Cationic Gold(II) Complexes: Experimental and Theoretical Study

. 2022 Oct 26 ; 28 (60) : e202201794. [epub] 20220901

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35946558

Grantová podpora
740.018.022 Nederlandse Organisatie voor Wetenschappelijk Onderzoek
VI.C.192.044 Nederlandse Organisatie voor Wetenschappelijk Onderzoek
LTAUSA19148 Ministerstvo Školství, Mládeže a Tělovýchovy

Gold(II) complexes are rare, and their application to the catalysis of chemical transformations is underexplored. The reason is their easy oxidation or reduction to more stable gold(III) or gold(I) complexes, respectively. We explored the thermodynamics of the formation of [AuII (L)(X)]+ complexes (L=ligand, X=halogen) from the corresponding gold(III) precursors and investigated their stability and spectral properties in the IR and visible range in the gas phase. The results show that the best ancillary ligands L for stabilizing gaseous [AuII (L)(X)]+ complexes are bidentate and tridentate ligands with nitrogen donor atoms. The electronic structure and spectral properties of the investigated gold(II) complexes were correlated with quantum chemical calculations. The results show that the molecular and electronic structure of the gold(II) complexes as well as their spectroscopic properties are very similar to those of analogous stable copper(II) complexes.

Zobrazit více v PubMed

Hashmi A. S. K., Chem. Rev. 2007, 107, 3180–3211. PubMed

Echavarren A. M., Hashmi A. S. K., Toste F. D., Adv. Synth. Catal. 2016, 358, 1347.

Quach R., Furkert D. P., Brimble M. A., Org. Biomol. Chem. 2017, 15, 3098–3104. PubMed

Zi W., Dean Toste F., Chem. Soc. Rev. 2016, 45, 4567–4589. PubMed

Fricke C., Reid W. B., Schoenebeck F., Eur. J. Org. Chem. 2020, 2020, 7119–7130.

Kramer S., Synth. 2020, 52, 2017–2030.

Huang L., Rudolph M., Rominger F., Hashmi A. S. K., Angew. Chem. Int. Ed. 2016, 55, 4808–4813; PubMed

Angew. Chem. 2016, 128, 4888–4893.

Winston M. S., Wolf W. J., Toste F. D., J. Am. Chem. Soc. 2014, 136, 7777–7782. PubMed PMC

Tlahuext-Aca A., Hopkinson M. N., Sahoo B., Glorius F., Chem. Sci. 2016, 7, 89–93. PubMed PMC

Dorel R., Echavarren A. M., Chem. Rev. 2015, 115, 9028–9072. PubMed PMC

Kumar R., Linden A., Nevado C., J. Am. Chem. Soc. 2016, 138, 13790–13793. PubMed

Rocchigiani L., Bochmann M., Chem. Rev. 2021, 121, 8364–8451. PubMed

Kim S., Toste F. D., J. Am. Chem. Soc. 2019, 141, 4308–4315. PubMed PMC

Wu C. Y., Horibe T., Jacobsen C. B., Toste F. D., Nature 2015, 517, 449–454. PubMed PMC

Pintus A., Rocchigiani L., Fernandez-Cestau J., Budzelaar P. H. M., Bochmann M., Angew. Chem. Int. Ed. 2016, 55, 12321–12324; PubMed PMC

Angew. Chem. 2016, 128, 12509–12512.

Laguna A., Laguna M., Coord. Chem. Rev. 1999, 193–195, 837–856.

Seidel S., Seppelt K., Science 2000, 290, 117–118. PubMed

Blake A. J., Greig J. A., Holder A. J., Hyde T. I., Taylor A., Schröder M., Angew. Chem. Int. Ed. Engl. 1990, 29, 197–198.

Gencheva G., Tsekova D., Gochev G., Mehandjiev D., Bontchev P. R., Inorg. Chem. Commun. 2003, 6, 325–328.

Preiß S., Förster C., Otto S., Bauer M., Müller P., Hinderberger D., Hashemi Haeri H., Carella L., Heinze K., Nat. Chem. 2017, 9, 1249–1255. PubMed

Baya M., Pérez-Bitrián A., Martínez-Salvador S., Martín A., Casas J. M., Menjón B., Orduna J., Chem. Eur. J. 2018, 24, 1514–1517. PubMed

Veit P., Volkert C., Förster C., Ksenofontov V., Schlicher S., Bauer M., Heinze K., Chem. Commun. 2019, 55, 4615–4618. PubMed

Barakat K. A., Cundari T. R., Rabaâ H., Omary M. A., J. Phys. Chem. B 2006, 110, 14645–14651. PubMed

Pyykkö P., Angew. Chem. Int. Ed. 2004, 43, 4412–4456; PubMed

Angew. Chem. 2004, 116, 4512–4557.

