• This record comes from PubMed

Esters with imidazo [1,5-c] quinazoline-3,5-dione ring spectral characterization and quantum-mechanical modeling

. 2017 Apr ; 23 (4) : 107. [epub] 20170308

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

Links

PubMed 28275905
PubMed Central PMC5343086
DOI 10.1007/s00894-017-3284-1
PII: 10.1007/s00894-017-3284-1
Knihovny.cz E-resources

1-phenyl-2H,6H-imidazo[1,5-c]quinazoline-3,5-dione reacts with ethyl bromoacetate under mild conditions to give 2-(ethoxycarbonylmethyl)-1-phenyl-6H-imidazo[1,5-c]quinazoline-3,5-dione (MEPIQ) and next 2,6-bis(ethoxycarbonylmethyl)-1-phenylimidazo[1,5-c]quinazoline-3,5-dione (BEPIQ). The products were isolated at high yield and identified on the basis of IR, 1H- and 13C-NMR, UV spectroscopy, and X-ray crystallography. Diester (BEPIQ) can be presented by 16 possible pair of enantiomers. Only one pair of them is the most stable and crystallizes which is shown crystallographic research. Based on quantum-mechanical modeling, with the use of DFT method, which conformers of mono- and diester and why they were formed was explained. It was calculated that 99.93% of the monoester (MEPIQ) is formed at position No. 2 and one pair of the monoester conformers, from six possible, has the largest share (51.63%). These results afforded to limit the number of diester conformers to eight. Unfortunately, the quantum-mechanical calculations performed that their shares are similar. Further quantum-mechanical modeling showed that conformers are able to undergo mutual transformations. As a result only one pair of diester conformers forms crystals. These conformers have substituents in trans position and these substituents are located parallel to imidazoquinazoline ring. This allows for the denser packing of the molecules in the unit cell.

See more in PubMed

Stadlbauer W, Laschober R, Lutschounig H, Schindler G, Kappe T. Halogenation reactions in position -3 of quinoline-2,4-dione systems by electrophilic substitution and halogen exchange. Monatsh Chem. 1992;123:617–636. doi: 10.1007/BF00816857. DOI

Li G, Kakarla R, Gerritz SW, Pendri A, Mac B. A facile one-step synthesis of 5-chloro-imidazo[1,5-a]quinazoline by microwave irradiation. Tetrahedron Lett. 2009;50:6048–6052. doi: 10.1016/j.tetlet.2009.08.054. DOI

Chen Z, Huang X, Yang HY, Ding WB, Gao LY, Yea ZQ, Zhang YD, Yu YP, Lou YJ. Anti-tumor effects of B-2, a novel 2,3-disubstituted 8-arylamino-3H-imidazo[4,5-g]quinazoline derivative, on the human lung adenocarcinoma A549 cell line in vitro and in vivo. Chem Biol Interact. 2011;189:90–99. doi: 10.1016/j.cbi.2010.11.004. PubMed DOI

Domány G, Gizur T, Gere A, Takács-Novák K, Farsang G, Ferenczy GG, Tárkányi G, Demeter M. Imidazo[1,2-c]quinazolines with lipid peroxidation inhibitory effect. Eur J Med Chem. 1998;33:181–187. doi: 10.1016/S0223-5234(98)80007-X. DOI

Mrkvicka V, Lycka A, Rudolf O, Klásek A. Reaction of 3-aminoquinoline-2,4-diones with isothiocyanic acid - an easy pathway to thioxo derivatives of imidazo[1,5-c]quinazolin-5-ones and imidazo[4,5-c]quinolin-4-ones. Tetrahedron. 2010;66:8441–8445. doi: 10.1016/j.tet.2010.08.056. DOI

Mrkvicka V, Rudolf O, Lycka A, Klasek A. Reaction of 1-substituted 3-aminoquinolinediones with isocyanic and isothiocyanic acid. Tetrahedron. 2011;67:2407–2413. doi: 10.1016/j.tet.2011.02.002. DOI

Klasek A, Koristek K, Lycka A, Holcapek M. Unprecedented reactivity of 3-amino-1H,3H-quinoline-2,4-diones with urea: an efficient synthesis of 2,6-dihydroimidazo[1,5-c]quinazoline-3,5-diones. Tetrahedron. 2003;59:1283–1288. doi: 10.1016/S0040-4020(03)00028-0. DOI

CrysAlis CCD, CrysAlis RED. Oxford diffraction. Yarnton: Oxford Diffraction Ltd; 2008.

