Responsiveness to i.v. immunoglobulin therapy in patients with toxic epidermal necrolysis: A novel pharmaco-immunogenetic concept
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Ministry of Health, Czech Republic - conceptual development of research organization (University Hospital Brno)
Faculty of Medicine Masaryk University to junior researcher Bretislav Lipovy
PubMed
32935409
DOI
10.1111/1346-8138.15583
Knihovny.cz E-zdroje
- Klíčová slova
- Fas receptor, gene variability, i.v. immunoglobulin therapy, pharmaco-immunogenetics, toxic epidermal necrolysis,
- MeSH
- antigeny CD95 genetika MeSH
- imunogenetické jevy MeSH
- intravenózní imunoglobuliny MeSH
- lidé MeSH
- pasivní imunizace MeSH
- Stevensův-Johnsonův syndrom * farmakoterapie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antigeny CD95 MeSH
- intravenózní imunoglobuliny MeSH
Toxic epidermal necrolysis (TEN) represents a rare drug-induced autoimmune reaction with delayed-type hypersensitivity that initiates the process of developing massive keratinocyte apoptosis, dominantly in the dermoepidermal junction. Although the etiopathophysiology has not yet been fully elucidated, the binding of Fas ligand (FasL, CD95L) to the Fas receptor (CD95) was shown to play a key role in the induction of apoptosis in this syndrome. The knowledge of the role of immunoglobulin G (IgG) in inhibition of Fas-mediated apoptosis contributed to the introduction of i.v. Ig (IVIg) in the therapy of TEN patients. Despite great enthusiasm for this therapy at the end of the 1990s, subsequent studies in various populations and meta-analyses could not unequivocally confirm the efficacy of the IVIg-based treatment concept. Today, therefore, we are faced with the dilemmas of how to adjust therapy of TEN patients most effectively, which patients could benefit from IVIg therapy and what dose of the preparation should be administrated. The ground-breaking question is: do the host genetic profiles influence the responsiveness and side-effects of IVIg therapy in TEN patients? Based on recent pharmacological, immunological and genetic findings, we suggest that the variability of IVIg therapy outcomes in TEN patients may be related to functional variants in Fas, FasL and Fc-γ receptor genes. This novel concept could lead to improved quality of care for patients with TEN, facilitating personalized therapy to reduce mortality.
Clinic of Stomatology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Molecular Pharmacy Faculty of Pharmacy Masaryk University Brno Czech Republic
Department of Pathophysiology Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Medical Genetics Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Duong TA, Valeyrie-Allanore L, Wolkenstein P, Chosidow O. Severe cutaneous adverse reactions to drugs. Lancet 2017; 390: 1996-2011.
Roujeau JC, Allanore L, Liss Y, Mockenhaupt M. Severe cutaneous adverse reactions to drugs (SCAR): definitions, diagnostic criteria, genetic predisposition. Dermatologica Sin 2009; 27(2): 203-209.
Leyll A. Toxic epidermal necrolysis: an eruption resembling scalding of the skin. Br J Dermatol 1956; 68(11): 355-361.
SchöpfE Stühmer A, Rzany B, Victor N, Zentgraf R, Kapp JF. Toxic epidermal necrolysis and Stevens-Johnson syndrome. An epidemiologic study from West Germany. Arch Dermatol 1991; 127(6): 839-842.
Roujeau JC, Guillaume JC, Fabre JP, Penso D, Fléchet ML, Girre JP. Toxic epidermal necrolysis (Lyell syndrome). Incidence and drug etiology in France, 1981-1985. Arch Dermatol 1990;126(1):37-42.
Ventura F, Fracasso T, Leoncini A, Gentile R, de Stefano F. Death caused by toxic epidermal necrolysis (Lyell syndrome). J Forensic Sci 2010; 55(3): 839-841.
Khoo AK, Foo CL. Toxic epidermal necrolysis in a burns centre: a 6-year review. Burns 1996; 22(4): 275-278.
Brand R, Rohr JB. Toxic epidermal necrolysis in Western Australia. Australas J Dermatol 2000; 41(1): 31-33.
Mittmann N, Knowles SR, Koo M, Shear NH, Rachlis A, Rourke SB. Incidence of toxic epidermal necrolysis and Stevens-Johnson Syndrome in an HIV cohort: an observational, retrospective case series study. Am J Clin Dermatol 2012; 13(1): 49-54.
