When individuals breed more than once, parents are faced with the choice of whether to re-mate with their old partner or divorce and select a new mate. Evolutionary theory predicts that, following successful reproduction with a given partner, that partner should be retained for future reproduction. However, recent work in a polygamous bird, has instead indicated that successful parents divorced more often than failed breeders (Halimubieke et al. in Ecol Evol 9:10734-10745, 2019), because one parent can benefit by mating with a new partner and reproducing shortly after divorce. Here we investigate whether successful breeding predicts divorce using data from 14 well-monitored populations of plovers (Charadrius spp.). We show that successful nesting leads to divorce, whereas nest failure leads to retention of the mate for follow-up breeding. Plovers that divorced their partners and simultaneously deserted their broods produced more offspring within a season than parents that retained their mate. Our work provides a counterpoint to theoretical expectations that divorce is triggered by low reproductive success, and supports adaptive explanations of divorce as a strategy to improve individual reproductive success. In addition, we show that temperature may modulate these costs and benefits, and contribute to dynamic variation in patterns of divorce across plover breeding systems.
- MeSH
- biologická evoluce * MeSH
- Charadriiformes fyziologie MeSH
- chov MeSH
- párová vazba MeSH
- rozmnožování fyziologie MeSH
- rozvod MeSH
- sexuální chování zvířat fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In birds, incubation by both parents is a common form of care for eggs. Although the involvement of the two parents may vary dramatically between and within pairs, as well as over the course of the day and breeding season, detailed descriptions of this variation are rare, especially in species with variable male contributions to care. Here, we continuously video-monitored 113 nests of Northern Lapwings Vanellus vanellus to reveal the diversity of incubation rhythms and parental involvement, as well as their daily and seasonal variation. We found great between-nest variation in the overall nest attendance (68-94%; median = 87%) and in how much males attended their nests (0-37%; median = 13%). Notably, the less the males attended their nests, the lower was the overall nest attendance, even though females partially compensated for the males' decrease. Also, despite seasonal environmental trends (e.g. increasing temperature), incubation rhythms changed little over the season and 27-day incubation period. However, as nights shortened with the progressing breeding season, the longest night incubation bout of females shortened too. Importantly, within the 24h-day, nest attendance was highest, incubation bouts longest, exchange gaps shortest and male involvement lowest during the night. Moreover, just after sunrise and before sunset males attended the nest the most. To conclude, we confirm substantial between nest differences in Lapwing male nest attendance, reveal how such differences relates to variation in incubation rhythms, and describe strong circadian incubation rhythms modulated by sunrise and sunset.
- MeSH
- audiovizuální záznam MeSH
- biologická variabilita populace * MeSH
- Charadriiformes fyziologie MeSH
- cirkadiánní rytmus fyziologie MeSH
- fotoperioda MeSH
- hnízdění fyziologie MeSH
- roční období MeSH
- sexuální faktory MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Animals, including birds, have to optimize their escape strategies under the risk of predation. Level of risk-taking is often estimated as flight initiation distance (FID), which is assumed to reflect the trade-off between costs of escape and benefits of staying put. Despite costs and benefits of escape may change during the season, previous studies have focused mainly on breeding bird populations. Here, we focused on risk taking in migratory and resident populations of waders (Charadriiformes) at the wintering grounds in tropical Africa. Phylogenetically informed comparative analyses revealed significant correlation between starting distance, body mass and, marginally, reproductive effort and FID, but no correlation between flock size and FID in wintering waders. Interestingly, despite no differences in body mass, reproductive effort and flock size, FID significantly differed between migratory and resident wader species after controlling for the potential effect of confounding variables, with FID being shorter in resident species. This suggests that such differences in risk perception are linked to some other factors as, for instance, the level of familiarity of waders with local environments at their wintering grounds and previous experience with humans. Our results may have also implications for avian conservation of migratory species at wintering grounds.
