Authentication of Meat and Meat Products Using Triacylglycerols Profiling and by DNA Analysis

. 2020 Sep 10 ; 9 (9) : . [epub] 20200910

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32927765

Grantová podpora
QJ1530272 Ministerstvo Zemědělství
OPPC CZ.2.16/3.1.00/21537 European Regional Development Fund
CZ.2.16/3.1.00/24503 European Regional Development Fund

Two alternative, complementary analytical strategies were successfully used to identify the most common meat species-beef, pork and chicken-in meat products. The first innovative high-throughput approach was based on triacylglycerols fingerprinting by direct analysis in real time coupled with high-resolution mass spectrometry (DART-HRMS). The second was the classic commonly used DNA analysis based on the use of nuclear or mitochondrial DNA in multiplex polymerase chain reaction (mPCR). The DART-HRMS method represents a rapid, high throughput screening method and was shown to have a good potential for the authentication of meat products. Nevertheless, it should be noted that due to a limited number of samples in this pilot study, we present here a proof of concept. More samples must be analyzed by DART-HRMS to build a robust classification model applicable for reliable authentication. To verify the DART-HRMS results, all samples were analyzed by PCRs. Good compliance in samples classification was documented. In routine practice under these conditions, screening based on DART-HRMS could be used for identification of suspect samples, which could be then examined and validated by accurate PCRs. In this way, saving of both labor and cost could be achieved. In the final phase, commercially available meat products from the Czech market were tested using this new strategy. Canned meats-typical Czech sausages and luncheon meats, all with declared content of beef, pork and chicken meat-were used. Compliance with the label declaration was confirmed and no adulteration was found.

Zobrazit více v PubMed

Hsieh Y.P., Woodward B.B., Ho S.H. Detection of Species Substitution in Raw and Cooked Meats Using Immunoassays. J. Food Prot. 1995;58:555–559. doi: 10.4315/0362-028X-58.5.555. PubMed DOI

Ballin N.Z., Vogensen F.K., Karlsson A.H. Species determination—Can we detect and quantify meat adulteration? Meat Sci. 2009;83:165–174. doi: 10.1016/j.meatsci.2009.06.003. PubMed DOI

Fajardo V., González I., Rojas M., García T., Martín R. A review of current PCR-based methodologies for the authentication of meats from game animal species. Trends Food Sci. Technol. 2010;21:408–421. doi: 10.1016/j.tifs.2010.06.002. DOI

Köppel R., Daniels M., Felderer N., Brünen-Nieweler C. Multiplex real-time PCR for the detection and quantification of DNA from duck, goose, chicken, turkey and pork. Eur. Food Res. Technol. 2013;236:1093–1098. doi: 10.1007/s00217-013-1973-2. DOI

Iwobi A., Sebah D., Spielmann G., Maggipinto M., Schrempp M., Kraemer I., Gerdes L., Busch U., Huber I. A multiplex real-time PCR method for the quantitative determination of equine (horse) fractions in meat products. Food Control. 2017;74:89–97. doi: 10.1016/j.foodcont.2016.11.035. DOI

Griffiths A.M., Sotelo C.G., Mendes R., Pérez-Martín R.I., Schröder U., Shorten M., Silva H.A., Verrez-Bagnis V., Mariani S. Current methods for seafood authenticity testing in Europe: Is there a need for harmonisation? Food Control. 2014;45:95–100. doi: 10.1016/j.foodcont.2014.04.020. DOI

Murugaiah C., Al-Talib H., Radu S. Forensics: Food Authentication Using MtDNA. J. Nutr. Health Food Sci. 2015;3:1–10. doi: 10.15226/jnhfs.2015.00153. DOI

Mozola M.A., Peng X., Wendorf M., Artiga L. Evaluation of the GeneQuence® DNA hybridization method in conjunction with 24-h enrichment protocols for detection of Salmonella spp. in select foods: Collaborative study. J. AOAC Int. 2007;90:738–755. doi: 10.1093/jaoac/90.3.738. PubMed DOI

Tichoniuk M., Ligaj M., Filipiak M. Application of DNA hybridization biosensor as a screening method for the detection of genetically modified food components. Sensors. 2008;8:2118–2135. doi: 10.3390/s8042118. PubMed DOI PMC

Chapela M.J., Sotelo C.G., Calo-Mata P., Pérez-Martín R.I., Rehbein H., Hold G.L., Quinteiro J., Rey-Méndez M., Rosa C., Santos A.T. Identification of Cephalopod Species (Ommastrephidae and Loliginidae) in Seafood Products by Forensically Informative Nucleotide Sequencing (FINS) J. Food Sci. 2002;67:1672–1676. doi: 10.1111/j.1365-2621.2002.tb08703.x. DOI

Iwobi A., Sebah D., Kraemer I., Losher C., Fischer G., Busch U., Huber I. A multiplex real-time PCR method for the quantification of beef and pork fractions in minced meat. Food Chem. 2015;169:305–313. doi: 10.1016/j.foodchem.2014.07.139. PubMed DOI

