Esters with imidazo [1,5-c] quinazoline-3,5-dione ring spectral characterization and quantum-mechanical modeling
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
28275905
PubMed Central
PMC5343086
DOI
10.1007/s00894-017-3284-1
PII: 10.1007/s00894-017-3284-1
Knihovny.cz E-resources
- Keywords
- Ester, Imidazo[1,5-c]quinazoline ring, Quantum-mechanical modeling, Spectral characterization,
- Publication type
- Journal Article MeSH
1-phenyl-2H,6H-imidazo[1,5-c]quinazoline-3,5-dione reacts with ethyl bromoacetate under mild conditions to give 2-(ethoxycarbonylmethyl)-1-phenyl-6H-imidazo[1,5-c]quinazoline-3,5-dione (MEPIQ) and next 2,6-bis(ethoxycarbonylmethyl)-1-phenylimidazo[1,5-c]quinazoline-3,5-dione (BEPIQ). The products were isolated at high yield and identified on the basis of IR, 1H- and 13C-NMR, UV spectroscopy, and X-ray crystallography. Diester (BEPIQ) can be presented by 16 possible pair of enantiomers. Only one pair of them is the most stable and crystallizes which is shown crystallographic research. Based on quantum-mechanical modeling, with the use of DFT method, which conformers of mono- and diester and why they were formed was explained. It was calculated that 99.93% of the monoester (MEPIQ) is formed at position No. 2 and one pair of the monoester conformers, from six possible, has the largest share (51.63%). These results afforded to limit the number of diester conformers to eight. Unfortunately, the quantum-mechanical calculations performed that their shares are similar. Further quantum-mechanical modeling showed that conformers are able to undergo mutual transformations. As a result only one pair of diester conformers forms crystals. These conformers have substituents in trans position and these substituents are located parallel to imidazoquinazoline ring. This allows for the denser packing of the molecules in the unit cell.
See more in PubMed
Stadlbauer W, Laschober R, Lutschounig H, Schindler G, Kappe T. Halogenation reactions in position -3 of quinoline-2,4-dione systems by electrophilic substitution and halogen exchange. Monatsh Chem. 1992;123:617–636. doi: 10.1007/BF00816857. DOI
Li G, Kakarla R, Gerritz SW, Pendri A, Mac B. A facile one-step synthesis of 5-chloro-imidazo[1,5-a]quinazoline by microwave irradiation. Tetrahedron Lett. 2009;50:6048–6052. doi: 10.1016/j.tetlet.2009.08.054. DOI
Chen Z, Huang X, Yang HY, Ding WB, Gao LY, Yea ZQ, Zhang YD, Yu YP, Lou YJ. Anti-tumor effects of B-2, a novel 2,3-disubstituted 8-arylamino-3H-imidazo[4,5-g]quinazoline derivative, on the human lung adenocarcinoma A549 cell line in vitro and in vivo. Chem Biol Interact. 2011;189:90–99. doi: 10.1016/j.cbi.2010.11.004. PubMed DOI
Domány G, Gizur T, Gere A, Takács-Novák K, Farsang G, Ferenczy GG, Tárkányi G, Demeter M. Imidazo[1,2-c]quinazolines with lipid peroxidation inhibitory effect. Eur J Med Chem. 1998;33:181–187. doi: 10.1016/S0223-5234(98)80007-X. DOI
Mrkvicka V, Lycka A, Rudolf O, Klásek A. Reaction of 3-aminoquinoline-2,4-diones with isothiocyanic acid - an easy pathway to thioxo derivatives of imidazo[1,5-c]quinazolin-5-ones and imidazo[4,5-c]quinolin-4-ones. Tetrahedron. 2010;66:8441–8445. doi: 10.1016/j.tet.2010.08.056. DOI
Mrkvicka V, Rudolf O, Lycka A, Klasek A. Reaction of 1-substituted 3-aminoquinolinediones with isocyanic and isothiocyanic acid. Tetrahedron. 2011;67:2407–2413. doi: 10.1016/j.tet.2011.02.002. DOI
Klasek A, Koristek K, Lycka A, Holcapek M. Unprecedented reactivity of 3-amino-1H,3H-quinoline-2,4-diones with urea: an efficient synthesis of 2,6-dihydroimidazo[1,5-c]quinazoline-3,5-diones. Tetrahedron. 2003;59:1283–1288. doi: 10.1016/S0040-4020(03)00028-0. DOI
CrysAlis CCD, CrysAlis RED. Oxford diffraction. Yarnton: Oxford Diffraction Ltd; 2008.
