Successful breeding predicts divorce in plovers

. 2020 Sep 23 ; 10 (1) : 15576. [epub] 20200923

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32968190
Odkazy

PubMed 32968190
PubMed Central PMC7511398
DOI 10.1038/s41598-020-72521-6
PII: 10.1038/s41598-020-72521-6
Knihovny.cz E-zdroje

When individuals breed more than once, parents are faced with the choice of whether to re-mate with their old partner or divorce and select a new mate. Evolutionary theory predicts that, following successful reproduction with a given partner, that partner should be retained for future reproduction. However, recent work in a polygamous bird, has instead indicated that successful parents divorced more often than failed breeders (Halimubieke et al. in Ecol Evol 9:10734-10745, 2019), because one parent can benefit by mating with a new partner and reproducing shortly after divorce. Here we investigate whether successful breeding predicts divorce using data from 14 well-monitored populations of plovers (Charadrius spp.). We show that successful nesting leads to divorce, whereas nest failure leads to retention of the mate for follow-up breeding. Plovers that divorced their partners and simultaneously deserted their broods produced more offspring within a season than parents that retained their mate. Our work provides a counterpoint to theoretical expectations that divorce is triggered by low reproductive success, and supports adaptive explanations of divorce as a strategy to improve individual reproductive success. In addition, we show that temperature may modulate these costs and benefits, and contribute to dynamic variation in patterns of divorce across plover breeding systems.

Associazione ARCA Senigallia Anoca Italy

Behaviour Genetics and Evolutionary Ecology Research Group Max Planck Institute for Ornithology Seewiesen Germany

Centre for Biological Diversity School of Biology University of St Andrews St Andrews UK

Centre for Ecological Sciences Indian Institute of Science Bengaluru India

Chengdu Research Base of Giant Panda Breeding Chengdu China

Departamento de Ecología Evolutiva Instituto de Ecología Universidad Nacional Autónoma de México Ciudad de México México

Department of Animal and Plant Sciences University of Sheffield Alfred Denny Building Western Bank Sheffield UK

Department of Biodiversity Research Global Change Research Institute Czech Academy of Sciences Brno Czech Republic

Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland

Department of Ecology University of Veterinary Medicine Budapest Budapest Hungary

Department of Environmental and Forest Biology SUNY College of Environmental Science and Forestry Syracuse USA

Department of Evolutionary Zoology and Human Biology University of Debrecen Debrecen Hungary

Department of Fish and Wildlife Conservation Virginia Tech Blackburg USA

Department of Wetland Ecology Estación Biológica de Doñana Sevilla Spain

Department of Zoology Edward Grey Institute University of Oxford Oxford UK

FitzPatrick Institute DST NRF Centre of Excellence University of Cape Town Cape Town South Africa

Forest Supervisor's Office USDA Forest Service Plumas National Forest Quincy CA USA

Milner Centre for Evolution Department of Biology and Biochemistry University of Bath Bath UK

Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering College of Life Sciences Beijing Normal University Beijing China

Posgrado en Ciencias del Mar Y Limnología Universidad Nacional Autónoma de México Ciudad Universitaria Cd México Mexico

Quest University Canada Squamish Canada

School of Life and Environmental Sciences Faculty of Science Engineering and the Built Environment Deakin University Burwood Australia

Servei de Vigilancia 1 Control de Plagues Urbanes Agencia de Salud Pública de Barcelona Barcelona Spain

Sichuan Academy of Giant Panda Chengdu China

Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife Chengdu China

State Key Laboratory of Biocontrol School of Ecology School of Life Sciences Sun Yat Sen University Shenzhen China

Erratum v

PubMed

Zobrazit více v PubMed

Halimubieke N, et al. Mate fidelity in a polygamous shorebird, the snowy plover (Charadrius nivosus) Ecol. Evol. 2019;9:10734–10745. doi: 10.1002/ece3.5591. PubMed DOI PMC

Reynolds JD. Animal breeding systems. Trends Ecol. Evol. 1996;11:68–72. doi: 10.1016/0169-5347(96)81045-7. PubMed DOI

Neff BD, Pitcher TE. Genetic quality and sexual selection: An integrated framework for good genes and compatible genes. Mol. Ecol. 2005;14:19–38. doi: 10.1111/j.1365-294X.2004.02395.x. PubMed DOI