Pyykkö P., Inorg. Chim. Acta 2005, 358, 4113–4130.

Schmidbaur H., Cronje S., Djordjevic B., Schuster O., Chem. Phys. 2005, 311, 151–161.

Hargittai M., Schulz A., Réffy B., Kolonits M., J. Am. Chem. Soc. 2001, 123, 1449–1458.

Heinze K., Angew. Chem. Int. Ed. 2017, 56, 16126–16134; PubMed

Angew. Chem. 2017, 129, 16342–16350.

Preiß S., Päpcke A., Burkhardt L., Großmann L., Lochbrunner S., Bauer M., Opatz T., Heinze K., Chem. Eur. J. 2019, 25, 5940–5949. PubMed

Di Terlizzi L., Scaringi S., Raviola C., Pedrazzani R., Bandini M., Fagnoni M., Protti S., J. Org. Chem. 2022, 87, 4863–4872. PubMed PMC

Koelle U., Laguna A., Inorg. Chim. Acta 1999, 290, 44–50.

Roaşca D. A., Smith D. A., Hughes D. L., Bochmann M., Angew. Chem. Int. Ed. 2012, 51, 10643–10646; PubMed

Angew. Chem. 2012, 124, 10795–10798. PubMed

Gimeno M. C., López-de-Luzuriaga J. M., Manso E., Monge M., Olmos M. E., Rodríguez-Castillo M., Tena M.-T., Day D. P., Lawrence E. J., Wildgoose G. G., Inorg. Chem. 2015, 54, 10667–10677. PubMed PMC

Preiß S., Melomedov J., Wünsche Von Leupoldt A., Heinze K., Chem. Sci. 2016, 7, 596–610. PubMed PMC

Andris E., Jašík J., Gómez L., Costas M., Roithová J., Angew. Chem. Int. Ed. 2016, 55, 3637–3641; PubMed PMC

Angew. Chem. 2016, 128, 3701–3705.

Andris E., Navrátil R., Jašík J., Puri M., Costas M., Que L., Roithovaá J., J. Am. Chem. Soc. 2019, 140, 14391–14400. PubMed

De Kler N. R. M., Roithová J., Chem. Commun. 2020, 56, 12721–12724. PubMed

Langseth E., Görbitz C. H., Heyn R. H., Tilset M., Organometallics 2012, 31, 6567–6571.

Huang L., Rominger F., Rudolph M., Hashmi A. S. K., Chem. Commun. 2016, 52, 6435–6438. PubMed

Xiong X.-G., Wang Y.-L., Xu C.-Q., Qiu Y.-H., Wang L.-S., Li J., Dalton Trans. 2015, 44, 5535–5546. PubMed

Parker D., Roy P. S., Ferguson G., Hunt M. M., Inorg. Chim. Acta 1989, 155, 227–230.

Collado A., Nelson D. J., Nolan S. P., Chem. Rev. 2021, 121, 8559–8612. PubMed

Nahra F., Tzouras N. V., Collado A., Nolan S. P., Nat. Protoc. 2021, 16, 1476–1493. PubMed

Zuccarello G., Zanini M., Echavarren A. M., Isr. J. Chem. 2020, 60, 360–372.

Walker N. R., Wright R. R., Barran P. E., Murrell J. N., Stace A. J., J. Am. Chem. Soc. 2001, 123, 4223–4227. PubMed

Walker N. R., Wright R. R., Barran P. E., Stace A. J., Organometallics 1999, 18, 3569–3571.

Ferraz de Paiva R. E., Nakahata D. H., Corbi P. P., Acta Crystallogr. Sect. E Crystallogr. Commun. 2017, 73, 1048–1051. PubMed PMC

Dierkes P., van Leeuwen P. W. N. M., J. Chem. Soc. Dalton Trans. 1999, 1519–1530.

Söhnel T., Brown R., Kloo L., Schwerdtfeger P., Chem. Eur. J. 2001, 7, 3167–3173. PubMed

Schulz A., Hargittai M., Chem. Eur. J. 2001, 7, 3657–3670. PubMed

Finkelstein H., Ber. Dtsch. Chem. Ges. 1910, 43, 1528–1532.

Jin X., Davies R. P., Catal. Sci. Technol. 2017, 7, 2110–2117.

