Monoaurated vs. diaurated intermediates: causality or independence?

. 2019 Dec 13 ; 11 (4) : 980-988. [epub] 20191213

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34084352

Diaurated intermediates of gold-catalysed reactions have been a long-standing subject of debate. Although diaurated complexes were regarded as a drain of active monoaurated intermediates in catalytic cycles, they were also identified as the products of gold-gold cooperation in dual-activation reactions. This study shows investigation of intermediates in water addition to alkynes catalysed by [(IPr)Au(CH3CN)(BF4)]. Electrospray ionisation mass spectrometry (ESI-MS) allowed us to detect both monoaurated and diaurated complexes in this reaction. Infrared photodissociation spectra of the trapped complexes show that the structure of the intermediates corresponds to α-gold ketone intermediates protonated or aurated at the oxygen atom. Delayed reactant labelling experiments provided the half life of the intermediates in reaction of 1-phenylpropyne (∼7 min) and the kinetic isotope effects for hydrogen introduction to the carbon atom (KIE ∼ 4-6) and for the protodeauration (KIE ∼ 2). The results suggest that the ESI-MS detected monoaurated and diaurated complexes report on species with a very similar or the same kinetics in solution. Kinetic analysis of the overall reaction showed that the reaction rate is first-order dependent on the concentration of the gold catalyst. Finally, all results are consistent with the reaction mechanism proceeding via monoaurated neutral α-gold ketone intermediates only.

Zobrazit více v PubMed

Weber D. and Gagne M. R., in Homogeneous Gold Catalysis, Book Series: Topics in Current Chemistry-Series, ed. L. M. Slaughter, Springer-Verlag, Berling, 2015, vol. 357,p. 167

Gorin D. J. Toste F. D. Nature. 2007;446:395. doi: 10.1038/nature05592. PubMed DOI

Anania M. Jasikova L. Jasik J. Roithova J. Org. Biomol. Chem. 2017;15:7841. doi: 10.1039/C7OB01905J. PubMed DOI

Andris E. Andrikopoulos P. C. Schulz J. Turek J. Ruzicka A. Roithova J. Rulisek L. J. Am. Chem. Soc. 2018;140:2316. doi: 10.1021/jacs.7b12509. PubMed DOI

Corma A. Leyva-Perez A. Sabater M. J. Chem. Rev. 2011;111:1657. doi: 10.1021/cr100414u. PubMed DOI

Hopkinson M. N. Tlahuext-Aca A. Glorius F. Acc. Chem. Res. 2016;49:2261. doi: 10.1021/acs.accounts.6b00351. PubMed DOI

Zheng Z. T. Wang Z. X. Wang Y. L. Zhang L. M. Chem. Soc. Rev. 2016;45:4448. doi: 10.1039/C5CS00887E. PubMed DOI

Zi W. W. Toste F. D. Chem. Soc. Rev. 2016;45:4467. doi: 10.1039/C5CS00929D. PubMed DOI

Asiri A. M. Hashmi A. S. K. Chem. Soc. Rev. 2016;45:4471. doi: 10.1039/C6CS00023A. PubMed DOI

Furstner A. Angew. Chem., Int. Ed. 2018;57:4215. doi: 10.1002/anie.201707260. PubMed DOI

Hashmi A. S. K. Angew. Chem., Int. Ed. 2008;47:6754. doi: 10.1002/anie.200802517. PubMed DOI

Bandini M. Bottoni A. Chiarucci M. Cera G. Miscione G. P. J. Am. Chem. Soc. 2012;134:20690. doi: 10.1021/ja3086774. PubMed DOI

Hansmann M. M. Rudolph M. Rominger F. Hashmi A. S. K. Angew. Chem., Int. Ed. 2013;52:2593. doi: 10.1002/anie.201208777. PubMed DOI

Zhdanko A. Maier M. E. Angew. Chem., Int. Ed. 2014;53:7760. doi: 10.1002/anie.201402557. PubMed DOI

Jia M. Q. Bandini M. ACS Catal. 2015;5:1638. doi: 10.1021/cs501902v. DOI

Trinchillo M. Belanzoni P. Belpassi L. Biasiolo L. Busico V. D'Arnora A. D'Amore L. Del Zotto A. Tarantelli F. Tuzi A. Zuccaccia D. Organometallics. 2016;35:641. doi: 10.1021/acs.organomet.5b00925. DOI