Yang C, Mosam A, Mankahla A, Dlova N, Saavedra A. HIV infection predisposes skin to toxic epidermal necrolysis via depletion of skin-directed CD4⁺ T cells. J Am Acad Dermatol 2014; 70(6): 1096-1102.
Chave TA, Mortimer NJ, Sladden MJ, Hall AP, Hutchinson PE. Toxic epidermal necrolysis: current evidence, practical management and future directions. Br J Dermatol 2005; 153(2): 241-253.
Cooper KL. Drug reaction, skin care, skin loss. Crit Care Nurse 2012; 32(4): 52-59.
Mockenhaupt M, Viboud C, Dunant A et al. Stevens-Johnson syndrome and toxic epidermal necrolysis: assessment of medication risks with emphasis on recently marketed drugs. The EuroSCAR-study. J Invest Dermatol 2008; 128(1): 35-44.
Campagna C, Tassinari D, Neri I, Bernardi F. Mycoplasma pneumoniae-induced recurrent Stevens-Johnson syndrome in children: a case report. Pediatr Dermatol 2013; 30(5): 624-626.
Watanabe Y, Matsukura S, Isoda Y, Morita A, Aihara M, Kambara T. A case of toxic epidermal necrolysis induced by allopurinol with human herpesvirus-6 reactivation. Acta Derm Venereol 2013; 93(6): 731-732.
Honma M, Tobisawa S, Iinuma S et al. Toxic epidermal necrolysis with prominent facial pustules: a case with reactivation of human herpesvirus 7. Dermatology 2010; 221(4): 306-308.
Paquet P, Piérard GE. New insights in toxic epidermal necrolysis (Lyell’s syndrome): clinical considerations, pathobiology and targeted treatments revisited. Drug Saf 2010; 33(3): 189-212.
Randhawa SR, Chahine BG, Lowery-Nordberg M, Cotelingam JD, Casillas AM. Underexpression and overexpression of Fas and Fas ligand: a double-edged sword. Ann Allergy Asthma Immunol 2010; 104(4): 286-292.
Pereira FA, Mudgil AV, Rosmarin DM. Toxic epidermal necrolysis. J Am Acad Dermatol 2007; 56(2): 181-200.
Nassif A, Bensussan A, Boumsell L et al. Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J Allergy Clin Immunol 2004; 114(5): 1209-1215.
Schwartz RA, McDonough PH, Lee BW. Toxic epidermal necrolysis: Part I. Introduction, history, classification, clinical features, systemic manifestations, etiology, and immunopathogenesis. J Am Acad Dermatol 2013; 69(2):173.e1-173.e13.
Saito N, Qiao H, Yanagi T et al. An annexin A1-FPR1 interaction contributes to necroptosis of keratinocytes in severe cutaneous adverse drug reactions. Sci Transl Med 2014;6(245):245ra95.
Lim LHK, Pervaiz S. Annexin 1: the new face of an old molecule. FASEB J 2007; 21(4): 968-975.
Kim SD, Kim JM, Jo SH et al. Functional expression of formyl peptide receptor family in human NK cells. J Immunol 2009; 183(9): 5511-5517.
Banovic F, Dunston S, Linder KE, Rakich P, Olivry T. Apoptosis as a mechanism for keratinocyte death in canine toxic epidermal necrolysis. Vet Pathol 2017; 54(2): 249-253.
Kim SK, Kim WJ, Yoon JH. Upregulated RIP3 expression potentiates MLKL phosphorylation-mediated programmed necrosis in toxic epidermal necrolysis. J Invest Dermatol 2015; 135(8): 2021-2030.
Abe R. Immunological response in Stevens-Johnson syndrome and toxic epidermal necrolysis. J Dermatol 2015; 42(1): 42-48.
Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signalling in the immune system. Immunity 2009; 30(2): 180-192.
Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281(5381): 1305-1308.
Powell WC, Fingleton B, Wilson CL, Boothby M, Matrisian LM. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol 1999; 9(24): 1441-1447.
Strand S, Vollmer P, van den Abeelen L et al. Cleavage of CD95 by matrix metalloproteinase-7 induces apoptosis resitance in tumor cells. Oncogene 2004; 23(20): 3732-3738.
Viard I, Wehrli P, Bullani R et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 1998; 282(5388): 490-493.