Amani V., Abedi A., Ghabeshi S., Khavasi H. R., Hosseini S. M., Safari N., Polyhedron 2014, 79, 104–115.

Bortoluzzi M., De Faveri E., Daniele S., Pitteri B., Eur. J. Inorg. Chem. 2006, 2, 3393–3399.

Pierce D. T., Geiger W. E., J. Am. Chem. Soc. 1992, 114, 6063–6073.

Groom C. R., Bruno I. J., Lightfoot M. P., Ward S. C., Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. PubMed PMC

Scarborough C. C., Wieghardt K., Inorg. Chem. 2011, 50, 9773–9793. PubMed

Wang M., England J., Weyhermüller T., Wieghardt K., Eur. J. Inorg. Chem. 2015, 2015, 1511–1523.

Butschke B., Schlangen M., Schröder D., Schwarz H., Chem. Eur. J. 2008, 14, 11050–11060. PubMed

Butschke B., Schwarz H., Organometallics 2010, 29, 6002–6011.

Yassaghi G., Jašíková L., Roithová J., Int. J. Mass Spectrom. 2016, 407, 92–100.

Milko P., Roithová J., Inorg. Chem. 2009, 48, 11734–11742. PubMed

E. Rezabal, L. Duch, P. Milko, M. C. Holthausen, J. Roithov, J. W. Goethe-universit, L. Pho, C. H. Oh, C. Pho, L. Phoh, 2010, 8421–8429. PubMed

Milko P., Roithová J., Tsierkezos N., Schröder D., J. Am. Chem. Soc. 2008, 130, 7186–7187. PubMed

Jašík J., Žabka J., Roithová J., Gerlich D., Int. J. Mass Spectrom. 2013, 354–355, 204–210.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. a. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. a. Petersson, H. Nakatsuji, X. Li, M. Caricato, a. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, a. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. a. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. a. Keith, R. Kobayashi, J. Normand, K. Raghavachari, a. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01, 2016, Gaussian, Inc., Wallin.

Andris E., Navrátil R., Jašík J., Sabenya G., Costas M., Srnec M., Roithová J., Chem. Eur. J. 2018, 24, 5078–5081. PubMed

Corinti D., Crestoni M. E., Chiavarino B., Fornarini S., Scuderi D., Salpin J.-Y., J. Am. Soc. Mass Spectrom. 2020, 31, 946–960. PubMed PMC

Martens J., van Outersterp R. E., Vreeken R. J., Cuyckens F., Coene K. L. M., Engelke U. F., Kluijtmans L. A. J., Wevers R. A., Buydens L. M. C., Redlich B., Berden G., Oomens J., Anal. Chim. Acta 2020, 1093, 1–15. PubMed

Vícha J., Patzschke M., Marek R., Phys. Chem. Chem. Phys. 2013, 15, 7740. PubMed

Vícha J., Novotný J., Straka M., Repisky M., Ruud K., Komorovsky S., Marek R., Phys. Chem. Chem. Phys. 2015, 17, 24944–24955. PubMed

IUPAC. Compendium of Chemical Terminology, 2nd ed. (the ‘‘Gold Book’‘), Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific, Oxford, 1997. Online version (2019-) created by S. J. Chalk.,” DOI 10.1351/goldbook.O04365, 1997.

C. S. Day, C. D. Do, C. Odena, J. Benet-Buchholz, L. Xu, C. Foroutan-Nejad, K. H. Hopmann, R. Martin, J. Am. Chem. Soc. 2022, 144, 13109-13117 . PubMed PMC

Pitteri B., Marangoni G., Visentin F., Bobbo T., Bertolasi V., Gilli P., J. Chem. Soc. Dalton Trans. 1999, 677–682.

Czerwińska K., Golec M., Skonieczna M., Palion-Gazda J., Zygadło D., Szlapa-Kula A., Krompiec S., Machura B., Szurko A., Dalton Trans. 2017, 46, 3381–3392. PubMed

Peng K., Friedrich A., Schatzschneider U., Chem. Commun. 2019, 55, 8142–8145. PubMed

Dann T., Roşca D. A., Wright J. A., Wildgoose G. G., Bochmann M., Chem. Commun. 2013, 49, 10169–10171. PubMed

Anania M., Jašíková L., Zelenka J., Shcherbachenko E., Jašík J., Roithová J., Chem. Sci. 2020, 11, 980–988. PubMed PMC

Škríba A., Schulz J., Roithová J., Organometallics 2014, 33, 6868–6878.

