermediates in nature contain two unpaired electrons in the Fe-O antibonding orbitals, which are thought to contribute to their high reactivity. To challenge this hypothesis, we designed and synthesized closed-shell singlet iron(IV) oxo complex [(quinisox)Fe(O)]+ (1+ ; quinisox-H=(N-(2-(2-isoxazoline-3-yl)phenyl)quinoline-8-carboxamide). We identified the quinisox ligand by DFT computational screening out of over 450 candidates. After the ligand synthesis, we detected 1+ in the gas phase and confirmed its spin state by visible and infrared photodissociation spectroscopy (IRPD). The Fe-O stretching frequency in 1+ is 960.5 cm-1 , consistent with an Fe-O triple bond, which was also confirmed by multireference calculations. The unprecedented bond strength is accompanied by high gas-phase reactivity of 1+ in oxygen atom transfer (OAT) and in proton-coupled electron transfer reactions. This challenges the current view of the spin-state driven reactivity of the Fe-O complexes.
See more in PubMed
Guo M., Corona T., Ray K., Nam W., ACS Cent. Sci. 2019, 5, 13–28. PubMed PMC
Costas M., Mehn M. P., Jensen M. P., Que L., Chem. Rev. 2004, 104, 939–986. PubMed
Abu-Omar M. M., Loaiza A., Hontzeas N., Chem. Rev. 2005, 105, 2227–2252. PubMed
Hohenberger J., Ray K., Meyer K., Nat. Commun. 2012, 3, 720. PubMed
McDonald A. R., Que L., Coord. Chem. Rev. 2013, 257, 414–428.
Gunay A., Theopold K. H., Chem. Rev. 2010, 110, 1060–1081. PubMed
Barry S. M., Challis G. L., ACS Catal. 2013, 3, 2362–2370. PubMed PMC
Chakrabarty S., Austin R. N., Deng D., Groves J. T., Lipscomb J. D., J. Am. Chem. Soc. 2007, 129, 3514–3515. PubMed PMC
Spin States in Biochemistry and Inorganic Chemistry: Influence on Structure and Reactivity (Eds.: Swart M., Costas M.), Wiley, Hoboken, 2015.
Klinker E. J., Shaik S., Hirao H., Que L., Angew. Chem. Int. Ed. 2009, 48, 1291–1295; PubMed PMC
Angew. Chem. 2009, 121, 1317–1321.
Kupper C., Mondal B., Serrano-Plana J., Klawitter I., Neese F., Costas M., Ye S., Meyer F., J. Am. Chem. Soc. 2017, 139, 8939–8949. PubMed
Usharani D., Janardanan D., Li C., Shaik S., Acc. Chem. Res. 2013, 46, 471–482. PubMed
Lee N. Y., Mandal D., Bae S. H., Seo M. S., Lee Y. M., Shaik S., Bin Cho K., Nam W., Chem. Sci. 2017, 8, 5460–5467. PubMed PMC
Shaik S., Danovich D., Fiedler A., Schröder D., Schwarz H., Helv. Chim. Acta 1995, 78, 1393–1407.
Schröder D., Shaik S., Schwarz H., Acc. Chem. Res. 2000, 33, 139–145. PubMed
Shimoyama Y., Kojima T., Inorg. Chem. 2019, 58, 9517–9542. PubMed
Saouma C. T., Mayer J. M., Chem. Sci. 2014, 5, 21–31.
Mayer J. M., Acc. Chem. Res. 1998, 31, 441–450.
Li C., Danovich D., Shaik S., Chem. Sci. 2012, 3, 1903–1918.
Yang T., Quesne M. G., Neu H. M., Cantú Reinhard F. G., Goldberg D. P., de Visser S. P., J. Am. Chem. Soc. 2016, 138, 12375–12386. PubMed PMC
Carter E. A., Goddard W. A., J. Phys. Chem. 1988, 92, 2109–2115.
Smith J. M., Subedi D., Dalton Trans. 2012, 41, 1423–1429. PubMed
Saouma C. T., Peters J. C., Coord. Chem. Rev. 2011, 255, 920–937. PubMed PMC
Kojima T., Hirai Y., Ishizuka T., Shiota Y., Yoshizawa K., Ikemura K., Ogura T., Fukuzumi S., Angew. Chem. Int. Ed. 2010, 49, 8449–8453; PubMed
Angew. Chem. 2010, 122, 8627–8631.
Berry J. F., Comments Inorg. Chem. 2009, 30, 28–66.
Thompson N. B., Green M. T., Peters J. C., J. Am. Chem. Soc. 2017, 139, 15312–15315. PubMed PMC
Maity A. K., Murillo J., Metta-Magaña A. J., Pinter B., Fortier S., J. Am. Chem. Soc. 2017, 139, 15691–15700. PubMed
Citek C., Oyala P. H., Peters J. C., J. Am. Chem. Soc. 2019, 141, 15211–15221. PubMed PMC
Wang J.-Q., Chi C., Lu J.-B., Meng L., Luo M., Hu H.-S., Zhou M., Li J., Chem. Commun. 2019, 55, 5685–5688. PubMed
Wang J.-Q., Chi C., Hu H.-S., Meng L., Luo M., Li J., Zhou M., Angew. Chem. Int. Ed. 2018, 57, 542–546; PubMed
Angew. Chem. 2018, 130, 551–555.
Chi C., Wang J. Q., Hu H. S., Zhang Y. Y., Li W. L., Meng L., Luo M., Zhou M., Li J., Nat. Commun. 2019, 10, 4713. PubMed PMC
Andris E., Jašík J., Gómez L., Costas M., Roithová J., Angew. Chem. Int. Ed. 2016, 55, 3637–3641; PubMed PMC
Angew. Chem. 2016, 128, 3701–3705.
