Authentication of Meat and Meat Products Using Triacylglycerols Profiling and by DNA Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QJ1530272
Ministerstvo Zemědělství
OPPC CZ.2.16/3.1.00/21537
European Regional Development Fund
CZ.2.16/3.1.00/24503
European Regional Development Fund
PubMed
32927765
PubMed Central
PMC7555453
DOI
10.3390/foods9091269
PII: foods9091269
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, PCR, ambient mass spectrometry, authentication, meat, triacylglycerols,
- Publikační typ
- časopisecké články MeSH
Two alternative, complementary analytical strategies were successfully used to identify the most common meat species-beef, pork and chicken-in meat products. The first innovative high-throughput approach was based on triacylglycerols fingerprinting by direct analysis in real time coupled with high-resolution mass spectrometry (DART-HRMS). The second was the classic commonly used DNA analysis based on the use of nuclear or mitochondrial DNA in multiplex polymerase chain reaction (mPCR). The DART-HRMS method represents a rapid, high throughput screening method and was shown to have a good potential for the authentication of meat products. Nevertheless, it should be noted that due to a limited number of samples in this pilot study, we present here a proof of concept. More samples must be analyzed by DART-HRMS to build a robust classification model applicable for reliable authentication. To verify the DART-HRMS results, all samples were analyzed by PCRs. Good compliance in samples classification was documented. In routine practice under these conditions, screening based on DART-HRMS could be used for identification of suspect samples, which could be then examined and validated by accurate PCRs. In this way, saving of both labor and cost could be achieved. In the final phase, commercially available meat products from the Czech market were tested using this new strategy. Canned meats-typical Czech sausages and luncheon meats, all with declared content of beef, pork and chicken meat-were used. Compliance with the label declaration was confirmed and no adulteration was found.
Zobrazit více v PubMed
Hsieh Y.P., Woodward B.B., Ho S.H. Detection of Species Substitution in Raw and Cooked Meats Using Immunoassays. J. Food Prot. 1995;58:555–559. doi: 10.4315/0362-028X-58.5.555. PubMed DOI
Ballin N.Z., Vogensen F.K., Karlsson A.H. Species determination—Can we detect and quantify meat adulteration? Meat Sci. 2009;83:165–174. doi: 10.1016/j.meatsci.2009.06.003. PubMed DOI
Fajardo V., González I., Rojas M., García T., Martín R. A review of current PCR-based methodologies for the authentication of meats from game animal species. Trends Food Sci. Technol. 2010;21:408–421. doi: 10.1016/j.tifs.2010.06.002. DOI
Köppel R., Daniels M., Felderer N., Brünen-Nieweler C. Multiplex real-time PCR for the detection and quantification of DNA from duck, goose, chicken, turkey and pork. Eur. Food Res. Technol. 2013;236:1093–1098. doi: 10.1007/s00217-013-1973-2. DOI
Iwobi A., Sebah D., Spielmann G., Maggipinto M., Schrempp M., Kraemer I., Gerdes L., Busch U., Huber I. A multiplex real-time PCR method for the quantitative determination of equine (horse) fractions in meat products. Food Control. 2017;74:89–97. doi: 10.1016/j.foodcont.2016.11.035. DOI
Griffiths A.M., Sotelo C.G., Mendes R., Pérez-Martín R.I., Schröder U., Shorten M., Silva H.A., Verrez-Bagnis V., Mariani S. Current methods for seafood authenticity testing in Europe: Is there a need for harmonisation? Food Control. 2014;45:95–100. doi: 10.1016/j.foodcont.2014.04.020. DOI
Murugaiah C., Al-Talib H., Radu S. Forensics: Food Authentication Using MtDNA. J. Nutr. Health Food Sci. 2015;3:1–10. doi: 10.15226/jnhfs.2015.00153. DOI
Mozola M.A., Peng X., Wendorf M., Artiga L. Evaluation of the GeneQuence® DNA hybridization method in conjunction with 24-h enrichment protocols for detection of Salmonella spp. in select foods: Collaborative study. J. AOAC Int. 2007;90:738–755. doi: 10.1093/jaoac/90.3.738. PubMed DOI
Tichoniuk M., Ligaj M., Filipiak M. Application of DNA hybridization biosensor as a screening method for the detection of genetically modified food components. Sensors. 2008;8:2118–2135. doi: 10.3390/s8042118. PubMed DOI PMC
Chapela M.J., Sotelo C.G., Calo-Mata P., Pérez-Martín R.I., Rehbein H., Hold G.L., Quinteiro J., Rey-Méndez M., Rosa C., Santos A.T. Identification of Cephalopod Species (Ommastrephidae and Loliginidae) in Seafood Products by Forensically Informative Nucleotide Sequencing (FINS) J. Food Sci. 2002;67:1672–1676. doi: 10.1111/j.1365-2621.2002.tb08703.x. DOI
