Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres

. 2021 Aug ; 65 (8) : 1277-1289. [epub] 20200917

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32940762

Grantová podpora
TJ01000118 Technology Agency of the Czech Republic
GA_PrF_2020_029 Univerzita Palackého v Olomouci

Odkazy

PubMed 32940762
DOI 10.1007/s00484-020-02010-y
PII: 10.1007/s00484-020-02010-y
Knihovny.cz E-zdroje

This study consists of nine case studies addressing thermal comfort in the public areas of city centres, with particular emphasis on the measurable effects of blue and green infrastructure on thermal exposure. Daytime on-site measurements were taken in summer in the paved areas of squares, in the proximity of water fountains, and in the shade of trees in order to evaluate levels of heat stress based on the universal thermal climate index (UTCI). The differences in UTCI values between the research points confirm substantial cooling associated with high vegetation (trees induced differences up to 10.5 °C in UTCI), while the measurable cooling effect of low vegetation was negligible (not more than 2.3 °C UTCI). It was also quite low around water fountains, spray fountains, and misting systems. It follows that municipal authorities should consider the differences in cooling effect potential of individual types of blue and green infrastructure when incorporating climate adaptation measures into urban planning.

Zobrazit více v PubMed

Ali-Toudert F, Mayer H (2007) Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Sol Energy 81:742–754 DOI

Arsenović D, Savić S, Lužanin Z, Radić I, Milošević D, Arsić M (2019a) Heat-related mortality as an indicator of population vulnerability in a mid-sized central European city (Novi Sad, Serbia, summer 2015). Geogr Pannonica 23(4):204–215 DOI

Arsenović D, Lehnert M, Fiedor D, Šimáček P, Středová H, Středa T, Savić S (2019b) Heat-waves and mortality in Czech cities: a case study for the summers of 2015 and 2016. Geogr Pannonica 23(3):162–172 DOI

Aubrechtová T, Geletič J, Halásová O, Lehnert M, Dobrovolný P (2019) Administrativní reakce českých měst na adaptační procesy související s klimatickými změnami. Urbanismus a územní rozvoj 22(1):4–12

Bajšanski IV, Milošević DD, Savić SM (2015) Evaluation and improvement of outdoor thermal comfort in urban areas on extreme temperature days: applications of automatic algorithms. Build Environ 94:632–643 DOI

Balchin WGV, Pye N (1947) A micro-climatological investigation of bath and the surrounding district. Q J R Meteorol Soc 73(317–318):297–323 DOI

Bongardt B (2006) Stadtklimatologische Bedeutung kleiner Parkanlagen: dargestellt am Beispiel des Dortmunder Westparks (Essener Ökologische Schriften, Bd. 24). Westarp Wissenschaften, Hohenwarsleben

Bosselmann P, Flores J, Gray W, Priestley T, Anderson R, Arens E, Dowty P, So S, Kim JJ (1984) Sun, wind and comfort: a study of open spaces and sidewalks in four downtown areas. Institute of Urban and Regional Development, University of California, Berkeley

Bosselmann P, Dake K, Fountain M (1988) Sun, wind and comfort: a field study of thermal comfort in San Francisco. Center for Environmental Design Research, University of California, Berkeley

Broadbent AM, Coutts AM, Tapper NJ, Demuzere M, Beringer J (2018) The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment. Theor Appl Climatol 134(1–2):1–23 DOI

Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the universal thermal climate index (UTCI). Int J Biometeorol 56(3):481–494 DOI

Brown G, Schebella MF, Weber D (2014) Using participatory GIS to measure physical activity and urban park benefits. Landsc Urban Plan 121:34–44 DOI

Čeplová N, Kalusová V, Lososová Z (2017) Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landsc Urban Plan 159:15–22 DOI

Chen L, Ng E (2012) Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities 29(2):118–125 DOI

Chen YC, Lin TP, Matzarakis A (2014) Comparison of mean radiant temperature from field experiment and modelling: a case study in Freiburg, Germany. Theor Appl Climatol 118(3):535–551 DOI

Coccolo S, Kämpf J, Scartezzini JL, Pearlmutter D (2016) Outdoor human comfort and thermal stress: a comprehensive review on models and standards. Urban Clim 18:33–57 DOI

Cohen P, Potchter O, Matzarakis A (2013) Human thermal perception of coastal Mediterranean outdoor urban environments. Appl Geogr 37:1–10 DOI

Dobrovolný P, Krahula L (2015) The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic. Morav Geogr Rep 23(3):8–16

Dunjić J (2019) Outdoor thermal comfort research in urban areas of Central and Southeast Europe: a review. Geographica Pannonica 23(4):359–373 DOI

Ebi K (2011) Climate change and health risks: assessing and responding to them through ‘adaptive management’. Health Aff 30(5):924–930 DOI

Eliasson I, Knez I, Westerberg U, Thorsson S, Lindberg F (2007) Climate and behaviour in a Nordic city. Landsc Urban Plan 82(1–2):72–84 DOI

Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429–441 DOI

Fröhlich D, Matzarakis A (2016) A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in Doha, Qatar. Theor Appl Climatol 124(1–2):179–187 DOI

Geletič J, Lehnert M, Savić S, Milošević D (2018) Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Sci Total Environ 624:385–395 DOI

Geletič J, Lehnert M, Dobrovolný P, Žuvela-Aloise M (2019) Spatial modelling of summer climate indices based on local climate zones: expected changes in the future climate of Brno, Czech Republic. Clim Chang 152(3–4):487–502 DOI

Gulyás Á, Unger J, Matzarakis A (2006) Assessment of the microclimatic and human comfort conditions in a complex urban environment: modelling and measurements. Build Environ 41(12):1713–1722 DOI

Haines A, Kovats RS, Campbell-Lendrum D, Corvalan C (2006) Climate change and human health: impacts, vulnerability and public health. Lancet 367(9528):2101–2109 DOI

Havenith G, Fiala D, Błazejczyk K, Richards M, Bröde P, Holmér I, Rintamaki H, Benshabat Y, Jendritzky G (2012) The UTCI-clothing model. Int J Biometeorol 56(3):461–470 DOI

Höppe P (1999) The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43(2):71–75 DOI

Howard L (1833) The climate of London deduced from meteorological observations, made in the metropolis, and at various places around it, vol 1–3. Harvey and Darton, London

ISO 7726 (1998) Ergonomics of the thermal environment - instruments for measuring physical quantities. International Organisation for Standardisation, Geneva

Jendritzky G, Havenith G, Weihs P, Batchvarova E (2009) Towards a universal thermal climate index UTCI for assessing the thermal environment of the human being. Final Report COST Action 730, Freiburg

Jendritzky G, de Dear R, Havenith G (2012) UTCI - why another thermal index? Int J Biometeorol 56(3):421–428 DOI

Jin H, Shao T, Zhang R (2017) Effect of water body forms on microclimate of residential district. Energy Procedia 134:256–265 DOI

Johansson E, Thorsson S, Emmanuel R, Krüger E (2014) Instruments and methods in outdoor thermal comfort studies–the need for standardization. Urban Clim 10:346–366 DOI

Kahila-Tani M, Broberg A, Kyttä M, Tyger T (2016) Let the citizens map—public participation GIS as a planning support system in the Helsinki master plan process. Plan Pract Res 31(2):195–214 DOI

Kántor N, Unger J (2011) The most problematic variable in the course of human-biometeorological comfort assessment—the mean radiant temperature. Open Geosci 3(1):90–100 DOI

Kántor N, Kovács A, Lin TP (2015) Looking for simple correction functions between the mean radiant temperature from the “standard black globe” and the “six-directional” techniques in Taiwan. Theor Appl Climatol 121(1–2):99–111 DOI

Kántor N, Kovács A, Takács Á (2016) Small-scale human-biometeorological impacts of shading by a large tree. Open Geosci 8(1):231–245 DOI

Kántor N, Chen L, Gál CV (2018) Human-biometeorological significance of shading in urban public spaces—summertime measurements in Pécs, Hungary. Landsc Urban Plan 170:241–255 DOI

Knez I, Thorsson S, Eliasson I, Lindberg F (2009) Psychological mechanisms in outdoor place and weather assessment: towards a conceptual model. Int J Biometeorol 53(1):101–111 DOI

Koc CB, Osmond P, Peters A (2018) Evaluating the cooling effects of green infrastructure: a systematic review of methods, indicators and data sources. Sol Energy 166:486–508 DOI

Kovács A, Németh Á (2012) Tendencies and differences in human thermal comfort in distinct urban areas in Budapest, Hungary. Acta Climatologica et Chorologica 46:115–124

Kovats RS, Hajat S (2008) Heat stress and public health: a critical review. Annu Rev Public Health 29:41–55 DOI

Krč P (2019) Improved methods of weather forecasting applied in transportation. Dissertation, Czech Technical University, Faculty of Transportation

Kyselý J, Huth R (2004) Heat-related mortality in the Czech Republic examined through synoptic and ‘traditional’ approaches. Clim Res 25(3):265–274 DOI

Lakatos L, Gulyás Á (2003) Connection between phenological phases and urban heat island in Debrecen and Szeged, Hungary. Acta Climatologica et Chorologica 36-37:79–83

Lee H, Holst J, Mayer H (2013) Modification of human-biometeorologically significant radiant flux densities by shading as local method to mitigate heat stress in summer within urban street canyons. Adv Meteorol:312572. https://doi.org/10.1155/2013/312572

Lee H, Mayer H, Chen L (2016) Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc Urban Plan 148:37–50 DOI

Lee H, Mayer H, Kuttler W (2020) Impact of the spacing between tree crowns on the mitigation of daytime heat stress for pedestrians inside E-W urban street canyons under central European conditions. Urban For Urban Green 48:126558. https://doi.org/10.1016/j.ufug.2019.126558 DOI

Lehnert M, Geletič J, Dobrovolný P, Jurek M (2018) Temperature differences among local climate zones established by mobile measurements in two central European cities. Clim Res 75(1):53–64 DOI

Lenzholzer S (2010) Engrained experience—a comparison of microclimate perception schemata and microclimate measurements in Dutch urban squares. Int J Biometeorol 54(2):141–150 DOI

Lindberg F, Grimmond CSB (2011) The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: model development and evaluation. Theor Appl Climatol 105(3–4):311–323 DOI

Luca O (2017) Considerations on climate strategies and urban planning: Bucharest case study. Theor Empir Res Urban Manag 12(1):53–59

Mahdavi A, Kiesel K, Vuckovic M (2014) Empirical and computational assessment of the urban heat island phenomenon and related mitigation measures. Geogr Pol 87(4):505–516 DOI

Mahmoud AHA (2011) Analysis of the microclimatic and human comfort conditions in an urban park in hot and arid regions. Build Environ 46(12):2641–2656 DOI

Maronga B, Banzhaf S, Burmeister C, Esch T, Forkel R, Fröhlich D, Fuka V, Gehrke KF, Geletič J, Giersch S, Gronemeier T, Groß G, Heldens W, Hellsten A, Hoffmann F, Inagaki A, Kadasch E, Kanani-Sühring F, Ketelsen K, Khan BA, Knigge C, Knoop H, Krč P, Kurppa M, Maamari H, Matzarakis A, Mauder M, Pallasch M, Pavlik D, Pfafferott J, Resler J, Rissmann S, Russo E, Salim M, Schrempf M, Schwenkel J, Seckmeyer G, Schubert S, Sühring M, von Tils R, Vollmer L, Ward S, Witha B, Wurps H, Zeidler J, Raasch S (2020) Overview of the PALM model system 6.0. Geosci Model Dev 13:1335–1372 DOI

Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49 DOI

Mayer H, Kuppe S, Holst J, Imbery F, Matzarakis A (2009) Human thermal comfort below the canopy of street trees on a typical central European summer day. Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg 18:211–219

McWest LA, Broadbent AM, Vanos J, Georgescu M, Middel A (2019) Impacts of urban tree canopy and water features on the thermal environment. 99th Annual Meeting of the American Meteorological Society, Phoenix

Middel A, Krayenhoff ES (2019) Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: introducing the MaRTy observational platform. Sci Total Environ 687:137–151 DOI

Milošević DD, Savić SM, Marković V, Arsenović D, Šećerov I (2016) Outdoor human thermal comfort in local climate zones of Novi Sad (Serbia) during heat wave period. Hung Geogr Bull 65(2):129–137 DOI

Milošević DD, Bajšanski IV, Savić SM (2017) Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban For Urban Green 23:113–124 DOI

