Thermal comfort perception among park users in Prague, Central Europe on hot summer days-A comparison of thermal indices
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, srovnávací studie
PubMed
39821168
PubMed Central
PMC11737675
DOI
10.1371/journal.pone.0299377
PII: PONE-D-23-36648
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- klimatické změny MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- percepce MeSH
- roční období * MeSH
- senioři MeSH
- veřejné parky MeSH
- vnímání teploty * fyziologie MeSH
- vysoká teplota MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika MeSH
The assessment of human perception of the thermal environment is becoming highly relevant in the context of global climate change and its impact on public health. In this study, we aimed to evaluate the suitability of the use of four frequently used thermal comfort indices (thermal indices)-Wet Bulb Global Temperature (WGBT), Heat Index (HI), Physiologically Equivalent Temperature (PET), and Universal Thermal Climate Index (UTCI)-to assess human thermal comfort perception in three large urban parks in Central Europe, using Prague, the capital of the Czech Republic, as a case study. We investigated the relationship between the four indices and the thermal perception of park visitors, while taking into account the effect of the sex, age, and activity of the respondents and the week-time and daytime of their visit (assessed parameters). Park visitors were interviewed during the summertime, while collecting meteorological data. The correlations were performed to explore the relationship between the thermal perception and the individual thermal indices, multivariate statistical methods were used to explain how well the variation in thermal perception can be explained by the assessed parameters. We found a significant association between all the indices and thermal perception; however, the relationship was the strongest with HI. While thermal perception was independent of sex and week-time, we found a significant effect of age, physical activity, and daytime of the visit. Nevertheless, the effects can largely be explained by thermal conditions. Based on the results, we conclude that all the investigated indices are suitable for use in studies of thermal comfort in parks in Central Europe in summertime, while HI seems the most suitable for architects and planners.
Crop Research Institute Prague Ruzyně Czech Republic
Institute of Atmospheric Physics of the Czech Academy of Sciences Prague Záběhlice Czech Republic
Zobrazit více v PubMed
WHO. Building Health Systems Resilience for Universal Health Coverage and Health Security During the COVID-19 Pandemic and Beyond. 2022. https://www.who.int/publications/
Urban A, Di Napoli C, Cloke HL, Kyselý J, Pappenberger F, Sera F, et al.. Evaluation of the ERA5 reanalysis-based Universal Thermal Climate Index on mortality data in Europe. Environ Res. 2021;198. doi: 10.1016/j.envres.2021.111227 PubMed DOI
Lai D, Liu Y, Liao M, Yu B. Effects of different tree layouts on outdoor thermal comfort of green space in summer Shanghai. Urban Clim. 2023;47: 101398. doi: 10.1016/j.uclim.2022.101398 DOI
Cárdenas-Jirón LA, Graw K, Gangwisch M, Matzarakis A. Influence of street configuration on human thermal comfort and benefits for climate-sensitive urban planning in Santiago de Chile. Urban Clim. 2023;47. doi: 10.1016/j.uclim.2022.101361 DOI
Lehnert M, Pánek J, Kopp J, Geletič J, Květoňová V, Jurek M. Thermal comfort in urban areas on hot summer days and its improvement through participatory mapping: A case study of two Central European cities. Landsc Urban Plan. 2023;233. doi: 10.1016/j.landurbplan.2023.104713 DOI
Kumar P, Sharma A. Study on importance, procedure, and scope of outdoor thermal comfort–A review. Sustain Cities Soc. 2020;61: 102297. doi: 10.1016/j.scs.2020.102297 DOI
Nikolopoulou M, Lykoudis S. Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build Environ. 2006;41: 1455–1470. doi: 10.1016/j.buildenv.2005.05.031 DOI
Milošević D, Dunjić J, Stojsavljević R, Žgela M, Savić S, Arsenović D. Analysis of long- and short-term biometeorological conditions in the Republic of Serbia. Int J Biometeorol. 2023;67: 1105–1123. doi: 10.1007/s00484-023-02482-8 PubMed DOI