- MeSH
- Charadriiformes fyziologie MeSH
- fylogeneze MeSH
- migrace zvířat fyziologie MeSH
- predátorské chování MeSH
- riskování * MeSH
- roční období * MeSH
- rozmnožování fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The relative investment of females and males into parental care might depend on the population's adult sex-ratio. For example, all else being equal, males should be the more caring sex if the sex-ratio is male biased. Whether such outcomes are evolutionary fixed (i.e. related to the species' typical sex-ratio) or whether they arise through flexible responses of individuals to the current population sex-ratio remains unclear. Nevertheless, a flexible response might be limited by the evolutionary history of the species, because one sex may have lost the ability to care or because a single parent cannot successfully raise the brood. Here, we demonstrate that after the disappearance of one parent, individuals from 8 out of 15 biparentally incubating shorebird species were able to incubate uniparentally for 1-19 days (median = 3, N = 69). Moreover, their daily incubation rhythm often resembled that of obligatory uniparental shorebird species. Although it has been suggested that in some biparental shorebirds females desert their brood after hatching, we found both sexes incubating uniparentally. Strikingly, in 27% of uniparentally incubated clutches - from 5 species - we documented successful hatching. Our data thus reveal the potential for a flexible switch from biparental to uniparental care.
- MeSH
- Charadriiformes fyziologie MeSH
- druhová specificita MeSH
- hnízdění fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Marine organisms adapt to complex temporal environments that include daily, tidal, semi-lunar, lunar and seasonal cycles. However, our understanding of marine biological rhythms and their underlying molecular basis is mainly confined to a few model organisms in rather simplistic laboratory settings. Here, we use new empirical data and recent examples of marine biorhythms to highlight how field ecologists and laboratory chronobiologists can complement each other's efforts. First, with continuous tracking of intertidal shorebirds in the field, we reveal individual differences in tidal and circadian foraging rhythms. Second, we demonstrate that shorebird species that spend 8-10 months in tidal environments rarely maintain such tidal or circadian rhythms during breeding, likely because of other, more pertinent, temporally structured, local ecological pressures such as predation or social environment. Finally, we use examples of initial findings from invertebrates (arthropods and polychaete worms) that are being developed as model species to study the molecular bases of lunar-related rhythms. These examples indicate that canonical circadian clock genes (i.e. the homologous clock genes identified in many higher organisms) may not be involved in lunar/tidal phenotypes. Together, our results and the examples we describe emphasize that linking field and laboratory studies is likely to generate a better ecological appreciation of lunar-related rhythms in the wild.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
- MeSH
- Charadriiformes fyziologie MeSH
- cirkadiánní hodiny * MeSH
- cirkadiánní rytmus * MeSH
- cizopasní červi fyziologie MeSH
- členovci fyziologie MeSH
- vodní organismy fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Incubation is an energetically demanding process during which birds apply heat to their eggs to ensure embryonic development. Parent behaviours such as egg turning and exchanging the outer and central eggs in the nest cup affect the amount of heat lost to the environment from individual eggs. Little is known, however, about whether and how egg surface temperature and cooling rates vary among the different areas of an egg and how the arrangement of eggs within the clutch influences heat loss. We performed laboratory (using Japanese quail eggs) and field (with northern lapwing eggs) experiments using infrared imaging to assess the temperature and cooling patterns of heated eggs and clutches. We found that (i) the sharp poles of individual quail eggs warmed to a higher egg surface temperature than did the blunt poles, resulting in faster cooling at the sharp poles compared to the blunt poles; (ii) both quail and lapwing clutches with the sharp poles oriented towards the clutch centre (arranged clutches) maintained higher temperatures over the central part of the clutch than occurred in those clutches where most of the sharp egg poles were oriented towards the exterior (scattered clutches); and (iii) the arranged clutches of both quail and lapwing showed slower cooling rates at both the inner and outer clutch positions than did the respective parts of scattered clutches. Our results demonstrate that egg surface temperature and cooling rates differ between the sharp and blunt poles of the egg and that the orientation of individual eggs within the nest cup can significantly affect cooling of the clutch as a whole. We suggest that birds can arrange their eggs within the nest cup to optimise thermoregulation of the clutch.
- MeSH
- biologické modely MeSH
- Charadriiformes fyziologie MeSH
- Coturnix fyziologie MeSH
- hnízdění fyziologie MeSH
- povrchové vlastnosti MeSH
- teplota * MeSH
- vaječná skořápka fyziologie MeSH
- vejce * MeSH
- velikost snůšky MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH