Modulated structure determination and ion transport mechanism of oxide-ion conductor CeNbO4+δ
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
21622101
National Natural Science Foundation of China (National Science Foundation of China)
21511130134
National Natural Science Foundation of China (National Science Foundation of China)
21527803
National Natural Science Foundation of China (National Science Foundation of China)
21471009
National Natural Science Foundation of China (National Science Foundation of China)
21621061
National Natural Science Foundation of China (National Science Foundation of China)
2019GXNSFGA245006
Natural Science Foundation of Guangxi Province (Guangxi Natural Science Foundation)
2014GXNSFGA118004
Natural Science Foundation of Guangxi Province (Guangxi Natural Science Foundation)
PubMed
32958759
PubMed Central
PMC7506534
DOI
10.1038/s41467-020-18481-x
PII: 10.1038/s41467-020-18481-x
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
CeNbO4+δ, a family of oxygen hyperstoichiometry materials with varying oxygen content (CeNbO4, CeNbO4.08, CeNbO4.25, CeNbO4.33) that shows mixed electronic and oxide ionic conduction, has been known for four decades. However, the oxide ionic transport mechanism has remained unclear due to the unknown atomic structures of CeNbO4.08 and CeNbO4.33. Here, we report the complex (3 + 1)D incommensurately modulated structure of CeNbO4.08, and the supercell structure of CeNbO4.33 from single nanocrystals by using a three-dimensional electron diffraction technique. Two oxide ion migration events are identified in CeNbO4.08 and CeNbO4.25 by molecular dynamics simulations, which was a synergic-cooperation knock-on mechanism involving continuous breaking and reformation of Nb2O9 units. However, the excess oxygen in CeNbO4.33 hardly migrates because of the high concentration and the ordered distribution of the excess oxide ions. The relationship between the structure and oxide ion migration for the whole series of CeNbO4+δ compounds elucidated here provides a direction for the performance optimization of these compounds.
CNRS CEMHTI UPR3079 Univ Orléans 45071 Orléans France
College of Chemistry and Molecular Engineering Peking University 100871 Beijing P R China
Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
School of Advanced Materials Shenzhen Graduate School Peking University 518055 Shenzhen P R China
See more in PubMed
Forslund RP, et al. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1-xFexO4 ± δ Ruddlesden-Popper oxides. Nat. Commun. 2018;9:3150. doi: 10.1038/s41467-018-05600-y. PubMed DOI PMC
Halat DM, et al. Probing oxide-ion mobility in the mixed ionic–electronic conductor La2NiO4+δ by solid-state 17O MAS NMR spectroscopy. J. Am. Chem. Soc. 2016;138:11958–11969. doi: 10.1021/jacs.6b07348. PubMed DOI PMC
Nicoud S, et al. Comprehensive study of oxygen storage in YbFe2O4+x (x ≤ 0.5): unprecedented coexistence of FeOn polyhedra in one single phase. J. Am. Chem. Soc. 2017;139:17031–17043. doi: 10.1021/jacs.7b06409. PubMed DOI
Belik AA, et al. Crystal and magnetic structures and properties of BiMnO3+δ. J. Am. Chem. Soc. 2010;132:8137–8144. doi: 10.1021/ja102014n. PubMed DOI
Saranya AM, et al. Engineering mixed ionic electronic conduction in La0.8Sr0.2MnO3+δ nanostructures through fast grain boundary oxygen diffusivity. Adv. Energy Mater. 2015;5:1500377. doi: 10.1002/aenm.201500377. DOI
Phillips JC, et al. Interstitial oxygen and high-temperature superconductivity in La2−xSrxCuO4+δ. Phys. Rev. B. 1990;42:6795. doi: 10.1103/PhysRevB.42.6795. PubMed DOI
Chmaissem O, Zheng H, Huq A, Stephens PW, Mitchell JF. Formation of Co3+ octahedra and tetrahedra in YBaCo4O8.1. J. Solid State Chem. 2008;181:664–672. doi: 10.1016/j.jssc.2007.12.016. DOI
Huq A, et al. Structural and magnetic properties of the Kagomé antiferromagnet YbBaCo4O7. J. Solid State Chem. 2006;179:1136–1145. doi: 10.1016/j.jssc.2006.01.010. DOI
Nakayama S, Kageyama T, Aono H, Sadaoka Y. Ionic-conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb) J. Mater. Chem. 1995;5:1801–1805. doi: 10.1039/jm9950501801. DOI
Kuang X, et al. Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure. Nat. Mater. 2008;7:498–504. doi: 10.1038/nmat2201. PubMed DOI
Boehm E, et al. Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides. Solid State Sci. 2003;5:973–981. doi: 10.1016/S1293-2558(03)00091-8. DOI
Allen GC, Tempest PA, Tyler JW. Coordination model for the defect structure of hyperstoichiometric UO2+x and U4O9. Nature. 1982;295:48–49. doi: 10.1038/295048a0. DOI
Wang J, et al. Molecular dynamic simulation of interstitial oxide ion migration in Pb1−x LaxWO4+x/2 scheelite. J. Solid State Chem. 2018;268:16–21. doi: 10.1016/j.jssc.2018.08.023. DOI
Yang XY, et al. Cooperative mechanisms of oxygen vacancy stabilization and migration in the isolated tetrahedral anion scheelite structure. Nat. Commun. 2018;9:4484. doi: 10.1038/s41467-018-06911-w. PubMed DOI PMC
Cava, J. R. & Roth, R. S. Characterisation of modulated structures in ABO4+x features. AIP Conf. Proc. 53, 361 (1979).