de Freitas CR, Grigorieva EA. A comparison and appraisal of a comprehensive range of human thermal climate indices. Int J Biometeorol. 2017;61: 487–512. doi: 10.1007/s00484-016-1228-6 PubMed DOI
Zhang J, Guo W, Cheng B, Jiang L, Xu S. A review of the impacts of climate factors on humans’ outdoor thermal perceptions. J Therm Biol. 2022;107: 103272. doi: 10.1016/j.jtherbio.2022.103272 PubMed DOI
Vecellio DJ, Wolf ST, Cottle RM, Kenney WL. Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). Int J Biometeorol. 2022;66: 1759–1769. doi: 10.1007/s00484-022-02316-z PubMed DOI PMC
Fang Z, He H, Mao Y, Feng X, Zheng Z, Guo Z. Investigating an accurate method for measuring the outdoor mean radiation temperature. International Journal of Thermal Sciences. 2023;188: 108219. doi: 10.1016/j.ijthermalsci.2023.108219 DOI
Matzarakis A, Mayer H. Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol. 1999;43: 76–84. doi: 10.1007/s004840050119 PubMed DOI
Blazejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B. Comparison of UTCI to selected thermal indices. Int J Biometeorol. 2012;56: 515–535. doi: 10.1007/s00484-011-0453-2 PubMed DOI PMC
Lehnert M, Tokar V, Jurek M, Geletič J. Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres. Int J Biometeorol. 2021;65: 1277–1289. doi: 10.1007/s00484-020-02010-y PubMed DOI
Chen L, Ng E. Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities. 2012;29: 118–125. doi: 10.1016/j.cities.2011.08.006 DOI
Zhang S, Zhang X, Niu D, Fang Z, Chang H, Lin Z. Physiological equivalent temperature-based and universal thermal climate index-based adaptive-rational outdoor thermal comfort models. Build Environ. 2023;228: 109900. doi: 10.1016/j.buildenv.2022.109900 DOI
Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol. 2012;56: 429–441. doi: 10.1007/s00484-011-0424-7 PubMed DOI
Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, et al.. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol. 2012;56: 481–494. doi: 10.1007/s00484-011-0454-1 PubMed DOI
Jänicke B, Milošević D, Manavvi S. Review of user‐friendly models to improve the urban micro‐climate. Atmosphere (Basel). 2021;12: 1–22. doi: 10.3390/atmos12101291 DOI
Matzarakis A, Rutz F, Mayer H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int J Biometeorol. 2007;51: 323–334. doi: 10.1007/s00484-006-0061-8 PubMed DOI
Fröhlich D, Matzarakis A. Spatial estimation of thermal indices in urban areas-basics of the skyhelios model. Atmosphere (Basel). 2018;9: 1–14. doi: 10.3390/atmos9060209 DOI
Potchter O, Cohen P, Lin TP, Matzarakis A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of the Total Environment. 2018;631–632: 390–406. doi: 10.1016/j.scitotenv.2018.02.276 PubMed DOI
Konstantinov PI, Varentsov MI, Shartova NV. North Eurasian thermal comfort indices dataset (NETCID): new gridded database for the biometeorological studies. Environmental Research Letters. 2022;17: 085006. doi: 10.1088/1748-9326/ac7fa9 DOI
Zhang Y, Lin Z, Fang Z, Zheng Z. An improved algorithm of thermal index models based on ENVI-met. Urban Clim. 2022;44: 101190. doi: 10.1016/j.uclim.2022.101190 DOI
Di Napoli C, Pappenberger F, Cloke HL. Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). Int J Biometeorol. 2018;62: 1155–1165. doi: 10.1007/s00484-018-1518-2 PubMed DOI PMC
Di Napoli C, Barnard C, Prudhomme C, Cloke HL, Pappenberger F. ERA5-HEAT: A global gridded historical dataset of human thermal comfort indices from climate reanalysis. Geosci Data J. 2021;8: 2–10. doi: 10.1002/gdj3.102 DOI
Höppe P. The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol. 1999;43: 71–75. doi: 10.1007/s004840050118 PubMed DOI
Salata F, Golasi I, de Lieto Vollaro R, de Lieto Vollaro A. Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Build Environ. 2016;96: 46–61. doi: 10.1016/j.buildenv.2015.11.023 DOI
Yaglou CP, Minard D. Control of Heat Casualties at Military Training Centers. Archives of Industrial Health. 1957;16: 302–305. PubMed
Steadman RG. The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science. J Appl Meteorol Climatol. 1979;18: 861–873. doi: 10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2 DOI
Gehl J. Life Between Buildings. Island Press; 2011.