Klein J. E. M. N. Knizia G. Nunes dos Santos Comprido L. Kästner J. Hashmi A. S. K. Chem.–Eur. J. 2017;23:16097–16103. doi: 10.1002/chem.201703815. PubMed DOI

de Orbe M. E. Amenos L. Kirillova M. S. Wang Y. H. Lopez-Carrillo V. Maseras F. Echavarren A. M. J. Am. Chem. Soc. 2017;139:10302. doi: 10.1021/jacs.7b03005. PubMed DOI PMC

Lu M. Su Y. Zhao P. Ye X. Cai Y. Shi X. Masson E. Li F. Campbell J. L. Chen H. Chem.–Eur. J. 2018;24:2144. doi: 10.1002/chem.201703666. PubMed DOI PMC

Hashmi A. S. K. Braun I. Nösel P. Schädlich J. Wieteck M. Rudolph M. Rominger F. Angew. Chem., Int. Ed. 2012;51:4456. doi: 10.1002/anie.201109183. PubMed DOI

Hashmi A. S. K. Wieteck M. Braun I. Nösel P. Jongbloed L. Rudolph M. Rominger F. Adv. Synth. Catal. 2012;354:555. doi: 10.1002/adsc.201200086. DOI

Gómez-Suárez A. Nolan S. P. Angew. Chem., Int. Ed. 2012;51:8156. doi: 10.1002/anie.201203587. PubMed DOI

Vreeken V. Broere D. L. J. Jans A. C. H. Lankelma M. Reek J. N. H. Siegler M. A. van der Vlugt J. I. Angew. Chem., Int. Ed. 2016;55:10042. doi: 10.1002/anie.201603938. PubMed DOI

Ferrer S. Echavarren A. M. Organometallics. 2018;37:781. doi: 10.1021/acs.organomet.7b00668. PubMed DOI PMC

Seidel G. Lehmann C. W. Fürstner A. Angew. Chem., Int. Ed. 2010;49:8466. doi: 10.1002/anie.201003349. PubMed DOI

Brown T. J. Weber D. Gagne M. R. Widenhoefer R. A. J. Am. Chem. Soc. 2012;134:9134. doi: 10.1021/ja303844h. PubMed DOI PMC

Zhdanko A. Maier M. E. Organometallics. 2013;32:2000. doi: 10.1021/om400083f. DOI

Zhdanko A. Maier M. E. Chem.–Eur. J. 2014;20:1918. doi: 10.1002/chem.201303795. PubMed DOI

Roithova J. Jankova S. Jasikova L. Vana J. Hybelbauerova S. Angew. Chem., Int. Ed. 2012;51:8378. doi: 10.1002/anie.201204003. PubMed DOI

Oonishi Y. Gomez-Suarez A. Martin A. R. Nolan S. P. Angew. Chem., Int. Ed. 2013;52:9767. doi: 10.1002/anie.201304182. PubMed DOI

Gómez-Suárez A. Oonishi Y. Martin A. R. Vummaleti S. V. C. Nelson D. J. Cordes D. B. Slawin A. M. Z. Cavallo L. Nolan S. P. Poater A. Chem.–Eur. J. 2016;22:1125. doi: 10.1002/chem.201503097. PubMed DOI

Lazreg F. Guidone S. Gómez-Herrera A. Nahrab F. Cazin C. S. J. Dalton Trans. 2017;46:2439. doi: 10.1039/C6DT04513H. PubMed DOI

González-Belman O. F. Jiménez-Halla J. O. C. Nahra F. Cazin C. S. J. Poater A. Catal. Sci. Technol. 2018;8:3638. doi: 10.1039/C8CY00510A. DOI

Jašíková L. Anania M. Hybelbauerová S. Roithová J. J. Am. Chem. Soc. 2015;137:13647. doi: 10.1021/jacs.5b08744. PubMed DOI

Schulz J. Jašík J. Gray A. Roithová J. Chem.–Eur. J. 2016;22:9827. doi: 10.1002/chem.201601634. PubMed DOI

Anania M. Jasikova L. Jasik J. Roithova J. Org. Biomol. Chem. 2017;15:7841. doi: 10.1039/C7OB01905J. PubMed DOI