Sheldrick GM. A short history of SHELX. Acta Cryst Sect A. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI

Farrugia LJ. ORTEP-3 for windows - a version of ORTEP-III with a Graphical User Interface (GUI) J. Appl. Crystallogr. 1997;30:565–572. doi: 10.1107/S0021889897003117. DOI

Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI

Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1998;98:5648–5658. doi: 10.1063/1.464913. DOI

Becke AD. Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing. J Chem Phys. 1996;104:1040–1048. doi: 10.1063/1.470829. DOI

Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–791. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Ditchfield R, Hehre WJ, Pople JA. Self‐consistent molecular‐orbital methods IX. An extended gaussian‐type basis for molecular‐orbital studies of organic molecules. J Chem Phys. 1971;54:724–730. doi: 10.1063/1.1674902. DOI

Krishnan R, Binkley JS, Seeger R, Pople JA. Self-consistent molecular orbital methods XX. A basis set for correlated wave functions. J Chem Phys. 1980;72:650–658. doi: 10.1063/1.438955. DOI

Dunning TH. Gaussian basis sets for use in correlated molecular calculations I. The atoms boron through neon and hydrogen. J Chem Phys. 1989;90:1007–1015. doi: 10.1063/1.456153. DOI

Kendall RA, Dunning TH, Harrison RJ. Electron affinities of the first‐row atoms revisited systematic basis sets and wave functions. J Chem Phys. 1992;96:6796–6802. doi: 10.1063/1.462569. DOI

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian Inc., Wallingford

Notepad++, https://notepad-plus-plus.org/

Hęclik K, Dębska B, Dobrowolski JCZ. RSC Adv. 2014;4:17337–17346. doi: 10.1039/c4ra02294g. DOI

Dennington R, Keith T, Millam J (2009) Gauss View, version 5. Semichem Inc., Shawnee Mission, KS

Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J. J. Appl. Crystallogr. 2006;39:453–457. doi: 10.1107/S002188980600731X. DOI

Szyszkowska A, Hęclik K, Lubczak J, Trzybiński D, Woźniak K, Klasek A, Zarzyka I. Chemoselectivity of 1-phenyl-2H,6H-imidazo[1,5-c]quinazoline-3,5-dione reaction with oxiranes. J Mol Struct. 2017;1127:708–715. doi: 10.1016/j.molstruc.2016.08.025. DOI

Spek AL. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC

Wiberg KB, Hammer JD, Castejon H, Bailey WF, DeLeon EL, Jarret RM. Conformational studies in the cyclohexane series. 1. Experimental and computational investigation of methyl, ethyl, isopropyl, and tert-Butylcyclohexanes. J Org Chem. 1999;64:2085–2095. doi: 10.1021/jo990056f. PubMed DOI

Steiner T. The hydrogen bond in the solid state. Angew Chem Int Ed. 2002;41:48–76. doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U. PubMed DOI

Perrin CL, Nielson JB. Strong hydrogen bonds in chemistry and biology. Annu Rev Phys Chem. 1997;48:511–544. doi: 10.1146/annurev.physchem.48.1.511. PubMed DOI

Bickelhaupt FM, Baerends EJ. The case for steric repulsion causing the staggered conformation of ethane. Angew Chem Int Ed. 2003;42:4183–4188. doi: 10.1002/anie.200350947. PubMed DOI

Leventis N, Hanna SB, Sotiriou-Leventis C. A three-dimensional energy surface for the conformational inversion of cyclohexane. J Chem Educ. 1997;74:813–814. doi: 10.1021/ed074p813. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...