• This record comes from PubMed

Modulated structure determination and ion transport mechanism of oxide-ion conductor CeNbO4+δ

. 2020 Sep 21 ; 11 (1) : 4751. [epub] 20200921

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

Grant support
21622101 National Natural Science Foundation of China (National Science Foundation of China)
21511130134 National Natural Science Foundation of China (National Science Foundation of China)
21527803 National Natural Science Foundation of China (National Science Foundation of China)
21471009 National Natural Science Foundation of China (National Science Foundation of China)
21621061 National Natural Science Foundation of China (National Science Foundation of China)
2019GXNSFGA245006 Natural Science Foundation of Guangxi Province (Guangxi Natural Science Foundation)
2014GXNSFGA118004 Natural Science Foundation of Guangxi Province (Guangxi Natural Science Foundation)

Links

PubMed 32958759
PubMed Central PMC7506534
DOI 10.1038/s41467-020-18481-x
PII: 10.1038/s41467-020-18481-x
Knihovny.cz E-resources

CeNbO4+δ, a family of oxygen hyperstoichiometry materials with varying oxygen content (CeNbO4, CeNbO4.08, CeNbO4.25, CeNbO4.33) that shows mixed electronic and oxide ionic conduction, has been known for four decades. However, the oxide ionic transport mechanism has remained unclear due to the unknown atomic structures of CeNbO4.08 and CeNbO4.33. Here, we report the complex (3 + 1)D incommensurately modulated structure of CeNbO4.08, and the supercell structure of CeNbO4.33 from single nanocrystals by using a three-dimensional electron diffraction technique. Two oxide ion migration events are identified in CeNbO4.08 and CeNbO4.25 by molecular dynamics simulations, which was a synergic-cooperation knock-on mechanism involving continuous breaking and reformation of Nb2O9 units. However, the excess oxygen in CeNbO4.33 hardly migrates because of the high concentration and the ordered distribution of the excess oxide ions. The relationship between the structure and oxide ion migration for the whole series of CeNbO4+δ compounds elucidated here provides a direction for the performance optimization of these compounds.

See more in PubMed

Forslund RP, et al. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1-xFexO4 ± δ Ruddlesden-Popper oxides. Nat. Commun. 2018;9:3150. doi: 10.1038/s41467-018-05600-y. PubMed DOI PMC

Halat DM, et al. Probing oxide-ion mobility in the mixed ionic–electronic conductor La2NiO4+δ by solid-state 17O MAS NMR spectroscopy. J. Am. Chem. Soc. 2016;138:11958–11969. doi: 10.1021/jacs.6b07348. PubMed DOI PMC

Nicoud S, et al. Comprehensive study of oxygen storage in YbFe2O4+x (x ≤ 0.5): unprecedented coexistence of FeOn polyhedra in one single phase. J. Am. Chem. Soc. 2017;139:17031–17043. doi: 10.1021/jacs.7b06409. PubMed DOI

Belik AA, et al. Crystal and magnetic structures and properties of BiMnO3+δ. J. Am. Chem. Soc. 2010;132:8137–8144. doi: 10.1021/ja102014n. PubMed DOI

Saranya AM, et al. Engineering mixed ionic electronic conduction in La0.8Sr0.2MnO3+δ nanostructures through fast grain boundary oxygen diffusivity. Adv. Energy Mater. 2015;5:1500377. doi: 10.1002/aenm.201500377. DOI

Phillips JC, et al. Interstitial oxygen and high-temperature superconductivity in La2−xSrxCuO4+δ. Phys. Rev. B. 1990;42:6795. doi: 10.1103/PhysRevB.42.6795. PubMed DOI

Chmaissem O, Zheng H, Huq A, Stephens PW, Mitchell JF. Formation of Co3+ octahedra and tetrahedra in YBaCo4O8.1. J. Solid State Chem. 2008;181:664–672. doi: 10.1016/j.jssc.2007.12.016. DOI

Huq A, et al. Structural and magnetic properties of the Kagomé antiferromagnet YbBaCo4O7. J. Solid State Chem. 2006;179:1136–1145. doi: 10.1016/j.jssc.2006.01.010. DOI

Nakayama S, Kageyama T, Aono H, Sadaoka Y. Ionic-conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb) J. Mater. Chem. 1995;5:1801–1805. doi: 10.1039/jm9950501801. DOI

Kuang X, et al. Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure. Nat. Mater. 2008;7:498–504. doi: 10.1038/nmat2201. PubMed DOI

Boehm E, et al. Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides. Solid State Sci. 2003;5:973–981. doi: 10.1016/S1293-2558(03)00091-8. DOI

Allen GC, Tempest PA, Tyler JW. Coordination model for the defect structure of hyperstoichiometric UO2+x and U4O9. Nature. 1982;295:48–49. doi: 10.1038/295048a0. DOI

Wang J, et al. Molecular dynamic simulation of interstitial oxide ion migration in Pb1−x LaxWO4+x/2 scheelite. J. Solid State Chem. 2018;268:16–21. doi: 10.1016/j.jssc.2018.08.023. DOI

Yang XY, et al. Cooperative mechanisms of oxygen vacancy stabilization and migration in the isolated tetrahedral anion scheelite structure. Nat. Commun. 2018;9:4484. doi: 10.1038/s41467-018-06911-w. PubMed DOI PMC

Cava, J. R. & Roth, R. S. Characterisation of modulated structures in ABO4+x features. AIP Conf. Proc. 53, 361 (1979).