Székely T, Thomas GH, Cuthill IC. Sexual conflict, ecology, and breeding systems in shorebirds. Bioscience. 2006;56:801–808. doi: 10.1641/0006-3568(2006)56[801:SCEABS]2.0.CO;2. DOI

Culina A, Radersma R, Sheldon BC. Trading up: The fitness consequences of divorce in monogamous birds. Biol. Rev. Camb. Philos. Soc. 2014;90:1015–1034. doi: 10.1111/brv.12143. PubMed DOI

Székely T, Weissing FJ, Komdeur J. Adult sex ratio variation: Implications for breeding system evolution. J. Evol. Biol. 2014;27:1500–1512. doi: 10.1111/jeb.12415. PubMed DOI

Culina A, Lachish S, Pradel R, Choquet R, Sheldon BC. A multievent approach to estimating pair fidelity and heterogeneity in state transitions. Ecol. Evol. 2013;3:4326–4338. doi: 10.1002/ece3.729. PubMed DOI PMC

Møller AP. The evolution of monogamy: Mating relationships, parental care and sexual selection. In: Reichard UH, Boesch C, editors. Monogamy Mating Strategies and Partnerships in Birds, Humans and Other Mammals. Cambridge: Cambridge University Press; 2003. pp. 29–41.

Lukas D, Clutton-Brock TH. The evolution of social monogamy in mammals. Science. 2013;314:526–530. doi: 10.1126/science.1238677. PubMed DOI

Black JM. Partnerships in birds. Oxford: Oxford University Press; 1996.

Black JM. Fitness consequences of long-term pair bonds in barnacle geese: Monogamy in the extreme. Behav. Ecol. 2001;12:640–645. doi: 10.1093/beheco/12.5.640. DOI

Reichard UH, Boesch C. Monogamy: Mating Strategies and Partnerships in Birds, Humans and Other Mammals. Cambridge: Cambridge University Press; 2003.

Sánchez-Macouzet O, Rodríguez C, Drummond H. Better stay together: Pair bond duration increases individual fitness independent of age-related variation. Proc. R. Soc. B Biol. Sci. 2014;281:20132843. doi: 10.1098/rspb.2013.2843. PubMed DOI PMC

Botero CA, Rubenstein DR. Fluctuating environments, sexual selection and the evolution of flexible mate choice in birds. PLoS ONE. 2012;7:e32311. doi: 10.1371/journal.pone.0032311. PubMed DOI PMC

Blomqvist D, Wallander J, Andersson M. Successive clutches and parental roles in waders: The importance of timing in multiple clutch systems. Biol. J. Linn. Soc. 2001;74:549–555. doi: 10.1111/j.1095-8312.2001.tb01412.x. DOI

Eberhart-Phillips LJ. Plover breeding systems: Diversity and evolutionary origins. In: Colwell MA, Haig SM, editors. The Population Ecology and Conservation of Charadrius Plovers. Boca Raton: CRC Press; 2019. pp. 65–88.

Green GH, Greenwood JJD, Lloyd CS. The influence of snow conditions on the date of breeding of wading birds in north-east Greenland. J. Zool. 1977;183:311–328. doi: 10.1111/j.1469-7998.1977.tb04190.x. DOI

Saalfeld ST, Lanctot RB. Conservative and opportunistic settlement strategies in Arctic-breeding shorebirds. Auk. 2015;132:212–234. doi: 10.1642/AUK-13-193.1. DOI

Székely T, Cuthill IC, Kis J. Brood desertion in Kentish plover sex differences in remating opportunities. Behav. Ecol. 1999;10:185–190. doi: 10.1093/beheco/10.2.185. DOI

Yasué M, Dearden P. Replacement nesting and double-brooding in Malaysian plovers Charadrius peronii: Effects of season and food availability. Ardea. 2008;96:59–72. doi: 10.5253/078.096.0107. DOI

Gilburn AS, Day TH. Evolution of female choice in seaweed flies: Fisherian and good genes mechanisms operate in different populations. Proc. R. Soc. B Biol. Sci. 1994;255:159–165. doi: 10.1098/rspb.1994.0023. DOI

Candolin U, Salesto T, Evers M. Changed environmental conditions weaken sexual selection in sticklebacks. J. Evol. Biol. 2007;20:233–239. doi: 10.1111/j.1420-9101.2006.01207.x. PubMed DOI

