Diagnostic reliability of the Berlin classification for complex MCA aneurysms-usability in a series of only giant aneurysms

. 2020 Nov ; 162 (11) : 2753-2758. [epub] 20200915

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32929543
Odkazy

PubMed 32929543
PubMed Central PMC7550378
DOI 10.1007/s00701-020-04565-6
PII: 10.1007/s00701-020-04565-6
Knihovny.cz E-zdroje

BACKGROUND AND OBJECTIVE: The main challenge of bypass surgery of complex MCA aneurysms is not the selection of the bypass type but the initial decision-making of how to exclude the affected vessel segment from circulation. To this end, we have previously proposed a classification for complex MCA aneurysms based on the preoperative angiography. The current study aimed to validate this new classification and assess its diagnostic reliability using the giant aneurysm registry as an independent data set. METHODS: We reviewed the pretreatment neuroimaging of 51 patients with giant (> 2.5 cm) MCA aneurysms from 18 centers, prospectively entered into the international giant aneurysm registry. We classified the aneurysms according to our previously proposed Berlin classification for complex MCA aneurysms. To test for interrater diagnostic reliability, the data set was reviewed by four independent observers. RESULTS: We were able to classify all 51 aneurysms according to the Berlin classification for complex MCA aneurysms. Eight percent of the aneurysm were classified as type 1a, 14% as type 1b, 14% as type 2a, 24% as type 2b, 33% as type 2c, and 8% as type 3. The interrater reliability was moderate with Fleiss's Kappa of 0.419. CONCLUSION: The recently published Berlin classification for complex MCA aneurysms showed diagnostic reliability, independent of the observer when applied to the MCA aneurysms of the international giant aneurysm registry.

Brandenburg Medical School Theodor Fontane Campus Bad Saarow Germany

Department of Neurosurgery and Center for Stroke Research Berlin Charité Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Germany

Department of Neurosurgery Georg August University Goettingen Göttingen Germany

Department of Neurosurgery Hannover Medical School Hannover Germany

Department of Neurosurgery Helios Clinic Bad Saarow Germany

Department of Neurosurgery J E Purkinje University Masaryk Hospital Ústí nad Labem Czech Republic

Department of Neurosurgery Jikei University School of Medicine Tokyo Japan

Department of Neurosurgery Kantonsspital Aarau Aarau Switzerland

Department of Neurosurgery Klinikum Stuttgart Germany

Department of Neurosurgery Medical Center Saarbrücken Saarbrücken Germany

Department of Neurosurgery Medical University Vienna Austria

Department of Neurosurgery Technical University of Munich Munich Germany

Department of Neurosurgery Unfallkrankenhaus Berlin Germany

Department of Neurosurgery University Hospital Bonn Bonn Germany

Department of Neurosurgery University Hospital Jena Jena Germany

Department of Neurosurgery University Hospital of Ulm Ulm Germany

Department of Neurosurgery University Hospital of Zurich Zürich Switzerland

Department of Neurosurgery University Medical Center Hamburg Eppendorf Hamburg Germany

Department of Neurosurgery University of Essen Duisburg Germany

Department of Neurosurgery University of Regensburg Regensburg Germany

Department of Neurosurgery Vivantes Klinikum im Friedrichshain Berlin Germany

Erasmus Stroke Center Erasmus MC University Hospital Rotterdam The Netherlands

Interventional Neuroradiology and Endovascular Neurosurgery at Miami Cardiac and Vascular Institute and Baptist Neuroscience Institute Miami USA

Neurosurgery University of Helsinki and Helsinki University Hospital Helsinki Finland

Service de Neurochirurgie Faculté de Médecine de Genève and Hôpitaux Universitaire de Genève Geneva Switzerland

Zobrazit více v PubMed

Amin-Hanjani S, Alaraj A, Charbel FT. Flow replacement bypass for aneurysms: decision-making using intraoperative blood flow measurements. Acta Neurochir. 2010;152(6):1021–1032. doi: 10.1007/s00701-010-0635-4. PubMed DOI

Balamurugan S, Agrawal A, Kato Y, Sano H. Intra operative indocyanine green video-angiography in cerebrovascular surgery: an overview with review of literature. Asian J Neurosurg. 2011;6(2):88–93. doi: 10.4103/1793-5482.92168. PubMed DOI PMC

Blanco PJ, Müller LO, Spence JD. Blood pressure gradients in cerebral arteries: a clue to pathogenesis of cerebral small vessel disease. Stroke Vasc Neurol. 2017;2(3):108–117. doi: 10.1136/svn-2017-000087. PubMed DOI PMC

Dengler J, Heuschmann PU, Endres M, Meyer B, Rohde V, Rufenacht DA, Vajkoczy P. The rationale and design of the giant intracranial aneurysm registry: a retrospective and prospective study. Int J Stroke. 2011;6(3):266–270. doi: 10.1111/j.1747-4949.2011.00588.x. PubMed DOI