Mishra HS, Bell S, Roberts BR, White MP. Theory-based design for promoting positive behaviours in an urban blue space: Pre-and-post observations of a community co-created intervention in Plymouth, United Kingdom. Landsc Urban Plan. 2023;233: 104708. doi: 10.1016/j.landurbplan.2023.104708 DOI
Maňas J. Identification of Local Accessibility Hubs and Leisure Amenities in Suburbanized Settlements: Case Study on the Suburban Zone of Prague. Sage Open. 2023;13: 1–10. doi: 10.1177/21582440231184402 DOI
Koohsari MJ, Mavoa S, Villianueva K, Sugiyama T, Badland H, Kaczynski AT, et al.. Public open space, physical activity, urban design and public health: Concepts, methods and research agenda. Health Place. 2015;33: 75–82. doi: 10.1016/j.healthplace.2015.02.009 PubMed DOI
Tian Y, Hong B, Zhang Z, Wu S, Yuan T. Factors influencing resident and tourist outdoor thermal comfort: A comparative study in China’s cold region. Science of the Total Environment. 2022;808: 152079. doi: 10.1016/j.scitotenv.2021.152079 PubMed DOI
Lai D, Liu W, Gan T, Liu K, Chen Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment. 2019;661: 337–353. doi: 10.1016/j.scitotenv.2019.01.062 PubMed DOI
Savić S, Trbić G, Milošević D, Dunjić J, Ivanišević M, Marković M. Importance of assessing outdoor thermal comfort and its use in urban adaptation strategies: a case study of Banja Luka (Bosnia and Herzegovina). Theor Appl Climatol. 2022;150: 1425–1441. doi: 10.1007/s00704-022-04237-8 DOI
Fang Z, Lin Z, Mak CM, Niu J, Tse KT. Investigation into sensitivities of factors in outdoor thermal comfort indices. Build Environ. 2018;128: 129–142. doi: 10.1016/j.buildenv.2017.11.028 DOI
Shi Y, Jim CY. Developing a thermal suitability index to assess artificial turf applications for various site-weather and user-activity scenarios. Landsc Urban Plan. 2022;217: 104276. doi: 10.1016/j.landurbplan.2021.104276 DOI
Nikolopoulou M, Steemers K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build. 2003;35: 95–101. doi: 10.1016/S0378-7788(02)00084-1 DOI
Huang J, Zhou C, Zhuo Y, Xu L, Jiang Y. Outdoor thermal environments and activities in open space: An experiment study in humid subtropical climates. Build Environ. 2016;103: 238–249. doi: 10.1016/j.buildenv.2016.03.029 DOI
Han S, Song D, Xu L, Ye Y, Yan S, Shi F, et al.. Behaviour in public open spaces: A systematic review of studies with quantitative research methods. Build Environ. 2022;223. doi: 10.1016/j.buildenv.2022.109444 DOI
Nowosad J, Stepinski TF. Information theory as a consistent framework for quantification and classification of landscape patterns. Landsc Ecol. 2019;34: 2091–2101. doi: 10.1007/s10980-019-00830-x DOI
Johansson E, Thorsson S, Emmanuel R, Krüger E. Instruments and methods in outdoor thermal comfort studies—The need for standardization. Urban Clim. 2014;10: 346–366. doi: 10.1016/j.uclim.2013.12.002 DOI
Xiong K, He BJ. Wintertime outdoor thermal sensations and comfort in cold-humid environments of Chongqing China. Sustain Cities Soc. 2022;87: 104203. doi: 10.1016/j.scs.2022.104203 DOI
Krüger E, Rossi F, Drach P. Calibration of the physiological equivalent temperature index for three different climatic regions. Int J Biometeorol. 2017;61: 1323–1336. doi: 10.1007/s00484-017-1310-8 PubMed DOI
Lai D, Zhou X, Chen Q. Modelling dynamic thermal sensation of human subjects in outdoor environments. Energy Build. 2017;149: 16–25. doi: 10.1016/j.enbuild.2017.05.028 DOI
Lindner-Cendrowska K, Błażejczyk K. Impact of selected personal factors on seasonal variability of recreationist weather perceptions and preferences in Warsaw (Poland). Int J Biometeorol. 2018;62: 113–125. doi: 10.1007/s00484-016-1220-1 PubMed DOI PMC
Cohen P, Cohen S, Shashua-Bar L, Tanny J, Potchter O. Outdoor thermal perception and adaptation of immigrants from cold climates to hot arid climate. Build Environ. 2023;243: 110631. doi: 10.1016/j.buildenv.2023.110631 DOI
He BJ, Zhao D, Dong X, Xiong K, Feng C, Qi Q, et al.. Perception, physiological and psychological impacts, adaptive awareness and knowledge, and climate justice under urban heat: A study in extremely hot-humid Chongqing, China. Sustain Cities Soc. 2022;79: 103685. doi: 10.1016/j.scs.2022.103685 DOI
Yin JF, Zheng YF, Wu RJ, Tan JG, Ye DX, Wang W. An analysis of influential factors on outdoor thermal comfort in summer. Int J Biometeorol. 2012;56: 941–948. doi: 10.1007/s00484-011-0503-9 PubMed DOI
Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift. 2006;15: 259–263. doi: 10.1127/0941-2948/2006/0130 DOI
Huszar peter, Halenka T, Belda M, Zak M, Sindelarova K, Miksovsky J. Regional climate model assessment of the urban land-surface forcing over central Europe. Atmos ChemPhys. 2014;14: 12393–12413. doi: 10.5194/acp-14-12393-2014 DOI
Žák M. Pilot actions in European cities–Prague. In: Musco F., editor. Counteracting Urban Heat Island effects in a global climate change scenario. Cham.: Springer; 2016. p. 265.