Viard-Leveugle I, Bullani RR, Meda P et al. Intracellular localization of keratinocyte Fas ligand explains lack of cytolytic activity under physiological conditions. J Biol Chem 2003; 278(18): 16183-16188.
Murata J, Abe R, Shimizu H. Increased soluble Fas ligand levels in patients with Stevens-Johnson syndrome and toxic epidermal necrolysis preceding skin detachment. J Allergy Clin Immunol 2008; 122(5): 992-1000.
Bossi G, Griffiths GM. Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat Med 1999; 5(1): 90-96.
Kischkel FC, Hellbardt S, Behrmann I et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signalling complex (DISC) with the receptor. EMBO J 1995; 14(22): 5579-5588.
Sprick MR, Weigand MA, Rieser E et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 2000; 12(6): 599-609.
Bolognia J, Jorizzo JL, Rapini RP. Dermatology. NewYork: Mosby, 2003.
Askenasy N, Yolcu ES, Yaniv I, Shirwan H. Induction of tolerance using Fas ligand: a double-edged immunomodulator. Blood 2005; 105(4): 1396-1404.
Imbach P, Barandun S, d’Apuzzo V et al. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet 1981; 1(8232): 1228-1231.
Eibl MM. History of immunoglobulin replacement. Immunol Allergy Clin North Am 2008; 28(4): 737-764.
Baxley A, Akhtari M. Hematologic toxicities associated with intravenous immunoglobulin therapy. Int Immunopharmacol 2011; 11(11): 1663-1667.
Cauza K, Hinterhuber G, Dingelmaier-Hovorka R et al. Expression of FcRn, the MHC class I-related receptor for IgG, in human keratinocytes. J Invest Dermatol 2005; 124(1): 132-139.
Nagelkerke SQ, Kuijpers TW. Immunomodulation by IVIg and the role of Fc-gamma receptors: classic mechanism of action after all? Front Immunol 2015; 5: 674.
Gelfand EW. Intravenous immune globulin in autoimmune and inflammatory diseases. N Engl J Med 2012; 367(21): 2015-2025.
Prasad NK, Papoff G, Zeuner A et al. Therapeutic preparations of normal polyspecific IgG (IVIg) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of action of IVIg involving the Fas apoptotic pathway. J Immunol 1998; 161(7): 3781-3790.
Artac H, Kara R, Reisli I. In vivo modulation of the expressions of Fas and CD25 by intravenous immunoglobulin in common variable immunodeficiency. Clin Exp Med 2010; 10(1): 27-31.
Paquet P, Jacob E, Damas P, Pirson J, Piérard G. Analytical quantification of the inflammatory cell infiltrate and CD95R expression during treatment of drug-induced toxic epidermal necrolysis. Arch Dermatol Res 2005; 297(6): 266-273.
Romanelli P, Schlam E, Green JB et al. Immunohistochemical evaluation of toxic epidermal necrolysis treated with human intravenous immunoglobulin. G Ital Dermatol Venereol 2008; 143(4): 229-233.
Altznauer F, von Gunten S, Späth P, Simon HU. Concurrent presence of agonistic and antagonistic anti-CD95 autoantibodies in intravenous Ig preparations. J Allergy Clin Immunol 2003; 112(6): 1185-1190.
Reipert BM, Stellamor MT, Poell M et al. Variation of anti-Fas antibodies in different lots of intravenous immunoglobulin. Vox Sang 2008; 94(4): 334-341.
Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008; 133(5): 775-787.
Teraki Y, Kawabe M, Izaki S. Possible role of TH17 cells in the pathogenesis of Stevens-Johnson syndrome and toxic epidermal necrolysis. J Allergy Clin Immunol 2013; 131(3): 907-909.
Takahashi R, Kano Y, Yamazaki Y, Kimishima M, Mizukawa Y, Shiohara T. Defective regulatory T cells in patients with severe drug eruptions: timing of the dysfunction is associated with the pathological phenotype and outcome. J Immunol 2009; 182(12): 8071-8079.
Bayry J, Mouthon L, Kaveri SV. Intravenous immunoglobulin expands regulatory T cells in autoimmune rheumatic disease. J Rheumatol 2012; 39(2): 450-451.
Kaufman GN, Massoud AH, Dembele M, Yona M, Piccirillo CA, Mazer BD. Induction of regulatory T cells by intravenous immunoglobulin: a bridge between adaptive and innate immunity. Front Immunol 2015; 6: 469.
Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 2010; 236(1): 219-242.
Ruby CE, Yates MA, Hirschhorn-Cymerman D et al. Cutting Edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right. J Immunol 2009; 183(8): 4853-4857.
Periasamy S, Dhiman R, Barnes PF et al. Programmed death 1 and cytokine inducible SH2-containing protein dependent expansion of regulatory T cells upon stimulation with Mycobacterium tuberculosis. J Infect Dis 2011; 203(9): 1256-1263.
Firoz BF, Henning JS, Zarzabal LA, Pollock BH. Toxic epidermal necrolysis: five years of treatment experience from a burn unit. J Am Acad Dermatol 2012; 67(4): 630-635.
Zhu QY, Ma L, Luo XQ, Huang HY. Toxic epidermal necrolysis: performance of SCORTEN and the score-based comparison of the efficacy of corticosteroid therapy and intravenous immunoglobulin combined therapy in China. J Burn Care Res 2012; 33(6): e295-e308.
Jagadeesan S, Sobhanakumari K, Sadanandan SM et al. Low dose intravenous immunoglobulins and steroids in toxic epidermal necrolysis: a prospective comparative open-labelled study of 36 cases. Indian J Dermatol Venereol Leprol 2013; 79(4): 506-511.
Aihara M, Kano Y, Fujita H et al. Efficacy of additional i.v. immunoglobulin to steroid therapy in Stevens-Johnson syndrome and toxic epidermal necrolysis. J Dermatol 2015; 42(8): 768-777.
Creamer D, Walsh SA, Dziewulski P et al. U.K. guidelines for the management of Stevens-Johnson syndrome/toxic epidermal necrolysis in adults 2016. Br J Dermatol 2016; 174(6): 1194-1227.
Almawi WY, Melemedjian OK. Negative regulation of nuclear factor-kappaB activation and function by glucocorticoids. J Mol Endocrinol 2002; 28(2): 69-78.
Roongpisuthipong W, Prompongsa S, Klangjareonchai T. Retrospective analysis of corticosteroid treatment in Stevens-Johnson syndrome and/or toxic epidermal necrolysis over a period of 10 years in Vajira Hospital, Navamindradhiraj University. Bangkok. Dermatol Res Pract 2014; 2014(237821): 1-5.
Al-Kathiri L, Mercyamma V, Al-Najjar T. A case of toxic epidermal necrolysis successfully treated with low dose intravenous immunoglobulins and systemic corticosteroid. Oman Med J 2018; 33(4): 356-359.
Meza R, Rada G, Varas P. Are steroids effective in toxic epidermal necrolysis and Stevens-Johnson syndrome? Medwave 2017; 17(Suppl2): e6894.
Brennan VM, Salomé-Bentley NJ, Chapel HM. Immunology Nurses Study. Prospective audit of adverse reactions occurring in 459 primary antibody-deficient patients receiving intravenous immunoglobulin. Clin Exp Immunol 2003; 133(2): 247-251.
Dashti-Khavidaki S, Aghamohammadi A, Farshadi F et al. Adverse reactions of prophylactic intravenous immunoglobulin; a 13-year experience with 3004 infusions in Iranian patients with primary immunodeficiency diseases. J Investig Allergol Clin Immunol 2009; 19(2): 139-145.
Bichuetti-Silva DC, Furlan FP, Nobre FA et al. Immediate infusion-related adverse reactions to intravenous immunoglobulin in a prospective cohort of 1765 infusions. Int Immunopharmacol 2014; 23(2): 442-446.
Späth PJ, Granata G, La Marra F, Kuijpers TW, Quinti I. On the dark side of therapies with immunoglobulin concentrates: the adverse events. Front Immunol 2015; 6: 11.
Nydegger UE, Sturzenegger M. Adverse effects of intravenous immunoglobulin therapy. Drug Saf 1999; 21(3): 171-185.
Katz U, Achiron A, Sherer Y, Shoenfeld Y. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev 2007; 6(4): 257-259.
Cherin P, Marie I, Michallet M et al. Management of adverse events in the treatment of patients with immunoglobulin therapy: A review of evidence. Autoimmun Rev 2016; 15(1): 71-81.
