New Mono- and Diesters with Imidazoquinolinone Ring- Synthesis, Structure Characterization, and Molecular Modeling

. 2020 Sep 19 ; 25 (18) : . [epub] 20200919

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32961776

The objective of the studies was to synthesize and characterize new mono- and diesters with an imidazoquinolin-2-one ring with the use of 2,3-dihydro-2-thioxo-1H-imidazo[4 ,5-c]-quinolin-4(5H)-ones and ethyl bromoacetate. The products were isolated at high yield and characterized by instrumental methods (IR, 1H-, 13C-, and 15N- NMR, MS-ESI, HR-MS, EA). In order to clarify the places of substitution and the structure of the derivatives obtained, molecular modeling of substrates and products was performed. Consideration of the possible tautomeric structures of the substrates confirmed the existence only the most stable keto form. Based on the free energy of monosubstituted ester derivatives, the most stable form were derivatives substituted at sulfur atom of enolic form the used imidazoquinolones. Enolic form referred only to nitrogen atom no 1. The modeling results were consistent with the experimental data. The HOMO electron densities at selected atoms of each substrate has shown that the most reactive atom is sulfur atom. It explained the formation of monoderivatives substituted at sulfur atom. The diester derivatives of the used imidazoquinolones had second substituent at nitrogen atom no. 3. The new diesters can be used as raw material for synthesis of thermally stable polymers, and they can also have biological activity.

Zobrazit více v PubMed

Hellerich W., Harsch G., Bau E. Werkstoff-Führer Kunststoffe: Eigenschaften, Prüfungen, Kennwerte. 10th ed. Carl Hanser Verlag; München, Germany: 2010.

Vogel H., Marvel C.S. Polybenzimidazoles, new thermally stable polymers. J. Polymer Sci. 1961;50:511. doi: 10.1002/pol.1961.1205015419. DOI

Hans-Georg E. Makromoleküle, Band 4: Anwendungen von Polymeren. 6th ed. Wiley-VCH; Weinheim, Germany: 2009. p. 298.

Parker D., Bussink J., van de Grampel H.T., Hendrik T., Wheatley G.W., Gary W., Dorf E.-U., Ostlinning E., Rinking K., Schubert F., et al. Polymers, High-Temperature. Ullmann’s Encyclopedia of Industrial Chemistry. Verlag; Weinheim, Germany: 2012. DOI

Keim W. Kunststoffe: Synthese, Herstellungsverfahren, Apparaturen. 1st ed. Wiley-VCH; Weinheim, Germany: 2006. p. 214.

Zarzyka-Niemiec I., Lubczak J. Thermal properties of polyurethanes and polyacrylates with trioxoimidazolidine rings. Polimery. 2006;51:305–309. doi: 10.14314/polimery.2006.305. DOI

Hergenrother P.M. The Use, Design, Synthesis, and Properties of High Performance/High Temperature Polymers: An Overview. High Perform. Polym. 2003;15:3–45. doi: 10.1177/095400830301500101. DOI

Ehrenstein G.W., Pongratz S. Beständigkeit von Kunststoffen. 6th ed. Carl Hanser Verlag; München, Germany: 2007. pp. 38–47.

Hęclik K., Szyszkowska A., Trzybiński D., Woźniak K., Klasek A., Zarzyka I. Esters with imidazo[1,.5-c]quinazoline-3,5-dione ring spectral characterization and quantum-mechanical modeling. J. Mol. Model. 2017;23:1–12. doi: 10.1007/s00894-017-3284-1. PubMed DOI PMC

Szyszkowska A., Klásek A., Pawlędzio S., Trzybiński D., Woźniak K., Zarzyka I. New diols with imidazoquinazoline ring. J. Mol. Struct. 2018;1153:230–238. doi: 10.1016/j.molstruc.2017.10.014. DOI