Morakinyo TE, Kong L, Lau KKL, Yuan C, Ng E (2017) A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build Environ 115:1–17 DOI

Müller N, Kuttler W, Barlag AB (2014) Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theor Appl Climatol 115(1–2):243–257 DOI

Nikolopoulou M, Steemers K (2003) Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build 35(1):95–101 DOI

Nikolopoulou M, Baker N, Steemers K (1999) Thermal comfort in urban spaces: different forms of adaptation. Proceedings REBUILD International Conference: The Cities of Tomorrow, Barcelona, 4–6 October 1999

Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London

Oliveira S, Andrade H, Vaz T (2011) The cooling effect of green spaces as a contribution to the mitigation of urban heat: a case study in Lisbon. Build Environ 46(11):2186–2194 DOI

Pánek J (2019) Mapping citizens’ emotions: participatory planning support system in Olomouc, Czech Republic. J Maps 15(1):8–12 DOI

Parsons K (2014) Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance, 3rd edn. CRC Press

Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317 DOI

Potchter O, Cohen P, Lin TP, Matzarakis A (2018) Outdoor human thermal perception in various climates: a comprehensive review of approaches, methods and quantification. Sci Total Environ 631:390–406 DOI

Rizwan AM, Dennis LY, Chunho LIU (2008) A review on the generation, determination and mitigation of urban heat island. J Environ Sci 20(1):120–128 DOI

Rosenzweig C, Solecki WD, Hammer SA, Mehrotra S (eds) (2018) Climate change and cities: second assessment report of the urban climate change research network. Cambridge University Press

Saaroni H, Ziv B (2003) The impact of a small lake on heat stress in a Mediterranean urban park: the case of Tel Aviv, Israel. Int J Biometeorol 47(3):156–165 DOI

Steeneveld GJ, Koopmans S, Heusinkveld BG, Theeuwes NE (2014) Refreshing the role of open water surfaces on mitigating the maximum urban heat island effect. Landsc Urban Plan 121:92–96 DOI

Stewart ID (2019) Why should urban heat island researchers study history? Urban Clim 30:100484. https://doi.org/10.1016/j.uclim.2019.100484 DOI

Stojakovic V, Bajsanski I, Savic S, Milosevic D, Tepavcevic B (2020) The influence of changing location of trees in urban green spaces on insolation mitigation. Urban For Urban Green 53:126721. https://doi.org/10.1016/j.ufug.2020.126721 DOI

Streiling S, Matzarakis A (2003) Influence of single and small clusters of trees on the bioclimate of a city: a case study. J Arboric 29(6):309–316

Takács Á, Kiss M, Hof A, Tanács E, Gulyás Á, Kántor N (2016) Microclimate modification by urban shade trees–an integrated approach to aid ecosystem service based decision-making. Procedia Environ Sci 32:97–109 DOI

Vanos J, Hondula D, Middel A, Ambrose H, Kaiser A, Wright M (2019) Motivations to use water for thermal comfort: the influence of evaporative mister systems on thermal comfort in outdoor eateries. In International Conference UTCI – Assessment Measure in Human Bioclimatology – 10 Years of Application and 1st European Biometeorologists’ Regional Meeting, Warsaw

Vít V, Kopp J (2019) Typology of outdoor seating areas of restaurants based on factors influencing their thermal comfort. A case study of Pilsen city centre, Czechia. J Settl Spat Plan 10(2):131–142

Völker S, Baumeister H, Classen T, Hornberg C, Kistemann T (2013) Evidence for the temperature-mitigating capacity of urban blue space—a health geographic perspective. Erdkunde 67(4):355–371 DOI

Wang J, Meng Q, Tan K, Zhang L, Zhang Y (2018) Experimental investigation on the influence of evaporative cooling of permeable pavements on outdoor thermal environment. Build Environ 140:184–193 DOI

Xu J, Wei Q, Huang X, Zhu X, Li G (2010) Evaluation of human thermal comfort near urban waterbody during summer. Build Environ 45(4):1072–1080 DOI

Zanobetti A, O’Neill MS, Gronlund CJ, Schwartz JD (2012) Summer temperature variability and long-term survival among elderly people with chronic disease. Proc Natl Acad Sci 109(17):6608–6613 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...