Iwobi A., Sebah D., Kraemer I., Losher C., Fischer G., Busch U., Huber I. A multiplex real-time PCR method for the quantification of beef and pork fractions in minced meat. Food Chem. 2015;169:305–313. doi: 10.1016/j.foodchem.2014.07.139. PubMed DOI
Matsunaga T., Chikuni K., Tanabe R., Muroya S., Shibata K., Yamada J., Shinmura Y. A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Sci. 1999;51:143–148. doi: 10.1016/S0309-1740(98)00112-0. PubMed DOI
Barbuto M., Galimberti A., Ferri E., Labra M., Malandra R., Galli P., Casiraghi M. DNA barcoding reveals fraudulent substitutions in shark seafood products: The Italian case of “palombo” (Mustelus spp.) Food Res. Int. 2010;43:376–381. doi: 10.1016/j.foodres.2009.10.009. DOI
Thakur M., Singh S., Shukla M., Sharma L., Agarwal N., Goyal S., Sambandam S. Identification of Galliformes through Forensically Informative Nucleotide Sequencing (FINS) and its Implication in Wildlife Forensics. J. Forensic Res. 2012;4 doi: 10.4172/2157-7145.S3-001. DOI
Jírů M., Stranska M., Kocourek V., Krmela A., Tomaniová M., Rosmus J., Hajslova J. Authentication of meat species and net muscle proteins: Updating of an old concept. Czech J. Food Sci. 2019;37:205–211. doi: 10.17221/94/2019-CJFS. DOI
Ruiz Orduna A., Husby E., Yang C.T., Ghosh D., Beaudry F. Assessment of meat authenticity using bioinformatics, targeted peptide biomarkers and high-resolution mass spectrometry. Food Addit. Contam. Part A. 2015;32:1709–1717. doi: 10.1080/19440049.2015.1064173. PubMed DOI
Cody R.B., Laramée J.A., Durst H.D. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 2005;77:2297–2302. doi: 10.1021/ac050162j. PubMed DOI
Hajslova J., Cajka T., Vaclavik L. Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis. TrAC Trends Anal. Chem. 2011;30:204–218. doi: 10.1016/j.trac.2010.11.001. DOI
Worley B., Powers R. Multivariate Analysis in Metabolomics. Curr. Metab. 2013;1:92–107. doi: 10.2174/2213235X11301010092. PubMed DOI PMC
Blasco H., Błaszczyński J., Billaut J.C., Nadal-Desbarats L., Pradat P.F., Devos D., Moreau C., Andres C.R., Emond P., Corcia P., et al. Comparative analysis of targeted metabolomics: Dominance-based rough set approach versus orthogonal partial least square-discriminant analysis. J. Biomed. Inform. 2015;53:291–299. doi: 10.1016/j.jbi.2014.12.001. PubMed DOI
Berrueta L.A., Alonso-Salces R.M., Héberger K. Supervised pattern recognition in food analysis. J. Chromatogr. A. 2007;1158:196–214. doi: 10.1016/j.chroma.2007.05.024. PubMed DOI
Triba M.N., Le Moyec L., Amathieu R., Goossens C., Bouchemal N., Nahon P., Rutledge D.N., Savarin P. PLS/OPLS models in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol. Biosyst. 2015;11:13–19. doi: 10.1039/C4MB00414K. PubMed DOI
ISO . Foodstuffs-Methods of Analysis for the Detection of Genetically Modified Organisms and Derived Products-Nucleic Acid Extraction. ANSI; New York, NY, USA: 2005.
Zdeňková K., Akhatova D., Fialová E., Krupa O., Kubica L., Lencová S., Demnerová K. Detection of meat adulteration: Use of efficient and routine-suited multiplex polymerase chain reaction-based methods for species authentication and quantification in meat products. J. Food Nutr. Res. 2018;57:351–362.
Laube I., Zagon J., Spiegelberg A., Butschke A., Kroh L.W., Broll H. Development and design of a ‘ready-to-use’ reaction plate for a PCR-based simultaneous detection of animal species used in foods. Int. J. Food Sci. Technol. 2007;42:9–17. doi: 10.1111/j.1365-2621.2006.01154.x. DOI
Köppel R., Ruf J., Zimmerli F., Breitenmoser A. Multiplex real-time PCR for the detection and quantification of DNA from beef, pork, chicken and turkey. Eur. Food Res. Technol. 2008;227:1199–1203. doi: 10.1007/s00217-008-0837-7. DOI
Laube I., Spiegelberg A., Butschke A., Zagon J., Schauzu M., Kroh L., Broll H. Methods for the detection of beef and pork in foods using real-time polymerase chain reaction. Int. J. Food Sci. Technol. 2003;38:111–118. doi: 10.1046/j.1365-2621.2003.00651.x. DOI
Hurkova K., Uttl L., Rubert J., Navratilova K., Kocourek V., Stranska-Zachariasova M., Paprstein F., Hajslova J. Cranberries versus lingonberries: A challenging authentication of similar Vaccinium fruit. Food Chem. 2019;284:162–170. doi: 10.1016/j.foodchem.2019.01.014. PubMed DOI
Hrbek V., Rektorisova M., Chmelarova H., Ovesna J., Hajslova J. Authenticity assessment of garlic using a metabolomic approach based on high resolution mass spectrometry. J. Food Compos. Anal. 2018;67:19–28. doi: 10.1016/j.jfca.2017.12.020. DOI