Knezevic-Maramica I, Kruskall MS. Intravenous immune globulins: an update for clinicians. Transfusion 2003; 43(10): 1460-1480.
Orbach H, Katz U, Sherer Y, Shoenfeld Y. Intravenous immunoglobulin: adverse effects and safe asministration. Clin Rev Allergy Immunol 2005; 29(3): 173-184.
Sherer Y, Levy Y, Langevitz P, Rauova L, Fabrizzi F, Shoenfeld Y. Adverse effects of intravenous immunoglobulin therapy in 56 patients with autoimmune diseases. Pharmacology 2001; 62(3): 133-137.
Funk MB, Gross N, Gross S et al. Thromboembolic events associated with immunoglobulin treatment. Vox Sang 2013; 105(1): 54-64.
Marie I, Maurey G, Hervé F, Hellot MF, Levesque H. Intravenous immunoglobulin-associated arterial and venous thrombosis; report of a series and review of the literature. Br J Dermatol 2006; 155(4): 714-721.
Ramírez E, Romero-Garrido JA, López-Granados E et al. Symptomatic thromboembolic events in patients treated with intravenous-immunoglobulins: results from a retrospective cohort study. Thromb Res 2014; 133(6): 1045-1051.
Lipový B, Holoubek J, Hanslianová M et al. Toxic epidermal necrolysis data from the CELESTE multinational registry. Part I: Epidemiology and general microbiological characteristics. Burns 2018; 44(6): 1551-1560.
Lipový B, Holoubek J, Hanslianová M et al. Toxic epidermal necrolysis data from the CELESTE multinational registry. Part II: Specific systemic and local risk factors for the development of infectious complications. Burns 2018; 44(6): 1561-1572.
Génin E, Schumacher M, Roujeau JC et al. Genome-wide association study of Stevens-Johnson syndrome and toxic epidermal necrolysis in Europe. Orphanet J Rare Dis 2011; 6: 52.
Ueta M. Cold medicine-related Stevens-Johnson syndrome/toxic epidermal necrolysis with severe ocular complications-phenotypes and genetic predispositions. Taiwan J Ophthalmol 2016; 6(3): 108-118.
Tohkin M, Kaniwa N, Saito Y et al. A whole-genome association study of major determinants for allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Pharmacogenomics J 2013; 13(1): 60-69.
Murata J, Abe R. Soluble Fas ligand: is it a critical mediator of toxic epidermal necrolysis and Stevens-Johnson syndrome? J Invest Dermatol 2007; 127(4): 744-745.
Lin P, Bush JA, Cheung KJ Jr, Li G. Tissue-specific regulation of Fas/APO-1/CD95 expression by p53. Int J Oncol 2002; 21(2): 261-264.
Yan H, Hong Y, Cai Y. Association between FAS gene -670 A/G and -1377 G/A polymorphisms and the risk of autoimmune diseases: a meta-analysis. Biosci Rep 2020; 40(1): BSR20191197. https://doi.org/10.1042/BSR20191197
Broen J, Gourh P, Rueda B et al. The FAS -670A>G polymorphism influences susceptibility to systemic sclerosis phenotypes. Arthritis Rheum 2009; 60(12): 3815-3820.
Lee YH, Song GG. Associations between the FAS -670 A/G, -1377 G/A, and FASL -844 T/C polymorphisms and susceptibility to systemic lupus erythematosus: a meta-analysis. Clin Exp Rheumatol 2016; 34(4): 634-640.
Huang D, Xiao J, Deng X et al. Association between Fas/FasL gene polymorphism and musculoskeletal degenerative diseases: a meta-analysis. BMC Musculoskelet Disord 2018; 19(1): 137.
Fransen NL, Crusius JBA, Smolders J et al. Post-mortem multiple sclerosis lesion pathology is influenced by single nucleotide poymrphisms. Brain Pathol 2020; 30(1): 106-119.
Lasabova Z, Zigo I, Svecova I et al. Association of specific diplotypes defined by common rs1800682 and rare rs34995925 single nucleotide polymorphisms within the STAT1 transcription binding site of the FAS gene promoter with preeclampsia. Gen Physiol Biophys 2014; 33(2): 199-204.
Kim DH, Kong JH, Byeun JY et al. The IFNG (IFN-gamma) genotype predicts cytogenetic and molecular response to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res 2010; 16(21): 5339-5350.
Bonzheim I, Geissinger E, Chuang WY et al. Analysis of single nucleotide polymorphisms in the FAS and CTLA-4 genes of peripheral T-cell lymphomas. J Hematop 2008; 1(1): 11-21.
Huang QR, Morris D, Manolios N. Identification and characterization of polymorphisms in the promoter region of the human Apo-1/Fas (CD95) gene. Mol Immunol 1997; 34(8-9): 577-582.
Sibley K, Rollinson S, Allan JM et al. Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Res 2003; 63(15): 4327-4330.
Kanemitsu S, Ihara K, Saifddin A et al. A functional polymorphism in fas (CD95/APO-1) gene promoter associated with systemic lupus erythematosus. J Rheumatol 2002; 29(6): 1183-1188.
Wang S, Wu S, Meng Q et al. FAS rs2234767 and rs1800682 polymorphisms jointly contributed to risk of colorectal cancer by affecting SP1/STAT1 complex recruitment to chromatin. Sci Rep 2016; 6: 19229.
Xu Y, Deng Q, He B et al. The diplotype Fas -1377A/-670G as a genetic marker to predict a lower risk of breast cancer in Chinese women. Tumour Biol 2014; 35(9): 9147-9161.
Glavan BJ, Holden TD, Goss CH et al. Genetic variation in the FAS gene and associations with acute lung injury. Am J Respir Crit Care Med 2011; 183(3): 356-363.
Kumar V, Becker T, Jansen S et al. Expression levels of FAS are regulated through an evolutionary conserved element in intron 2, which modulates cystic fibrosis disease severity. Genes Immun 2008; 9(8): 689-696.
Awah CU, Tamm S, Hedtfeld S et al. Mechanism of allele specific assembly and disruption of master regulator transcription factor complexes of NF-KBp50, NF-KBp65 and HIF1a on a non-coding FAS SNP. Biochim Biophys Acta 2016; 1859(11): 1411-1428.
Pu X, Roth JA, Hildebrandt MA et al. MicroRNA-related genetic variants associated with clinical outcomes in early-stage non-small cell lung cancer patients. Cancer Res 2013; 73(6): 1867-1875.
Wu J, Metz C, Xu X et al. A novel polymorphic CAAT/enhancer-binding protein beta element in the FasL gene promoter alters Fas ligand expression: a candidate background gene in African American systemic lupus erythematosus patients. J Immunol 2003; 170(1): 132-138.
Hashemi M, Fazaeli A, Ghavami S et al. Functional polymorphisms of FAS and FASL gene and risk of breast cancer - pilot study of 134 cases. PLoS One 2013; 8(1): e53075.
Yıldır S, Sezgin M, Barlas IÖ et al. Relation of the Fas and FasL gene polymorphisms with susceptibility to and severity of rheumatoid arthritis. Rheumatol Int 2013; 33(10): 2637-2645.
Loureiro Dos Reis MM, Queiroz MAF, da Silva BCM etal. IL6 and FAS/FASL gene polymorphisms may be associated with disease progression in HIV-1-positive ethnically mixed patients. J Med Virol 2019;92(8):1148-1157. https://doi.org/10.1002/jmv.25651
Yamada A, Arakaki R, Saito M, Kudo Y, Ishimaru N. Dual role of FAS/FasL-mediated signal in peripheral immune tolerance. Front Immunol 2017; 8: 403.
Breunis WB, van Mirre E, Geissler J et al. Copy number variation at the FCGR locus includes FCGR3A, FCGR2C and FCGR3B but not FCGR2A and FCGR2B. Hum Mutat 2009; 30(5): E640-E650.
Hollox EJ, Detering JC, Dehnugara T. An integrated approach for measuring copy number variation at the FCGR3 (CD16) locus. Hum Mutat 2009; 30(3): 477-484.
tan Nguyen H, Merriman TR, Black MA. CNVrd, a read-depth algorithm for assigning copy-number at the FCGR locus: population-specific tagging of copy number variation at FCGR3B. PLoS One 2013;8(4):e63219.
Storey JD, Madeoy J, Strout JL, Wurfel M, Ronald J, Akey JM. Gene-expression variation within and among human populations. Am I Hum Genet 2007; 80(3): 502-509.
Bachtiar M, Lee CGL. Genetics of population differences in drug response. Curr Genet Med Rep 2013; 1(3): 162-170.
Wilson JF, Weale ME, Smith AC et al. Population genetic structure of variable drug response. Nat Genet 2001; 29(3): 265-269.
Bruhns P, Jönsson F. Mouse and human FcR effector functions. Immunol Rev 2015; 268(1): 25-51.
Arnold ML, Kainz A, Hidalgo LG et al. Functional Fc gamma receptor gene polymorphisms and donod-specific antibody-triggered microcirculation inflammation. Am J Transplant 2018; 18(9): 2261-2273.
Jormsjö S, Whatling C, Walter DH, Zeiher AM, Hamsten A, Eriksson P. Allele-specific regulation of matrix metalloproteinase-7 promoter activity is associated with coronary artery luminal dimensions among hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 2001; 21(11): 1834-1839.
Gaultier F, Ejeil AL, Igondjo-Tchen S et al. Possible involvement of gelatinase A (MMP2) and gelatinase B (MMP9) in toxic epidermal necrolysis or Stevens-Johnson syndrome. Arch Dermatol Res 2004; 296(5): 220-225.
Paquet P, Nusgens BV, Piérard GE, Lapière CM. Gelatinases in drug-induced toxic epidermal necrolysis. Eur J Clin Invest 1998; 28(7): 528-532.
Price SJ, Greaves DR, Watkins H. Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene: role of Sp1 in allele-specific transcriptional regulation. J Biol Chem 2001; 276(10): 7549-7558.
Manolio TA, Hutter CM, Avigan M et al. Research directions in genetic predispositions to Stevens-Johnson syndrome / toxic epidermal necrolysis. Clin Pharmacol Ther 2018; 103(3): 390-394.
Stella M, Cassano P, Bollero D, Clemente A, Giorio G. Toxic epidermal necrolysis treated with intravenous high-dose immunoglobulins: our experience. Dermatology 2001; 203(1): 45-49.
Tristani-Firouzi P, Petersen MJ, Saffle JR, Morris SE, Zone JJ. Treatment of toxic epidermal necrolysis with intravenous immunoglobulin in children. J Am Acad Dermatol 2002; 47(4): 548-552.
Bachot N, Revuz J, Roujeau JC. Intravenous immunoglobulin treatment for Stevens-Johnson syndrome and toxic epidermal necrolysis: a prospective noncomparative study showing no benefit on mortality or progression. Arch Dermatol 2003; 139(1): 33-36.
Campione E, Marulli GC, Carrozzo AM, Chimenti MS, Costanzo A, Bianchi L. High-dose intravenous immunoglobulin for severe drug reactions: efficacy in toxic epidermal necrolysis. Acta Derm Venereol 2003; 83(6): 430-432.
Trent JT, Kirsner RS, Romanelli P, Kerdel FA. Analysis of intravenous immunoglobulin for the treatment of toxic epidermal necrolysis using SCORTEN: The University of Miami Experience. Arch Dermatol 2003; 139: 39-43.
Prins C, Kerdel FA, Padilla RS et al. Treatment of toxic epidermal necrolysis with high-dose intravenous immunoglobulins: multicenter retrospective analysis of 48 consecutive cases. Arch Dermatol 2003; 139(1): 26-32.
Al-Mutairi N, Arun J, Osama NE et al. Prospective, noncomparative open study from Kuwait of the role of intravenous immunoglobulin in the treatment of toxic epidermal necrolysis. Int J Dermatol 2004; 43(11): 847-851.
Brown KM, Silver GM, Halerz M, Walaszek P, Sandroni A, Gamelli RL. Toxic epidermal necrolysis: does immunoglobulin make a difference? J Burn Care Rehabil 2004; 25(1): 81-88.
Shortt R, Gomez M, Mittman N, Cartotto R. Intravenous immunoglobulin does not improve outcome in toxic epidermal necrolysis. J Burn Care Rehabil 2004; 25(3): 246-255.
Kim KJ, Lee DP, Suh HS et al. Toxic epidermal necrolysis: analysis of clinical course and SCORTEN-based comparison of mortality rate and treatment modalities in Korean patients. Acta Derm Venereol 2005; 85(6): 497-502.
Lissia M, Figus A, Rubino C. Intravenous immunoglobulins and plasmapheresis combined treatment in patients with severe toxic epidermal necrolysis: preliminary report. Br J Plast Surg 2005; 58(4): 504-510.