Thompson JG, Withers RL, Brink FJ. Modulated structures in oxidized cerium niobates. J. Solid State Chem. 1999;143:122–131. doi: 10.1006/jssc.1998.8096. DOI

Pramana SS, et al. Correlation of local structure and diffusion pathways in the modulated anisotropic oxide ion conductor CeNbO4.25. J. Am. Chem. Soc. 2016;138:1273–1279. doi: 10.1021/jacs.5b11373. PubMed DOI

Vullum F, Grande T. Oxidation driven decomposition of CeNbO4 in pure oxygen. Chem. Mater. 2008;20:5434–5437. doi: 10.1021/cm801178a. DOI

Vullum F, Grande T. Oxygen stoichiometry and transport properties of cerium niobite. Solid State Ion. 2008;179:1061–1065. doi: 10.1016/j.ssi.2007.12.079. DOI

Skinner SJ, Kang Y. X-ray diffraction studies and phase transformations of CeNbO4+δ using in situ techniques. Solid State Sci. 2003;5:1475–1479. doi: 10.1016/j.solidstatesciences.2003.09.001. DOI

Skinner SJ, et al. Redox chemistry of the novel fast oxide ion conductor CeNbO4+d determined through an in-situ spectroscopic technique. Solid State Ion. 2011;192:659–663. doi: 10.1016/j.ssi.2009.12.008. DOI

Packer RJ, Skinner SJ. Remarkable oxide ion conductivity observed at low temperatures in a complex superstructured oxide. Adv. Mater. 2010;22:1613–1616. doi: 10.1002/adma.200902692. PubMed DOI

Bayliss RD. Fergusonite-type CeNbO4+δ: single crystal growth, symmetry revision and conductivity. J. Solid State Chem. 2013;204:291–297. doi: 10.1016/j.jssc.2013.06.022. DOI

Li J, Sun J. Application of X-ray diffraction and electron crystallography for solving complex structure problems. Acc. Chem. Res. 2017;50:2737–2745. doi: 10.1021/acs.accounts.7b00366. PubMed DOI

Li J, et al. Discovery of complex metal oxide materials by rapid phase identification and structure determination. J. Am. Chem. Soc. 2019;141:4990–4996. doi: 10.1021/jacs.9b00093. PubMed DOI

Wan W, Sun J, Su J, Hovmoller S, Zou X. Three dimensional rotation electron diffraction software RED for automated data collection and data processing. J. Appl. Cryst. 2013;46:1863–1873. doi: 10.1107/S0021889813027714. PubMed DOI PMC

Yun YF, et al. Phase identification and structure determination from multiphase crystalline powder samples by rotation electron diffraction. J. Appl. Cryst. 2014;47:2048–2054. doi: 10.1107/S1600576714023875. DOI

Sheldrick GM. SHELXT-Integrated space-group and crystal-structure determination. Acta Cryst. 2015;A71:3–8. PubMed PMC

Palatinus L, Chapuis G. SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI

Wu J, et al. Ab initio phasing of X-ray powder diffraction patterns by charge flipping. Nat. Mater. 2006;5:647–652. doi: 10.1038/nmat1687. PubMed DOI

Kendrick E, Kendrick J, Knight KS, Islam MS, Slater PR. Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nat. Mater. 2007;6:871–875. doi: 10.1038/nmat2039. PubMed DOI

Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Cryst. 2010;D66:125–132. PubMed PMC

Petrícek V, Dusek M, Palatinus L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. 2014;229:345–352.

Coelho, A. Topas academic version 5. http://www.topas-academic.net/ (2012).

Todorov IT, Smith W, Trachenko K, Dove MT. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem. 2006;16:1911–1918. doi: 10.1039/b517931a. DOI

Islam MS. Ionic transport in ABO3 perovskite oxides: a computer modelling tour. J. Mater. Chem. 2000;10:1027–1038. doi: 10.1039/a908425h. DOI

Dick BG, Jr., Overhauser AW. Theory of the dielectric constants of alkali halide crystals. Phys. Rev. 1958;112:90–103. doi: 10.1103/PhysRev.112.90. DOI

Lewis GV, Catlow CRA. Potential models for ionic oxides. J. Phys. C Solid State Phys. 1985;18:1149–1161. doi: 10.1088/0022-3719/18/6/010. DOI

Gale JD. GULP: a computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 1997;93:629–637. doi: 10.1039/a606455h. DOI

Gale JD, Rohl AL. The General Utility Lattice Program (GULP) Mol. Simul. 2003;29:291–341. doi: 10.1080/0892702031000104887. DOI

Humphrey W, Dalke A, Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graph. Model. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Rog T, Murzyn K, Hinsen K, Kneller GR. nMoldyn: a program package for a neutron scattering oriented analysis of molecular dynamics simulations. J. Comput. Chem. 2003;24:657–667. doi: 10.1002/jcc.10243. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...