Welch AM. Genetic benefits of a female mating preference in gray tree frogs are context-dependent. Evolution. 2003;57:883–893. doi: 10.1111/j.0014-3820.2003.tb00299.x. PubMed DOI

Lode T, Holveck MJ, Lesbarreres D, Pagano A. Sex-biased predation by polecats influences the mating system of frogs. Proc. R. Soc. B Biol. Sci. 2004;271:399–401. doi: 10.1098/rsbl.2004.0195. PubMed DOI PMC

Liker A, Freckleton RP, Székely T. Divorce and infidelity are associated with skewed adult sex ratios in birds. Curr. Biol. 2014;24:880–884. doi: 10.1016/j.cub.2014.02.059. PubMed DOI

Parra JE, Beltrán M, Zefania S, dos Remedios N, Székely T. Experimental assessment of mating opportunities in three shorebird species. Anim. Behav. 2014;90:83–90. doi: 10.1016/j.anbehav.2013.12.030. DOI

Jeschke JM, Kokko H. Mortality and other determinants of bird divorce rate. Behav. Ecol. Sociobiol. 2008;63:1–9. doi: 10.1007/s00265-008-0646-9. DOI

Bried J, Pontier D, Jouventin P. Mate fidelity in monogamous birds: A re-examination of the Procellariiformes. Anim. Behav. 2003;65:235–246. doi: 10.1006/anbe.2002.2045. DOI

Andersson M. Sexual selection. Princeton: Princeton University Press; 1994.

Choudhury S. Divorce in birds: A review of the hypotheses. Anim. Behav. 1995;50:413–429. doi: 10.1006/anbe.1995.0256. DOI

Wheelwright NT, Teplitsky C. Divorce in Savannah sparrows: Causes, consequences and lack of inheritance. Am. Nat. 2017;190:557–569. doi: 10.1086/693387. PubMed DOI

Adkins-Regan E, Tomaszycki M. Monogamy on the fast track. Biol. Lett. 2007;3:617–619. doi: 10.1098/rsbl.2007.0388. PubMed DOI PMC

Perfito N, Zann RA, Bentley GE, Hau M. Opportunism at work: Habitat predictability affects reproductive readiness in free-living zebra finches. Funct. Ecol. 2007;21:291–301. doi: 10.1111/j.1365-2435.2006.01237.x. DOI

Ens BJ, Choudhury S, Black JM. Mate fidelity and divorce in monogamous birds. In: Black JM, editor. Partnerships in Birds: The Study of Monogamy. Oxford: Oxford University Press; 1996. pp. 344–401.

Gabriel PO, Black JM, Foster S. Correlates and consequences of the pair bond in Steller's Jays. Ethology. 2013;119:178–187. doi: 10.1111/eth.12051. DOI

Coulson JC. The influence of the pair-bond and age on the breeding biology of the kittiwake gull Rissa tridactyla. J. Anim. Ecol. 1966;35:269–279. doi: 10.2307/2394. DOI

Kempenaers B, Adriaensen F, Dhondt AA. Inbreeding and divorce in blue and great tits. Anim. Behav. 1998;56:737–740. doi: 10.1006/anbe.1998.0800. PubMed DOI

Pyle P, Sydeman WJ, Hester M. Effects of age, breeding experience, mate fidelity and site fidelity on breeding performance in declining populations of Cassin’s auklets. J. Anim. Ecol. 2001;70:1088–1097. doi: 10.1046/j.0021-8790.2001.00567.x. DOI

Flodin LA, Blomqvist D. Divorce and breeding dispersal in the dunlin Calidris alpina: Support for the better option hypothesis? Behaviour. 2012;149:67–80. doi: 10.1163/156853912X626295. DOI

Arnqvist G, Nilsson T. The evolution of polyandry: Multiple mating and female fitness in insects. Anim. Behav. 2000;60:145–164. doi: 10.1006/anbe.2000.1446. PubMed DOI

Greenwood PJ. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 1980;28:1140–1162. doi: 10.1016/S0003-3472(80)80103-5. DOI

Clobert J, Danchin E, Dhondt A, Nichols JD. Dispersal. Oxford: Oxford University Press; 2001.

