Monoaurated vs. diaurated intermediates: causality or independence?
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
34084352
PubMed Central
PMC8146099
DOI
10.1039/c9sc05662a
PII: c9sc05662a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Diaurated intermediates of gold-catalysed reactions have been a long-standing subject of debate. Although diaurated complexes were regarded as a drain of active monoaurated intermediates in catalytic cycles, they were also identified as the products of gold-gold cooperation in dual-activation reactions. This study shows investigation of intermediates in water addition to alkynes catalysed by [(IPr)Au(CH3CN)(BF4)]. Electrospray ionisation mass spectrometry (ESI-MS) allowed us to detect both monoaurated and diaurated complexes in this reaction. Infrared photodissociation spectra of the trapped complexes show that the structure of the intermediates corresponds to α-gold ketone intermediates protonated or aurated at the oxygen atom. Delayed reactant labelling experiments provided the half life of the intermediates in reaction of 1-phenylpropyne (∼7 min) and the kinetic isotope effects for hydrogen introduction to the carbon atom (KIE ∼ 4-6) and for the protodeauration (KIE ∼ 2). The results suggest that the ESI-MS detected monoaurated and diaurated complexes report on species with a very similar or the same kinetics in solution. Kinetic analysis of the overall reaction showed that the reaction rate is first-order dependent on the concentration of the gold catalyst. Finally, all results are consistent with the reaction mechanism proceeding via monoaurated neutral α-gold ketone intermediates only.
Zobrazit více v PubMed
Weber D. and Gagne M. R., in Homogeneous Gold Catalysis, Book Series: Topics in Current Chemistry-Series, ed. L. M. Slaughter, Springer-Verlag, Berling, 2015, vol. 357,p. 167
Gorin D. J. Toste F. D. Nature. 2007;446:395. doi: 10.1038/nature05592. PubMed DOI
Anania M. Jasikova L. Jasik J. Roithova J. Org. Biomol. Chem. 2017;15:7841. doi: 10.1039/C7OB01905J. PubMed DOI
Andris E. Andrikopoulos P. C. Schulz J. Turek J. Ruzicka A. Roithova J. Rulisek L. J. Am. Chem. Soc. 2018;140:2316. doi: 10.1021/jacs.7b12509. PubMed DOI
Corma A. Leyva-Perez A. Sabater M. J. Chem. Rev. 2011;111:1657. doi: 10.1021/cr100414u. PubMed DOI
Hopkinson M. N. Tlahuext-Aca A. Glorius F. Acc. Chem. Res. 2016;49:2261. doi: 10.1021/acs.accounts.6b00351. PubMed DOI
Zheng Z. T. Wang Z. X. Wang Y. L. Zhang L. M. Chem. Soc. Rev. 2016;45:4448. doi: 10.1039/C5CS00887E. PubMed DOI
Zi W. W. Toste F. D. Chem. Soc. Rev. 2016;45:4467. doi: 10.1039/C5CS00929D. PubMed DOI
Asiri A. M. Hashmi A. S. K. Chem. Soc. Rev. 2016;45:4471. doi: 10.1039/C6CS00023A. PubMed DOI
Furstner A. Angew. Chem., Int. Ed. 2018;57:4215. doi: 10.1002/anie.201707260. PubMed DOI
Hashmi A. S. K. Angew. Chem., Int. Ed. 2008;47:6754. doi: 10.1002/anie.200802517. PubMed DOI
Bandini M. Bottoni A. Chiarucci M. Cera G. Miscione G. P. J. Am. Chem. Soc. 2012;134:20690. doi: 10.1021/ja3086774. PubMed DOI
Hansmann M. M. Rudolph M. Rominger F. Hashmi A. S. K. Angew. Chem., Int. Ed. 2013;52:2593. doi: 10.1002/anie.201208777. PubMed DOI
Zhdanko A. Maier M. E. Angew. Chem., Int. Ed. 2014;53:7760. doi: 10.1002/anie.201402557. PubMed DOI
Jia M. Q. Bandini M. ACS Catal. 2015;5:1638. doi: 10.1021/cs501902v. DOI
Trinchillo M. Belanzoni P. Belpassi L. Biasiolo L. Busico V. D'Arnora A. D'Amore L. Del Zotto A. Tarantelli F. Tuzi A. Zuccaccia D. Organometallics. 2016;35:641. doi: 10.1021/acs.organomet.5b00925. DOI
Klein J. E. M. N. Knizia G. Nunes dos Santos Comprido L. Kästner J. Hashmi A. S. K. Chem.–Eur. J. 2017;23:16097–16103. doi: 10.1002/chem.201703815. PubMed DOI
de Orbe M. E. Amenos L. Kirillova M. S. Wang Y. H. Lopez-Carrillo V. Maseras F. Echavarren A. M. J. Am. Chem. Soc. 2017;139:10302. doi: 10.1021/jacs.7b03005. PubMed DOI PMC
Lu M. Su Y. Zhao P. Ye X. Cai Y. Shi X. Masson E. Li F. Campbell J. L. Chen H. Chem.–Eur. J. 2018;24:2144. doi: 10.1002/chem.201703666. PubMed DOI PMC
Hashmi A. S. K. Braun I. Nösel P. Schädlich J. Wieteck M. Rudolph M. Rominger F. Angew. Chem., Int. Ed. 2012;51:4456. doi: 10.1002/anie.201109183. PubMed DOI
Hashmi A. S. K. Wieteck M. Braun I. Nösel P. Jongbloed L. Rudolph M. Rominger F. Adv. Synth. Catal. 2012;354:555. doi: 10.1002/adsc.201200086. DOI
Gómez-Suárez A. Nolan S. P. Angew. Chem., Int. Ed. 2012;51:8156. doi: 10.1002/anie.201203587. PubMed DOI
Vreeken V. Broere D. L. J. Jans A. C. H. Lankelma M. Reek J. N. H. Siegler M. A. van der Vlugt J. I. Angew. Chem., Int. Ed. 2016;55:10042. doi: 10.1002/anie.201603938. PubMed DOI
Ferrer S. Echavarren A. M. Organometallics. 2018;37:781. doi: 10.1021/acs.organomet.7b00668. PubMed DOI PMC
Seidel G. Lehmann C. W. Fürstner A. Angew. Chem., Int. Ed. 2010;49:8466. doi: 10.1002/anie.201003349. PubMed DOI
Brown T. J. Weber D. Gagne M. R. Widenhoefer R. A. J. Am. Chem. Soc. 2012;134:9134. doi: 10.1021/ja303844h. PubMed DOI PMC
Zhdanko A. Maier M. E. Organometallics. 2013;32:2000. doi: 10.1021/om400083f. DOI
Zhdanko A. Maier M. E. Chem.–Eur. J. 2014;20:1918. doi: 10.1002/chem.201303795. PubMed DOI
Roithova J. Jankova S. Jasikova L. Vana J. Hybelbauerova S. Angew. Chem., Int. Ed. 2012;51:8378. doi: 10.1002/anie.201204003. PubMed DOI
Oonishi Y. Gomez-Suarez A. Martin A. R. Nolan S. P. Angew. Chem., Int. Ed. 2013;52:9767. doi: 10.1002/anie.201304182. PubMed DOI
Gómez-Suárez A. Oonishi Y. Martin A. R. Vummaleti S. V. C. Nelson D. J. Cordes D. B. Slawin A. M. Z. Cavallo L. Nolan S. P. Poater A. Chem.–Eur. J. 2016;22:1125. doi: 10.1002/chem.201503097. PubMed DOI
Lazreg F. Guidone S. Gómez-Herrera A. Nahrab F. Cazin C. S. J. Dalton Trans. 2017;46:2439. doi: 10.1039/C6DT04513H. PubMed DOI
González-Belman O. F. Jiménez-Halla J. O. C. Nahra F. Cazin C. S. J. Poater A. Catal. Sci. Technol. 2018;8:3638. doi: 10.1039/C8CY00510A. DOI
Jašíková L. Anania M. Hybelbauerová S. Roithová J. J. Am. Chem. Soc. 2015;137:13647. doi: 10.1021/jacs.5b08744. PubMed DOI
Schulz J. Jašík J. Gray A. Roithová J. Chem.–Eur. J. 2016;22:9827. doi: 10.1002/chem.201601634. PubMed DOI
Anania M. Jasikova L. Jasik J. Roithova J. Org. Biomol. Chem. 2017;15:7841. doi: 10.1039/C7OB01905J. PubMed DOI
Nolan S. P. Acc. Chem. Res. 2011;44:91. doi: 10.1021/ar1000764. PubMed DOI
Marion N. Ramon R. S. Nolan S. P. J. Am. Chem. Soc. 2009;131:448. doi: 10.1021/ja809403e. PubMed DOI
Gomez-Suarez A. Ramon R. S. Slawin A. M. Z. Nolan S. P. Dalton Trans. 2012;41:5461. doi: 10.1039/C2DT30294B. PubMed DOI
Roithová J. Gray A. Andris E. Jašík J. Gerlich D. Acc. Chem. Res. 2016;49:223. doi: 10.1021/acs.accounts.5b00489. PubMed DOI
Zhu Y. Day C. S. Jones A. C. Organometallics. 2012;31:7332. doi: 10.1021/om300893q. DOI
Mizushima E. Sato K. Hayashi T. Tanaka M. Angew. Chem., Int. Ed. 2002;41:4563. doi: 10.1002/1521-3773(20021202)41:23<4563::AID-ANIE4563>3.0.CO;2-U. PubMed DOI
Riley T. Long F. A. J. Am. Chem. Soc. 1962;84:522. doi: 10.1021/ja00863a003. DOI
Kurouchi H. Singleton D. A. Nat. Chem. 2018;10:237. doi: 10.1038/nchem.2907. PubMed DOI PMC
Aziz H. R. Singleton D. A. J. Am. Chem. Soc. 2017;139:5965. doi: 10.1021/jacs.7b02148. PubMed DOI PMC
Singleton D. A. Thomas A. A. J. Am. Chem. Soc. 1995;117:9357. doi: 10.1021/ja00141a030. DOI
Kumar M. Hammond G. B. Xu B. Org. Lett. 2014;16:3452. doi: 10.1021/ol501663f. PubMed DOI PMC
Mazzone G. Russo N. Sicilia E. J. Chem. Theory Comput. 2010;6:2782. doi: 10.1021/ct100254v. PubMed DOI
Mazzone G. Russo N. Sicilia E. Organometallics. 2012;31:3074. doi: 10.1021/om2012369. DOI
Jin L. Wu Y. Zhao X. RSC Adv. 2016;6:89836. doi: 10.1039/C6RA13897G. DOI
Ducháčková L. Roithová J. Chem.–Eur. J. 2009;15:13399. doi: 10.1002/chem.200901645. PubMed DOI
Jašík J. Žabka J. Roithová J. Gerlich D. Int. J. Mass Spectrom. 2013;354–355:204. doi: 10.1016/j.ijms.2013.06.007. DOI
Gerlich D. Jašík J. Andris E. Navrátil R. Roithová J. ChemPhysChem. 2016;17:3723. doi: 10.1002/cphc.201600753. PubMed DOI
Jašík J. Gerlich D. Roithová J. J. Phys. Chem. A. 2015;119:2532. doi: 10.1021/jp5088064. PubMed DOI
Perdew J. P. Chevary J. A. Vosko S. H. Jackson K. A. Pederson M. R. Singh D. J. Fiolhais C. Phys. Rev. B: Condens. Matter Mater. Phys. 1992;46:6671. doi: 10.1103/PhysRevB.46.6671. PubMed DOI
Perdew J. P. Chevary J. A. Vosko S. H. Jackson K. A. Pederson M. R. Singh D. J. Fiolhais C. Phys. Rev. B: Condens. Matter Mater. Phys. 1993;48:4978. doi: 10.1103/PhysRevB.48.4978.2. PubMed DOI
Perdew J. P. Burke K. Wang Y. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:16533. doi: 10.1103/PhysRevB.54.16533. PubMed DOI
Adamo C. Barone V. J. Chem. Phys. 1998;108:664. doi: 10.1063/1.475428. DOI
Frisch M. J., et al., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009
Scott A. P. Radom L. J. Phys. Chem. 1996;100:16502. doi: 10.1021/jp960976r. DOI
Škríba A. Jašíková L. Roithová J. Int. J. Mass Spectrom. 2012;330:226. doi: 10.1016/j.ijms.2012.08.019. DOI
Cationic Gold(II) Complexes: Experimental and Theoretical Study