Schröder D., Roithová J., Schwarz H., Int. J. Mass Spectrom. 2006, 254, 197–201.
Jašík J., Žabka J., Roithová J., Gerlich D., Int. J. Mass Spectrom. 2013, 354–355, 204–210.
Roithová J., Schröder D., Chem. Rev. 2010, 110, 1170–1211. PubMed
Roithová J., Schröder D., J. Am. Chem. Soc. 2007, 129, 15311–15318. PubMed
Gong Y., Zhou M., Andrews L., Chem. Rev. 2009, 109, 6765–6808. PubMed
Andris E., Navrátil R., Jašík J., Terencio T., Srnec M., Costas M., Roithová J., J. Am. Chem. Soc. 2017, 139, 2757–2765. PubMed
Schwarz H., Asmis K. R., Chem. Eur. J. 2019, 25, 2112–2126. PubMed
Gerlich D., J. Chin. Chem. Soc. 2018, 65, 637–653.
Zeng H. J., Yang N., Johnson M. A., Faraday Discuss. 2019, 217, 8–33. PubMed
Martens J., van Outersterp R. E., Vreeken R. J., Cuyckens F., Coene K. L. M., Engelke U. F., Kluijtmans L. A. J., Wevers R. A., Buydens L. M. C., Redlich B., Berden G., Oomens J., Anal. Chim. Acta 2020, 1093, 1–15. PubMed
Bowman D. N., Jakubikova E., Inorg. Chem. 2012, 51, 6011–6019. PubMed
Swart M., Gruden M., Acc. Chem. Res. 2016, 49, 2690–2697. PubMed
Uchida N., Zhi R., Kuwabara J., Kanbara T., Tetrahedron Lett. 2014, 55, 3070–3072.
Awada A., Moreno-Betancourt A., Philouze C., Moreau Y., Jouvenot D., Loiseau F., Inorg. Chem. 2018, 57, 15430–15437. PubMed
Jašíková L., Hanikýřová E., Schröder D., Roithová J., J. Mass Spectrom. 2012, 47, 460–465. PubMed
Leist M., Kerner C., Ghoochany L. T., Farsadpour S., Fizia A., Neu J. P., Schön F., Sun Y., Oelkers B., Lang J., Menges F., Niedner-Schatteburg G., Salih K. S. M., Thiel W. R., J. Organomet. Chem. 2018, 863, 30–43.
Butschke B., Schwarz H., Chem. Sci. 2012, 3, 308–326.
Wong M. W., Chem. Phys. Lett. 1996, 256, 391–399.
Solomon E. I., Brunold T. C., Davis M. I., Kemsley J. N., Lee S. K., Lehnert N., Neese F., Skulan A. J., Yang Y. S., Zhou J., Chem. Rev. 2000, 100, 235–349. PubMed
Oswald V. F., Lee J. L., Biswas S., Weitz A. C., Mittra K., Fan R., Li J., Zhao J., Hu M. Y., Alp E. E., Bominaar E. L., Guo Y., Green M. T., Hendrich M. P., Borovik A. S., J. Am. Chem. Soc. 2020, 142, 11804—11817. PubMed PMC
Andris E., Navrátil R., Jašík J., Sabenya G., Costas M., Srnec M., Roithová J., Chem. Eur. J. 2018, 24, 5078–5081. PubMed
“Biomimetic High-Valent Mononuclear Nonheme Iron-Oxo Chemistry”: Klein J. E. M. N., Que L., Encyclopedia of Inorganic and Bioinorganic Chemistry, Wiley, Chichester, 2016,
10.1002/9781119951438.eibc2344. DOI
Prakash J., Rohde G. T., Meier K. K., Münck E., Que L., Inorg. Chem. 2015, 54, 11055–11057. PubMed
Pattanayak S., Jasniewski A. J., Rana A., Draksharapu A., Singh K. K., Weitz A., Hendrich M., Que L., Dey A., Sen Gupta S., Inorg. Chem. 2017, 56, 6352–6361. PubMed PMC
Snyder B. E. R., Böttger L. H., Bols M. L., Yan J. J., Rhoda H. M., Jacobs A. B., Hu M. Y., Zhao J., Ercan Alp E., Hedman B., Hodgson K. O., Schoonheydt R. A., Sels B. F., Solomon E. I., Proc. Natl. Acad. Sci. USA 2018, 115, 4565–4570. PubMed PMC
Mandimutsira B. S., Ramdhanie B., Todd R. C., Wang H., Zareba A. A., Czernuszewicz R. S., Goldberg D. P., J. Am. Chem. Soc. 2002, 124, 15170–15171. PubMed
Liu H., Yam F., Xie Y., Li X., Chang C. K., J. Am. Chem. Soc. 2009, 131, 12890–12891. PubMed
Badger R. M., J. Chem. Phys. 1934, 2, 128–131.
Green M. T., J. Am. Chem. Soc. 2006, 128, 1902–1906. PubMed
Andris E., Navrátil R., Jašík J., Puri M., Costas M., Que L., Roithová J., J. Am. Chem. Soc. 2018, 140, 14391–14400. PubMed
De Oliveira F. T., Chanda A., Banerjee D., Shan X., Mondal S., Que L., Bominaar E. L., Münck E., Collins T. J., Science 2007, 315, 835–838. PubMed
Cationic Gold(II) Complexes: Experimental and Theoretical Study