Sheldrick GM. A short history of SHELX. Acta Cryst Sect A. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI
Farrugia LJ. ORTEP-3 for windows - a version of ORTEP-III with a Graphical User Interface (GUI) J. Appl. Crystallogr. 1997;30:565–572. doi: 10.1107/S0021889897003117. DOI
Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI
Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1998;98:5648–5658. doi: 10.1063/1.464913. DOI
Becke AD. Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing. J Chem Phys. 1996;104:1040–1048. doi: 10.1063/1.470829. DOI
Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–791. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Ditchfield R, Hehre WJ, Pople JA. Self‐consistent molecular‐orbital methods IX. An extended gaussian‐type basis for molecular‐orbital studies of organic molecules. J Chem Phys. 1971;54:724–730. doi: 10.1063/1.1674902. DOI
Krishnan R, Binkley JS, Seeger R, Pople JA. Self-consistent molecular orbital methods XX. A basis set for correlated wave functions. J Chem Phys. 1980;72:650–658. doi: 10.1063/1.438955. DOI
Dunning TH. Gaussian basis sets for use in correlated molecular calculations I. The atoms boron through neon and hydrogen. J Chem Phys. 1989;90:1007–1015. doi: 10.1063/1.456153. DOI
Kendall RA, Dunning TH, Harrison RJ. Electron affinities of the first‐row atoms revisited systematic basis sets and wave functions. J Chem Phys. 1992;96:6796–6802. doi: 10.1063/1.462569. DOI
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian Inc., Wallingford
Notepad++, https://notepad-plus-plus.org/
Hęclik K, Dębska B, Dobrowolski JCZ. RSC Adv. 2014;4:17337–17346. doi: 10.1039/c4ra02294g. DOI
Dennington R, Keith T, Millam J (2009) Gauss View, version 5. Semichem Inc., Shawnee Mission, KS
Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J. J. Appl. Crystallogr. 2006;39:453–457. doi: 10.1107/S002188980600731X. DOI
Szyszkowska A, Hęclik K, Lubczak J, Trzybiński D, Woźniak K, Klasek A, Zarzyka I. Chemoselectivity of 1-phenyl-2H,6H-imidazo[1,5-c]quinazoline-3,5-dione reaction with oxiranes. J Mol Struct. 2017;1127:708–715. doi: 10.1016/j.molstruc.2016.08.025. DOI
Spek AL. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC
Wiberg KB, Hammer JD, Castejon H, Bailey WF, DeLeon EL, Jarret RM. Conformational studies in the cyclohexane series. 1. Experimental and computational investigation of methyl, ethyl, isopropyl, and tert-Butylcyclohexanes. J Org Chem. 1999;64:2085–2095. doi: 10.1021/jo990056f. PubMed DOI
Steiner T. The hydrogen bond in the solid state. Angew Chem Int Ed. 2002;41:48–76. doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U. PubMed DOI
Perrin CL, Nielson JB. Strong hydrogen bonds in chemistry and biology. Annu Rev Phys Chem. 1997;48:511–544. doi: 10.1146/annurev.physchem.48.1.511. PubMed DOI
Bickelhaupt FM, Baerends EJ. The case for steric repulsion causing the staggered conformation of ethane. Angew Chem Int Ed. 2003;42:4183–4188. doi: 10.1002/anie.200350947. PubMed DOI
Leventis N, Hanna SB, Sotiriou-Leventis C. A three-dimensional energy surface for the conformational inversion of cyclohexane. J Chem Educ. 1997;74:813–814. doi: 10.1021/ed074p813. DOI