Trochet A, et al. Evolution of sex-biased dispersal. Q. Rev. Biol. 2016;91:297–320. doi: 10.1086/688097. PubMed DOI

D’Urban Jackson J, et al. Polygamy slows down population divergence in shorebirds. Evolution. 2017;71:1313–1326. doi: 10.1111/evo.13212. PubMed DOI PMC

Székely T. Why study plovers? The significance of non-model organisms in avian ecology, behaviour and evolution. J. Ornithol. 2019;160:923–933. doi: 10.1007/s10336-019-01669-4. DOI

Morse DH, Kress SW. The effect of burrow loss on mate choice in the Leach's Storm-Petrel. Auk. 1984;101:158–160. doi: 10.1093/auk/101.1.158. DOI

Pietz PJ, Parmelee DF. Survival, site and mate fidelity in south polar skuas Catharacta maccormicki at Anvers Island, Antarctica. Ibis. 2014;136:32–38. doi: 10.1111/j.1474-919X.1994.tb08128.x. DOI

Thibault J-C. Nest-site tenacity and mate fidelity in relation to breeding success in Cory's Shearwater Calonectris diomedea. Bird Study. 1994;41:25–28. doi: 10.1080/00063659409477193. DOI

Dubois F, Cézilly F. Breeding success and mate retention in birds: A meta-analysis. Behav. Ecol. Sociobiol. 2002;52:357–364. doi: 10.1007/s00265-002-0521-z. DOI

Kosztolányi A, Székely T, Cuthill IC, Yilmaz KT, Berberoǧlu S. Ecological constraints on breeding system evolution: The influence of habitat on brood desertion in Kentish plover. J. Anim. Ecol. 2006;75:257–265. doi: 10.1111/j.1365-2656.2006.01049.x. PubMed DOI

del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive (Lynx Edicions, 2018). (retrieved from https://www.hbw.com/ on 30 October 2019).

Maher KH, et al. High fidelity: Extra-pair fertilisations in eight Charadrius plover species are not associated with parental relatedness or social mating system. J. Avian. Biol. 2017;48:910–920. doi: 10.1111/jav.01263. DOI

Székely T, Freckleton RP, Reynolds JD. Sexual selection explains Rensch's rule of size dimorphism in shorebirds. Proc. Natl. Acad. Sci. USA. 2004;101:12224–12227. doi: 10.1073/pnas.0404503101. PubMed DOI PMC

Székely T, Lislevand T, Figuerola J. Sexual size dimorphism in birds. In: Fairbairn DJ, Blanckehorn WU, Szekely T, editors. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford: Oxford University Press; 2007.

Lessells CM. The mating system of Kentish plovers Charadrius alexandrinus. Ibis. 1984;126:474–483. doi: 10.1111/j.1474-919X.1984.tb02074.x. DOI

Székely T, Lessells CM. Mate change by Kentish plovers Charadrius alexandrinus. Ornis. Scand. 1993;24:317–322. doi: 10.2307/3676794. DOI

Amat JA, Fraga RM, Arroyo GM. Brood desertion and polygamous breeding in the Kentish plover Charadrius alexandrinus. Ibis. 1999;141:596–607. doi: 10.1111/j.1474-919X.1999.tb07367.x. DOI

Carmona-Isunza MC, Küpper C, Serrano-Meneses MA, Székely T. Courtship behavior differs between monogamous and polygamous plovers. Behav. Ecol. Sociobiol. 2015;69:2035–2042. doi: 10.1007/s00265-015-2014-x. DOI

Warriner JS, Warriner JC, Page GW, Stenzel LE. Mating system and reproductive success of a small population of polygamous snowy plover. Wilson Bull. 1986;98:15–37.

Eberhart-Phillips LJ, et al. Demographic causes of adult sex ratio variation and their consequences for parental cooperation. Nat. Commun. 2018;9:1651. doi: 10.1038/s41467-018-03833-5. PubMed DOI PMC

Kappeler PM, van Schaik CP. Evolution of primate social systems. Int. J. Primatol. 2002;23:707–740. doi: 10.1023/A:1015520830318. DOI

Avise JC, Jones AG, Walker D, DeWoody JA, Collaborators et al. Genetic mating systems and reproductive natural histories of fishes: Lessons for ecology and evolution. Annu. Rev. Genet. 2002;36:19–45. doi: 10.1146/annurev.genet.36.030602.090831. PubMed DOI