Thompson JG, Withers RL, Brink FJ. Modulated structures in oxidized cerium niobates. J. Solid State Chem. 1999;143:122–131. doi: 10.1006/jssc.1998.8096. DOI
Pramana SS, et al. Correlation of local structure and diffusion pathways in the modulated anisotropic oxide ion conductor CeNbO4.25. J. Am. Chem. Soc. 2016;138:1273–1279. doi: 10.1021/jacs.5b11373. PubMed DOI
Vullum F, Grande T. Oxidation driven decomposition of CeNbO4 in pure oxygen. Chem. Mater. 2008;20:5434–5437. doi: 10.1021/cm801178a. DOI
Vullum F, Grande T. Oxygen stoichiometry and transport properties of cerium niobite. Solid State Ion. 2008;179:1061–1065. doi: 10.1016/j.ssi.2007.12.079. DOI
Skinner SJ, Kang Y. X-ray diffraction studies and phase transformations of CeNbO4+δ using in situ techniques. Solid State Sci. 2003;5:1475–1479. doi: 10.1016/j.solidstatesciences.2003.09.001. DOI
Skinner SJ, et al. Redox chemistry of the novel fast oxide ion conductor CeNbO4+d determined through an in-situ spectroscopic technique. Solid State Ion. 2011;192:659–663. doi: 10.1016/j.ssi.2009.12.008. DOI
Packer RJ, Skinner SJ. Remarkable oxide ion conductivity observed at low temperatures in a complex superstructured oxide. Adv. Mater. 2010;22:1613–1616. doi: 10.1002/adma.200902692. PubMed DOI
Bayliss RD. Fergusonite-type CeNbO4+δ: single crystal growth, symmetry revision and conductivity. J. Solid State Chem. 2013;204:291–297. doi: 10.1016/j.jssc.2013.06.022. DOI
Li J, Sun J. Application of X-ray diffraction and electron crystallography for solving complex structure problems. Acc. Chem. Res. 2017;50:2737–2745. doi: 10.1021/acs.accounts.7b00366. PubMed DOI
Li J, et al. Discovery of complex metal oxide materials by rapid phase identification and structure determination. J. Am. Chem. Soc. 2019;141:4990–4996. doi: 10.1021/jacs.9b00093. PubMed DOI
Wan W, Sun J, Su J, Hovmoller S, Zou X. Three dimensional rotation electron diffraction software RED for automated data collection and data processing. J. Appl. Cryst. 2013;46:1863–1873. doi: 10.1107/S0021889813027714. PubMed DOI PMC
Yun YF, et al. Phase identification and structure determination from multiphase crystalline powder samples by rotation electron diffraction. J. Appl. Cryst. 2014;47:2048–2054. doi: 10.1107/S1600576714023875. DOI
Sheldrick GM. SHELXT-Integrated space-group and crystal-structure determination. Acta Cryst. 2015;A71:3–8. PubMed PMC
Palatinus L, Chapuis G. SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI
Wu J, et al. Ab initio phasing of X-ray powder diffraction patterns by charge flipping. Nat. Mater. 2006;5:647–652. doi: 10.1038/nmat1687. PubMed DOI
Kendrick E, Kendrick J, Knight KS, Islam MS, Slater PR. Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nat. Mater. 2007;6:871–875. doi: 10.1038/nmat2039. PubMed DOI
Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Cryst. 2010;D66:125–132. PubMed PMC
Petrícek V, Dusek M, Palatinus L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. 2014;229:345–352.
Coelho, A. Topas academic version 5. http://www.topas-academic.net/ (2012).
Todorov IT, Smith W, Trachenko K, Dove MT. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem. 2006;16:1911–1918. doi: 10.1039/b517931a. DOI
Islam MS. Ionic transport in ABO3 perovskite oxides: a computer modelling tour. J. Mater. Chem. 2000;10:1027–1038. doi: 10.1039/a908425h. DOI
Dick BG, Jr., Overhauser AW. Theory of the dielectric constants of alkali halide crystals. Phys. Rev. 1958;112:90–103. doi: 10.1103/PhysRev.112.90. DOI
Lewis GV, Catlow CRA. Potential models for ionic oxides. J. Phys. C Solid State Phys. 1985;18:1149–1161. doi: 10.1088/0022-3719/18/6/010. DOI
Gale JD. GULP: a computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 1997;93:629–637. doi: 10.1039/a606455h. DOI
Gale JD, Rohl AL. The General Utility Lattice Program (GULP) Mol. Simul. 2003;29:291–341. doi: 10.1080/0892702031000104887. DOI
Humphrey W, Dalke A, Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graph. Model. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Rog T, Murzyn K, Hinsen K, Kneller GR. nMoldyn: a program package for a neutron scattering oriented analysis of molecular dynamics simulations. J. Comput. Chem. 2003;24:657–667. doi: 10.1002/jcc.10243. PubMed DOI