Matsunaga T., Chikuni K., Tanabe R., Muroya S., Shibata K., Yamada J., Shinmura Y. A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Sci. 1999;51:143–148. doi: 10.1016/S0309-1740(98)00112-0. PubMed DOI

Barbuto M., Galimberti A., Ferri E., Labra M., Malandra R., Galli P., Casiraghi M. DNA barcoding reveals fraudulent substitutions in shark seafood products: The Italian case of “palombo” (Mustelus spp.) Food Res. Int. 2010;43:376–381. doi: 10.1016/j.foodres.2009.10.009. DOI

Thakur M., Singh S., Shukla M., Sharma L., Agarwal N., Goyal S., Sambandam S. Identification of Galliformes through Forensically Informative Nucleotide Sequencing (FINS) and its Implication in Wildlife Forensics. J. Forensic Res. 2012;4 doi: 10.4172/2157-7145.S3-001. DOI

Jírů M., Stranska M., Kocourek V., Krmela A., Tomaniová M., Rosmus J., Hajslova J. Authentication of meat species and net muscle proteins: Updating of an old concept. Czech J. Food Sci. 2019;37:205–211. doi: 10.17221/94/2019-CJFS. DOI

Ruiz Orduna A., Husby E., Yang C.T., Ghosh D., Beaudry F. Assessment of meat authenticity using bioinformatics, targeted peptide biomarkers and high-resolution mass spectrometry. Food Addit. Contam. Part A. 2015;32:1709–1717. doi: 10.1080/19440049.2015.1064173. PubMed DOI

Cody R.B., Laramée J.A., Durst H.D. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 2005;77:2297–2302. doi: 10.1021/ac050162j. PubMed DOI

Hajslova J., Cajka T., Vaclavik L. Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis. TrAC Trends Anal. Chem. 2011;30:204–218. doi: 10.1016/j.trac.2010.11.001. DOI

Worley B., Powers R. Multivariate Analysis in Metabolomics. Curr. Metab. 2013;1:92–107. doi: 10.2174/2213235X11301010092. PubMed DOI PMC

Blasco H., Błaszczyński J., Billaut J.C., Nadal-Desbarats L., Pradat P.F., Devos D., Moreau C., Andres C.R., Emond P., Corcia P., et al. Comparative analysis of targeted metabolomics: Dominance-based rough set approach versus orthogonal partial least square-discriminant analysis. J. Biomed. Inform. 2015;53:291–299. doi: 10.1016/j.jbi.2014.12.001. PubMed DOI

Berrueta L.A., Alonso-Salces R.M., Héberger K. Supervised pattern recognition in food analysis. J. Chromatogr. A. 2007;1158:196–214. doi: 10.1016/j.chroma.2007.05.024. PubMed DOI

Triba M.N., Le Moyec L., Amathieu R., Goossens C., Bouchemal N., Nahon P., Rutledge D.N., Savarin P. PLS/OPLS models in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol. Biosyst. 2015;11:13–19. doi: 10.1039/C4MB00414K. PubMed DOI

ISO . Foodstuffs-Methods of Analysis for the Detection of Genetically Modified Organisms and Derived Products-Nucleic Acid Extraction. ANSI; New York, NY, USA: 2005.

Zdeňková K., Akhatova D., Fialová E., Krupa O., Kubica L., Lencová S., Demnerová K. Detection of meat adulteration: Use of efficient and routine-suited multiplex polymerase chain reaction-based methods for species authentication and quantification in meat products. J. Food Nutr. Res. 2018;57:351–362.

Laube I., Zagon J., Spiegelberg A., Butschke A., Kroh L.W., Broll H. Development and design of a ‘ready-to-use’ reaction plate for a PCR-based simultaneous detection of animal species used in foods. Int. J. Food Sci. Technol. 2007;42:9–17. doi: 10.1111/j.1365-2621.2006.01154.x. DOI

Köppel R., Ruf J., Zimmerli F., Breitenmoser A. Multiplex real-time PCR for the detection and quantification of DNA from beef, pork, chicken and turkey. Eur. Food Res. Technol. 2008;227:1199–1203. doi: 10.1007/s00217-008-0837-7. DOI

Laube I., Spiegelberg A., Butschke A., Zagon J., Schauzu M., Kroh L., Broll H. Methods for the detection of beef and pork in foods using real-time polymerase chain reaction. Int. J. Food Sci. Technol. 2003;38:111–118. doi: 10.1046/j.1365-2621.2003.00651.x. DOI

Hurkova K., Uttl L., Rubert J., Navratilova K., Kocourek V., Stranska-Zachariasova M., Paprstein F., Hajslova J. Cranberries versus lingonberries: A challenging authentication of similar Vaccinium fruit. Food Chem. 2019;284:162–170. doi: 10.1016/j.foodchem.2019.01.014. PubMed DOI

Hrbek V., Rektorisova M., Chmelarova H., Ovesna J., Hajslova J. Authenticity assessment of garlic using a metabolomic approach based on high resolution mass spectrometry. J. Food Compos. Anal. 2018;67:19–28. doi: 10.1016/j.jfca.2017.12.020. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...