Bowyer RT, McCullough DR, Rachlow JL, Ciuti S, Whiting JC. Evolution of ungulate mating systems: Integrating social and environmental factors. Ecol. Evol. 2020;10:5160–5178. doi: 10.1002/ece3.62. PubMed DOI PMC

Johnson M, Walters JR. Effects of mate and site fidelity on nest survival of western sandpipers (Calidris mauri) Auk. 2008;125:76–86. doi: 10.1525/auk.2008.125.1.76. DOI

Brandt EE, Kelley JP, Elias DO. Temperature alters multimodal signaling and mating success in an ectotherm. Behav. Ecol. Sociobiol. 2018;72:191. doi: 10.1007/s00265-018-2620-5. DOI

Conrad T, Stöcker C, Ayasse M. The effect of temperature on male mating signals and female choice in the red mason bee, Osmia bicornis (L.) Ecol. Evol. 2017;7:8966–8975. doi: 10.1002/ece3.3331. PubMed DOI PMC

Silva K, Vieira MN, Almada VC, Monteiro NM. The effect of temperature on mate preferences and female–female interactions in Syngnathus abaster. Anim. Behav. 2007;74:1525–1533. doi: 10.1016/j.anbehav.2007.03.008. DOI

Twiss SD, Thomas C, Poland V, Graves JA, Pomeroy P. The impact of climatic variation on the opportunity for sexual selection. Biol. Lett. 2007;3:12–15. doi: 10.1098/rsbl.2006.0559. PubMed DOI PMC

Olsson M, Wapstra E, Schwartz T, Madsen T, Ujvari B, Uller T. In hot pursuit: Fluctuating mating system and sexual selection in sand lizards. Evolution. 2011;65:574–583. doi: 10.1111/j.1558-5646.2010.01152.x. PubMed DOI

Suzaki Y, Kodera S, Fujiwara H, Sasaki R, Okada K, Katsuki M. Temperature variations affect postcopulatory but not precopulatory sexual selection in the cigarette beetle. Anim. Behav. 2018;144:115–123. doi: 10.1016/j.anbehav.2018.08.010. DOI

Eberhart-Phillips LJ, et al. Sex-specific early survival drives adult sex ratio bias in snowy plovers and impacts mating system and population growth. Proc. Natl. Acad. Sci. USA. 2017;114:E5474–E5481. doi: 10.1073/pnas.1620043114. PubMed DOI PMC

Liker A, Freckleton RPF, Székely T. The evolution of sex roles in birds is related to adult sex ratio. Nat. Commun. 2013;4:1587. doi: 10.1038/ncomms2600. PubMed DOI

Kosztolányi A, Barta Z, Küpper C, Székely T. Persistence of an extreme male-biased adult sex ratio in a natural population of polyandrous bird. J. Evol. Biol. 2011;24:1842–1846. doi: 10.1111/j.1420-9101.2011.02305.x. PubMed DOI

Handel CM, Gill RE. Mate fidelity and breeding site tenacity in a monogamous sandpiper, the black turnstone. Anim. Behav. 2000;60:471–481. doi: 10.1006/anbe.2000.1505. PubMed DOI

Cruz-López M, et al. The plight of a plover: Viability of an important snowy plover population with flexible brood care in Mexico. Biol. Conserv. 2017;209:440–448. doi: 10.1016/j.biocon.2017.03.009. DOI

Székely T, Webb JN, Houston AI, McNamara JM. An evolutionary approach to offspring desertion in birds. In: Nolan V, Ketterson ED, editors. Current Ornithology. Berlin: Springer; 1996. pp. 271–330.

McNamara JM, Forslund P, Lang A. An ESS model for divorce strategies in birds. Philos. Trans. R. Soc. B. 1999;354:223–236. doi: 10.1098/rstb.1999.0374. DOI

Houston AI, Székely T, McNamara JM. The parental investment models of Maynard Smith: A retrospective and prospective view. Anim. Behav. 2013;86:667–674. doi: 10.1016/j.anbehav.2013.08.001. DOI

Zann RA. Reproduction in a zebra finch colony in south-eastern Australia: The significance of monogamy, precocial breeding and multiple broods in a highly mobile species. Emu. 1994;94:285–299. doi: 10.1071/MU9940285. DOI