Mangla K, Rastogi S, Goyal P, Solanki RB, Rawal RC. Efficacy of low dose intravenous immunoglobulins in children with toxic epidermal necrolysis: an open uncontrolled study. Indian J Dermatol Venereol Leprol 2005; 71(6): 398-400.
Tan AW, Thong BY, Yip LW, Chng HH, Ng SK. High-dose intravenous immunoglobulins in the treatment of toxic epidermal necrolysis: an Asian series. J Dermatol 2005; 32(1): 1-6.
Yeung CK, Lam LK, Chan HH. The timing of intravenous immunoglobulin therapy in Stevens-Johnson syndrome and toxic epidermal necrolysis. Clin Exp Dermatol 2005; 30(5): 600-602.
Yip LW, Thong BY, Tan AW, Khin LW, Chng HH, Heng WJ. High-dose intravenous immunoglobulin in the treatment of toxic epidermal necrolysis: a study of ocular benefits. Eye (Lond) 2005; 19(8): 846-853.
Imahara SD, Holmes JH 4th, Heimbach DM et al. SCORTEN overestimates mortality in the setting of a standardized treatment protocol. J Burn Care Res 2006; 27(3): 270-275.
Paquet P, Kaveri S, Jacob E, Pirson J, Quatresooz P, Piérard GE. Skin immunoglobulin deposition following intravenous immunoglobulin therapy in toxic epidermal necrolysis. Exp Dermatol 2006; 15(5): 381-386.
Gravante G, Delogu D, Marianetti M, Trombetta M, Esposito G, Montone A. Toxic epidermal necrolysis and Steven Johnson syndrome: 11-years experience and outcome. Eur Rev Med Pharmacol Sci 2007; 11(2): 119-127.
Stella M, Clemente A, Bollero D, Risso D, Dalmasso P. Toxic epidermal necrolysis (TEN) and Stevens-Johnson syndrome (SJS): experience with high-dose intravenous immunoglobulins and topical conservative approach. A retrospective analysis. Burns 2007; 33(4): 452-459.
Cartotto R, Mayich M, Nickerson D, Gomez M. SCORTEN accurately predicts mortality among toxic epidermal necrolysis patients treated in a burn center. J Burn Care Res 2008; 29(1): 141-146.
Dorafshar AH, Dickie SR, Cohn AB et al. Antishear therapy for toxic epidermal necrolysis: an alternative treatment approach. Plast Reconstr Surg 2008; 122(1): 154-160.
Schneck J, Fagot JP, Sekula P, Sassolas B, Roujeau JC, Mockenhaupt M. Effects of treatments on the mortality of Stevens-Johnson syndrome and toxic epidermal necrolysis: A retrospective study on patients included in the prospective EuroSCAR Study. J Am Acad Dermatol 2008; 58(1): 33-40.
Rajaratnam R, Mann C, Balasubramaniam P et al. Toxic epidermal necrolysis: retrospective analysis of 21 consecutive cases managed at a tertiary centre. Clin Exp Dermatol 2010; 35(8): 853-862.
Atzori L, Pinna AL, Mantovani L et al. Cutaneous adverse drug reactions to allopurinol: 10 year observational survey of the dermatology department-Cagliari University (Italy). J Eur Acad Dermatol Venereol 2012; 26(11): 1424-1430.
Lee HY, Lim YL, Thirumoorthy T, Pang SM. The role of intravenous immunoglobulin in toxic epidermal necrolysis: a retrospective analysis of 64 patients managed in a specialized centre. Br J Dermatol 2013; 169(6): 1304-1309.
Lalosevic J, Nikolic M, Gajic-Veljic M, Skiljevic D, Medenica L. Stevens-Johnson syndrome and toxic epidermal necrolysis: a 20-year single-center experience. Int J Dermatol 2015; 54(8): 978-984.
Yang L, Shou YH, Li F, Zhu XH, Yang YS, Xu JH. Retrospective study of 213 cases of Stevens-Johnson syndrome and toxic epidermal necrolysis from China. Burns 2019;46(4): 959-969.
Krajewski A, Mazurek MJ, Mlynska-Krajewska E, Piorun K, Knakiewicz M, Markowska M. Toxic epidermal necrolysis therapy with TPE and IVIG-10 years of experience of the Burns Treatment Center. J Burn Care Res 2019; 40(5): 652-657.