Dengler J, Rüfenacht D, Meyer B et al (2019) Giant intracranial aneurysms: natural history and 1-year case fatality after endovascular or surgical treatment. J Neurosurg:1–9. 10.3171/2019.8.JNS183078 PubMed

Esposito G, Durand A, Van Doormaal T, Regli L. Selective-targeted extra-intracranial bypass surgery in complex middle cerebral artery aneurysms: correctly identifying the recipient artery using indocyanine green videoangiography. Neurosurgery. 2012;71(SUPPL.2):ons274–ons285. PubMed

Esposito G, Regli L (2014) Selective targeted cerebral revascularization via microscope integrated indocyanine green videoangiography technology. Trends Neurovascular Interv. Springer International Publishing, Cham, pp. 59–64 PubMed

Esposito G, Regli L, Esposito G, Regli L (2014) Surgical decision-making for managing complex intracranial aneurysms. Trends Neurovascular Interv. Springer Wien, Cham, pp. 3–11 PubMed

Greving JP, Wermer MJHH, Brown RD, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 2014;13(1):59–66. doi: 10.1016/S1474-4422(13)70263-1. PubMed DOI

Hopkins LN, Grand W. Extracranial-intracranial arterial bypass in the treatment of aneurysms of the carotid and middle cerebral arteries. Neurosurgery. 1979;5(1):21–31. doi: 10.1227/00006123-197907010-00004. PubMed DOI

Hussein AE, Brunozzi D, Shakur SF, Ismail R, Charbel FT, Alaraj A. Cerebral aneurysm size and distal intracranial hemodynamics: an assessment of flow and pulsatility index using quantitative magnetic resonance angiography. Clin Neurosurg. 2018;83(4):660–665. doi: 10.1093/neuros/nyx441. PubMed DOI

Investigators TUJ. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med. 2012;366(26):2474–2482. doi: 10.1056/NEJMoa1113260. PubMed DOI

Kalani MYS, Ramey W, Albuquerque FC, McDougall CG, Nakaji P, Zabramski JM, Spetzler RF. Revascularization and aneurysm surgery. Neurosurgery. 2014;74(5):482–498. doi: 10.1227/NEU.0000000000000312. PubMed DOI

Kalani MYS, Rangel-Castilla L, Ramey W, Nakaji P, Albuquerque FC, McDougall CG, Spetzler RF, Zabramski JM. Indications and results of direct cerebral revascularization in the modern era. World Neurosurg. 2015;83(3):345–350. doi: 10.1016/j.wneu.2014.10.013. PubMed DOI

Koch GG, Landis JR, Freeman JL, Freeman DH, Lehnen RG. A general methodology for the analysis of experiments with repeated measurement of categorical data. Biometrics. 1977;33(1):133. doi: 10.2307/2529309. PubMed DOI

Nurminen V, Lehecka M, Chakrabarty A, Kivisaari R, Lehto H, Niemelä M, Hernesniemi J. Anatomy and morphology of giant aneurysms - angiographic study of 125 consecutive cases. Acta Neurochir. 2014;156(1):1–10. doi: 10.1007/s00701-013-1933-4. PubMed DOI

Ogawa T, Okudera T, Noguchi K, Sasaki N, Inugami A, Uemura K, Yasui N. Cerebral aneurysms: evaluation with three-dimensional CT angiography. AJNR Am J Neuroradiol. 1996;17(3):447–454. PubMed PMC

Rustemi O, Amin-Hanjani S, Shakur SF, Du X, Charbel FT. Donor selection in flow replacement bypass surgery for cerebral aneurysms: quantitative analysis of long-term native donor flow sufficiency. Neurosurgery. 2016;78(3):332–341. doi: 10.1227/NEU.0000000000001074. PubMed DOI

Straus DC, Brito da Silva H, McGrath L, Levitt MR, Kim LJ, Ghodke BV, Barber JK, Sekhar LN. Cerebral revascularization for aneurysms in the flow-diverter era. Neurosurgery. 2017;80(5):759–768. doi: 10.1093/neuros/nyx064. PubMed DOI

Tayebi Meybodi A, Huang W, Benet A, Kola O, Lawton MT. Bypass surgery for complex middle cerebral artery aneurysms: an algorithmic approach to revascularization. J Neurosurg. 2017;127(3):463–479. doi: 10.3171/2016.7.JNS16772. PubMed DOI

Wessels L, Fekonja LS, Vajkoczy P. Bypass surgery of complex middle cerebral artery aneurysms—technical aspects and outcomes. Acta Neurochir. 2019;161(10):1981–1991. doi: 10.1007/s00701-019-04042-9. PubMed DOI

Zarrinkoob L, Ambarki K, Wåhlin A, Birgander R, Eklund A, Malm J. Blood flow distribution in cerebral arteries. J Cereb Blood Flow Metab. 2015;35(4):648–654. doi: 10.1038/jcbfm.2014.241. PubMed DOI PMC

Zavanone M, Balbi S, Spetzler RF, Riina HA, Lemole GM. Giant aneurysms. Neurosurgery. 2001;49(4):902–908. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...