Fowler GS. Stages of age-related reproductive success in birds: Simultaneous effects of age, pair-bond duration and reproductive experience. Am. Zool. 1995;35:318–328. doi: 10.1093/icb/35.4.318. DOI

Champion de Crespigny FE, Hurst LD, Wedell N. Do Wolbachia-associated incompatibilities promote polyandry? Evolution. 2007;62:107–122. doi: 10.1111/j.1558-5646.2007.00274.x. PubMed DOI

Schwensow N, Eberle M, Sommer S. Compatibility counts: MHC-associated mate choice in a wild promiscuous primate. Proc. R. Soc. B Biol. Sci. 2008;275:555–564. doi: 10.1098/rspb.2007.1433. PubMed DOI PMC

Fraga RM, Amat JA. Breeding biology of a Kentish plover (Charadrius alexandrinus) population in an inland saline lake. Ardeola. 1996;43:69–85.

Ferreira-Rodríguez N, Pombal MA. Predation pressure on the hatching of the Kentish plover (Charadrius alexandrinus) in clutch protection projects: A case study in north Portugal. Wildl. Res. 2018;45:55–63. doi: 10.1071/WR17122. DOI

Kubelka V, et al. Global pattern of nest predation is disrupted by climate change in shorebirds. Science. 2018;362:680–683. doi: 10.1126/science.aat8695. PubMed DOI

Greenwood PJ, Harvey PH. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Evol. Syst. 1982;13:1–21. doi: 10.1146/annurev.es.13.110182.000245. DOI

Sandercock BK, Lank DB, Lanctot RB, Kempenaers B, Cooke F. Ecological correlates of mate fidelity in two Arctic-breeding sandpipers. Can. J. Zool. 2000;78:1948–1958. doi: 10.1139/z00-146. DOI

Liu Y, Zhang Z. Research progress in avian dispersal behavior. Front. Biol. 2008;3:375. doi: 10.1007/s11515-008-0066-2. DOI

Végvári Z, et al. Sex-biased breeding dispersal is predicted by social environment in birds. Ecol. Evol. 2018;8:6483–6491. doi: 10.1002/ece3.4095. PubMed DOI PMC

Pearson WJ, Colwell MA. Effects of nest success and mate fidelity on breeding dispersal in a population of snowy plovers Charadrius nivosus. Bird Conserv. Int. 2013;24:342–353. doi: 10.1017/S0959270913000403. DOI

Lloyd P. Adult survival, dispersal and mate fidelity in the white-fronted plover Charadrius marginatus. Ibis. 2008;150:182–187. doi: 10.1111/j.1474-919X.2007.00739.x. DOI

McNamara JM, Forslund P. Divorce rates in birds: Predictions from an optimization model. Am. Nat. 1996;147:609–640. doi: 10.1086/285869. DOI

Székely, T., Kosztolányi, A. & Küpper, C. Practical guide for investigating breeding ecology of Kentish plover Charadrius alexandrinus. https://www.pennuti.net/wp-content/uploads/2010/08/KP_Field_Guide_v3.pdf (University of Bath, 2008).

Chamberlain, S. et al. rnoaa: “NOAA” Weather data from R. R package version 0.7. 0. 2017. https://cran.r-project. org/web/packages/rnoaa/ (2017).

Sparks AH, Hengl T, Nelson A. GSODR: Global summary daily weather 800 data in R. J. Open Source Softw. 2017 doi: 10.21105/joss.00177. DOI

Dunning JB. CRC Handbook of Avian Body Masses. Boca Raton: CRC Press; 2008.

Grolemund G, Wickham H. Dates and times made easy with lubridate. J. Stat. Softw. 2011;40:25. doi: 10.18637/jss.v040.i03. DOI

Searle SR, Speed FM, Milliken GA. Population marginal means in the linear model: An alternative to least squares means. Am. Stat. 1980;34:216–221. doi: 10.1080/00031305.1980.10483031. DOI

Vincze O, et al. Parental cooperation in a changing climate: Fluctuating environments predict shifts in care division. Global Ecol. Biogeogr. 2017;26:347–358. doi: 10.1111/geb.12540. DOI

Hadfield JD. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 2010;33:1–22. doi: 10.18637/jss.v033.i02. PubMed DOI

R Core Team. R: A language and environment for statistical computing in R Foundation for Statistical Computing.https://www.R-project.org (2018).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...