Nolan S. P. Acc. Chem. Res. 2011;44:91. doi: 10.1021/ar1000764. PubMed DOI

Marion N. Ramon R. S. Nolan S. P. J. Am. Chem. Soc. 2009;131:448. doi: 10.1021/ja809403e. PubMed DOI

Gomez-Suarez A. Ramon R. S. Slawin A. M. Z. Nolan S. P. Dalton Trans. 2012;41:5461. doi: 10.1039/C2DT30294B. PubMed DOI

Roithová J. Gray A. Andris E. Jašík J. Gerlich D. Acc. Chem. Res. 2016;49:223. doi: 10.1021/acs.accounts.5b00489. PubMed DOI

Zhu Y. Day C. S. Jones A. C. Organometallics. 2012;31:7332. doi: 10.1021/om300893q. DOI

Mizushima E. Sato K. Hayashi T. Tanaka M. Angew. Chem., Int. Ed. 2002;41:4563. doi: 10.1002/1521-3773(20021202)41:23<4563::AID-ANIE4563>3.0.CO;2-U. PubMed DOI

Riley T. Long F. A. J. Am. Chem. Soc. 1962;84:522. doi: 10.1021/ja00863a003. DOI

Kurouchi H. Singleton D. A. Nat. Chem. 2018;10:237. doi: 10.1038/nchem.2907. PubMed DOI PMC

Aziz H. R. Singleton D. A. J. Am. Chem. Soc. 2017;139:5965. doi: 10.1021/jacs.7b02148. PubMed DOI PMC

Singleton D. A. Thomas A. A. J. Am. Chem. Soc. 1995;117:9357. doi: 10.1021/ja00141a030. DOI

Kumar M. Hammond G. B. Xu B. Org. Lett. 2014;16:3452. doi: 10.1021/ol501663f. PubMed DOI PMC

Mazzone G. Russo N. Sicilia E. J. Chem. Theory Comput. 2010;6:2782. doi: 10.1021/ct100254v. PubMed DOI

Mazzone G. Russo N. Sicilia E. Organometallics. 2012;31:3074. doi: 10.1021/om2012369. DOI

Jin L. Wu Y. Zhao X. RSC Adv. 2016;6:89836. doi: 10.1039/C6RA13897G. DOI

Ducháčková L. Roithová J. Chem.–Eur. J. 2009;15:13399. doi: 10.1002/chem.200901645. PubMed DOI

Jašík J. Žabka J. Roithová J. Gerlich D. Int. J. Mass Spectrom. 2013;354–355:204. doi: 10.1016/j.ijms.2013.06.007. DOI

Gerlich D. Jašík J. Andris E. Navrátil R. Roithová J. ChemPhysChem. 2016;17:3723. doi: 10.1002/cphc.201600753. PubMed DOI

Jašík J. Gerlich D. Roithová J. J. Phys. Chem. A. 2015;119:2532. doi: 10.1021/jp5088064. PubMed DOI

Perdew J. P. Chevary J. A. Vosko S. H. Jackson K. A. Pederson M. R. Singh D. J. Fiolhais C. Phys. Rev. B: Condens. Matter Mater. Phys. 1992;46:6671. doi: 10.1103/PhysRevB.46.6671. PubMed DOI

Perdew J. P. Chevary J. A. Vosko S. H. Jackson K. A. Pederson M. R. Singh D. J. Fiolhais C. Phys. Rev. B: Condens. Matter Mater. Phys. 1993;48:4978. doi: 10.1103/PhysRevB.48.4978.2. PubMed DOI

Perdew J. P. Burke K. Wang Y. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:16533. doi: 10.1103/PhysRevB.54.16533. PubMed DOI

Adamo C. Barone V. J. Chem. Phys. 1998;108:664. doi: 10.1063/1.475428. DOI

Frisch M. J., et al., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009

Scott A. P. Radom L. J. Phys. Chem. 1996;100:16502. doi: 10.1021/jp960976r. DOI

Škríba A. Jašíková L. Roithová J. Int. J. Mass Spectrom. 2012;330:226. doi: 10.1016/j.ijms.2012.08.019. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cationic Gold(II) Complexes: Experimental and Theoretical Study

. 2022 Oct 26 ; 28 (60) : e202201794. [epub] 20220901

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...