Zins E.-L., Pepe C., Schröder D., J. Mass Spectrom. 2010, 45, 1253–1260. PubMed

Morsa D., Gabelica V., Rosu F., Oomens J., De Pauw E., J. Phys. Chem. Lett. 2014, 5, 3787–3791. PubMed

Carpenter J. E., McNary C. P., Furin A., Sweeney A. F., Armentrout P. B., J. Am. Soc. Mass Spectrom. 2017, 28, 1876–1888. PubMed

Rahrt R., Auth T., Demireva M., Armentrout P. B., Koszinowski K., Anal. Chem. 2019, 91, 11703–11711. PubMed

Andris E., Segers K., Mehara J., Rulíšek L., Roithová J., Angew. Chem. Int. Ed. 2020, 59, 23137–23144; PubMed PMC

Angew. Chem. 2020, 132, 23337–23344.

Roithová J., Gray A., Andris E., Jašík J., Gerlich D., Acc. Chem. Res. 2016, 49, 223–230. PubMed

Jašík J., Navrátil R., Němec I., Roithová J., J. Phys. Chem. A 2015, 119, 12648–12655. PubMed

Casini A., Diawara M. C., Scopelliti R., Zakeeruddin S. M., Grätzel M., Dyson P. J., J. Chem. Soc. Dalton Trans. 2010, 39, 2239–2245. PubMed

Balasubramani S. G., Chen G. P., Coriani S., Diedenhofen M., Frank M. S., Franzke Y. J., Furche F., Grotjahn R., Harding M. E., Hättig C., Hellweg A., Helmich-Paris B., Holzer C., Huniar U., Kaupp M., Marefat Khah A., Karbalaei Khani S., Müller T., Mack F., Nguyen B. D., Parker S. M., Perlt E., Rappoport D., Reiter K., Roy S., Rückert M., Schmitz G., Sierka M., Tapavicza E., Tew D. P., van Wüllen C., Voora V. K., Weigend F., Wodyński A., Yu J. M., J. Chem. Phys. 2020, 152, 184107. PubMed PMC

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865–3868. PubMed

Pritchard B. P., Altarawy D., Didier B., Gibson T. D., Windus T. L., J. Chem. Inf. Model. 2019, 59, 4814–4820. PubMed

Feller D., J. Comput. Chem. 1996, 17, 1571–1586.

Schuchardt K. L., Didier B. T., Elsethagen T., Sun L., Gurumoorthi V., Chase J., Li J., Windus T. L., J. Chem. Inf. Model. 2007, 47, 1045–1052. PubMed

Clark T., Chandrasekhar J., Spitznagel G. W., Schleyer P. V. R., J. Comput. Chem. 1983, 4, 294–301.

Krishnan R., Binkley J. S., Seeger R., Pople J. A., J. Chem. Phys. 1980, 72, 650–654.

Dolg M., Wedig U., Stoll H., Preuss H., J. Chem. Phys. 1987, 86, 866–872.

Schwerdtfeger P., Dolg M., Schwarz W. H. E., Bowmaker G. A., Boyd P. D. W., J. Chem. Phys. 1989, 91, 1762–1774.

te Velde G., Bickelhaupt F. M., Baerends E. J., Fonseca Guerra C., van Gisbergen S. J. A., Snijders J. G., Ziegler T., J. Comput. Chem. 2001, 22, 931–967.

van Lenthe E., Baerends E. J., Snijders J. G., J. Chem. Phys. 1993, 99, 4597–4610.

van Lenthe E., Baerends E. J., Snijders J. G., J. Chem. Phys. 1994, 101, 9783–9792.

van Lenthe E., Ehlers A., Baerends E.-J., J. Chem. Phys. 1999, 110, 8943–8953.

R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon, Oxford, 1990.

T. A. Keith, AIMAll, TK Gristmill Software, Overland Park KS, 2019.

E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, F. Weinhold, NBO 7.0, Theoretical Chemistry Institute, University of Wisconsin–Madison,” 2018.

Carpenter J. E., Weinhold F., J. Mol. Struct. 1988, 169, 41–62.

Foster J. P., Weinhold F., J. Am. Chem. Soc. 1980, 102, 7211–7218.

Reed A. E., Weinhold F., J. Chem. Phys. 1983, 78, 4066–4073.

Reed A. E., Weinstock R. B., Weinhold F., J. Chem. Phys. 1985, 83, 735–746.

Glendening E. D., Landis C. R., Weinhold F., J. Comput. Chem. 2019, 40, 2234–2241. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...