Szyszkowska A., Czerniecka-Kubicka A., Pyda M., Byczyński Ł., Gancarczyk K., Sedlarik V., Zarzyka I. Linear polyurethanes with imidazoquinazoline rings–preparation and properties evaluation. Polym. Bull. 2019;76:6343–6370. doi: 10.1007/s00289-019-02702-5. DOI

Mrkvička V., Lyčka A., Rudolf O., Klásek A. Reaction of 3-aminoquinoline-2,4-diones with isothiocyanic acid–an easy pathway to thioxo derivatives of imidazo[1,5-c]quinazolin-5-ones and imidazo[1,5-c]quinolin azolin-4-ones. Tetrahedron. 2010;66:8441–8445. doi: 10.1016/j.tet.2010.08.056. DOI

Rudolf O., Mrkvička V., Lyčka A., Klásek A. Reaction of 1-substituted-3-aminoquinolinediones with isocyanic and isothiocyanic acids. Tetrahedron. 2011;67:2407–2413.

Klásek A., Rudolf O., Rouchal M., Lyčka A. Reaction of 3-hydroxyquinoline-2,4-diones with inorganic thiocyanates in the presence of ammonium or alkylammonium ions–the unexpected replacement of a hydroxyl group by an amino group. Helv. Chim. Acta. 2015;98:318–335. doi: 10.1002/hlca.201400189. DOI

Ramesh P., Fadnavis N.W. Ammonium nitrate: A biodegradable and efficient catalyst for the direct amidation of esters under solvent-free conditions. Chem. Lett. 2015;44:138–140. doi: 10.1246/cl.140846. DOI

Fukui K., Yonezawa T., Nagata C., Shingu H. Molecular Orbital Theory of Orientation in Aromatic, Heteroaromatic, and Other Conjugated Molecules. J. Chem. Phys. 1954;22:1433–1441. doi: 10.1063/1.1740412. DOI

Czerniecka-Kubicka A., Zarzyka I., Pyda M. Advanced analysis of poly(3-hydroxybutyrate) phases based on vibrational heat capacity. J. Therm. Anal. Calorim. 2017;127:905–914. doi: 10.1007/s10973-016-5903-y. DOI

Czerniecka-Kubicka A., Schliesser J., Popovic M., Woodfield B.F., Walczak M., Zarzyka I., Pyda M. Molecular interpretation of low-temperature heat capacity of aliphatic oligo-urethane. J. Chem. Thermodyn. 2017;112:299–307. doi: 10.1016/j.jct.2017.05.019. DOI

Wang K. Fabric transfer printing process. 105,252,947A. CN Patent. 2016

Cisek-Cicirko I., Lubczak J. Polyurethane foams of improved thermal stability. Macromol. Mater. Eng. 2002;287:665–670. doi: 10.1002/1439-2054(200210)287:10<665::AID-MAME665>3.0.CO;2-7. DOI

Kosterna J., Lubczak J., Myśliwiec B. Esters and urethanes with pyrimidine ring. Heterocyc. Comm. 2009;15:9–16. doi: 10.1515/HC.2009.15.1.9. DOI

Zarzyka-Niemiec I., Lubczak J. Polyesters with trioxoimidazolidine rings . Polimery. 2006;50:383–386. doi: 10.14314/polimery.2005.383. DOI

YE, Cross-Linking Modified Polyethylene Geogrid. 104,262,757-A. CN Patent. 2015

Wunderlich B. Thermal Analysis of Polymeric Materials. Springer; Berlin, Germany: 2005.

Ditchfield R., Hehre W.J., Pople J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971;54:724–730.

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Fox, Gaussian 09. Gaussian, Inc.; Wallingford, CT, USA: 2009.

Krishnan R., Binkley J.S., Seeger R., Pople J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980;72:650–657. doi: 10.1063/1.438955. DOI

Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Dennington R., Keith T., Millam J. GaussView, Version 5. Semichem Inc.; Shawnee Mission, KS, USA: 2009.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...