Urban A, Davídkovová H, Kyselý J. Heat- and cold-stress effects on cardiovascular mortality and morbidity among urban and rural populations in the Czech Republic. Int J Biometeorol. 2014;58: 1057–1068. doi: 10.1007/s00484-013-0693-4 PubMed DOI
Zhang S, Li S, Shu L, Xiao T, Shui T. Landscape Configuration Effects on Outdoor Thermal Comfort across Campus—A Case Study. Atmosphere (Basel). 2023;14. doi: 10.3390/atmos14020270 DOI
Kahneman D, Sibony O, Sunstein CR. Noise: a flaw in human judgment. Hachette, UK; 2021.
Erikson EH. Childhood and society. New York: WW Norton; 1950.
Kántor N, Unger J. The most problematic variable in the course of human-biometeorological comfort assessment—The mean radiant temperature. Central European Journal of Geosciences. 2011;3: 90–100. doi: 10.2478/s13533-011-0010-x DOI
Matzarakis A, Amelung B. Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. Advances in Global Change Research. 2008;30: 161–172. doi: 10.1007/978-1-4020-6877-5_10 DOI
Grundstein A, Williams C, Phan M, Cooper E. Regional heat safety thresholds for athletics in the contiguous United States. Applied Geography. 2015;56: 55–60. doi: 10.1016/j.apgeog.2014.10.014 DOI
Verhoeven KJF, Simonsen KL, McIntyre L. Erratum: Implementing false discovery rate control: Increasing your power (Oikos (2005) 108 (643–647)). Oikos. 2005;109: 208. doi: 10.1111/j.0030-1299.2005.13426.x DOI
Liu W, Zhang Y, Deng Q. The effects of urban microclimate on outdoor thermal sensation and neutral temperature in hot-summer and cold-winter climate. Energy Build. 2016;128: 190–197. doi: 10.1016/j.enbuild.2016.06.086 DOI
Lai D, Guo D, Hou Y, Lin C, Chen Q. Studies of outdoor thermal comfort in northern China. Build Environ. 2014;77: 110–118. doi: 10.1016/j.buildenv.2014.03.026 DOI
Liu K, You W, Chen X, Liu W. Study on the Influence of Globe Thermometer Method on the Accuracy of Calculating Outdoor Mean Radiant Temperature and Thermal Comfort. Atmosphere (Basel). 2022;13. doi: 10.3390/atmos13050809 DOI
Niu J, Xiong J, Qin H, Wu H, Zhang K, Yan J, et al.. Thermal Comfort Influences Positive Emotions but Not Negative Emotions When Visiting Green Spaces during Summer. Forests. 2023;14. doi: 10.3390/f14081512 DOI
Wang Y, de Groot R, Bakker F, Wörtche H, Leemans R. Thermal comfort in urban green spaces: a survey on a Dutch university campus. Int J Biometeorol. 2017;61: 87–101. doi: 10.1007/s00484-016-1193-0 PubMed DOI PMC
Kemen J, Schäffer-Gemein S, Grünewald J, Kistemann T. Heat perception and coping strategies: A structured interview-based study of elderly people in Cologne, Germany. Int J Environ Res Public Health. 2021;18. doi: 10.3390/ijerph18147495 PubMed DOI PMC
He BJ. Cause-related injustice, process-related injustice, effect-related injustice and regional heat action planning priorities: An empirical study in Yangtze River Delta and Chengdu-Chongqing urban agglomerations. Landsc Urban Plan. 2023;237: 104800. doi: 10.1016/j.landurbplan.2023.104800 DOI