A new look at 9-substituted acridines with various biological activities
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
32969520
DOI
10.1002/jat.4072
Knihovny.cz E-zdroje
- Klíčová slova
- 9-substituted acridine, antibacterial, anticancer, antimalarial, topoisomerase II inhibition activity,
- MeSH
- akridiny chemie farmakologie toxicita MeSH
- antibakteriální látky chemie farmakologie toxicita MeSH
- antimalarika chemie farmakologie toxicita MeSH
- inhibitory topoisomerasy II chemie farmakologie toxicita MeSH
- lidé MeSH
- nádorové buňky kultivované účinky léků MeSH
- protinádorové látky chemie farmakologie toxicita MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- akridiny MeSH
- antibakteriální látky MeSH
- antimalarika MeSH
- inhibitory topoisomerasy II MeSH
- protinádorové látky MeSH
Heterocycles have long been the focus of intensive study in attempts to develop novel therapeutic compounds, and acridine, a polynuclear nitrogen molecule containing a heterocycle, has attracted a considerable amount of scientific attention. Acridine derivatives have been studied in detail and have been found to possess multitarget properties, which inhibit topoisomerase enzymes that regulate topological changes in DNA and interfere with the essential biological function of DNA. This article describes some recent advancements in the field of new 9-substituted acridine heterocyclic agents and describes both the structure and the structure-activity relationship of the most promising molecules. The article will also present the IC50 values of the novel derivatives against various human cancer cell lines. The mini review also investigates the topoisomerase inhibition and antibacterial and antimalarial activity of these polycyclic aromatic derivatives.
Zobrazit více v PubMed
Acheson, R. M. (1973). Acridines (2nd ed.) (pp. 789-814). New York - London - Sydney -Toronto: Interscience Publishers, John Wiley & Sons, The Antibacterial Action of Acridines.
Agili, F. A. (2018). Synthesis, antioxidant and antitumor activity of some substituted 9-anilinoacridine and 4-anilinoquinolines derivatives. Current Organic Synthesis, 15(6), 846-852. https://doi.org/10.2174/1570179415666180521120531
Albert, A. (1966). The Acridines (2nd ed.). London: Edward Arnold Publishers Ltd.
Anderson, M. O., Sherrill, J., Madrid, P. B., Liou, A. P., Weisman, J. L., Joseph, L., … Guya, K. (2006). Parallel synthesis of 9-aminoacridines and their evaluation against chloroquine-resistant Plasmodium falciparum. Bioorganic & Medicinal Chemistry, 14, 334-343. https://doi.org/10.1016/j.bmc.2005.08.017
Auparakkitanon, S., Noonpakdee, W., Ralph, R. K., Denny, W. A., & Wilairat, P. (2003). Antimalarial 9-anilinoacridine compounds directed at hematin. Antimicrobial Agents and Chemotherapy, 47(12), 3708-3712. https://doi.org/10.1128/aac.47.12.3708-3712.2003
Auparakkitanon, S., & Wilairat, P. (2000). Cleavage of DNA induced by 9-anilinoacridine inhibitors of topoisomerase II in the malaria parasite Plasmodium falciparum. Biochemical and Biophysical Research Communications, 269(2), 406-409. https://doi.org/10.1006/bbrc.2000.2305
Bacherikov, V. A. (2014). 9-anilinoacridines as anticancer drugs. Bulletin of Dnipropetrovsk University. Series Chemistry, 22, 1-20. https://doi.org/10.15421/081416
Barot, K. P., Nikolova, S., Ivanov, I., & Ghate, M. D. (2013). Novel anticancer agents and targets: Recent advances and future perspectives. Mini-Reviews in Medicinal Chemistry, 13, 1239-1255. https://doi.org/10.2174/13895575113139990061
Belmont, P., Bosson, J., Godet, T., & Tiano, M. (2007). Acridine and acridone derivatives, anticancer properties and synthetic methods: Where are we now? Anticancer Agents in Medicinal Chemistry, 7(2), 139-169. https://doi.org/10.2174/187152007780058669
Belmont, P., & Dorange, I. (2008). Acridine/acridone: A simple scaffold with a wide range of application in oncology. Expert Opinion on Therapeutic Patents, 18(11), 1211-1224. https://doi.org/10.1517/13543776.18.11.1211
Chen, K. M., Sun, Y. W., Tang, Y. W., Sun, Z. Y., & Kwon, C. H. (2005). Synthesis and antitumor activity of sulfur-containing 9-anilinoacridines. Molecular Pharmaceutical, 2, 118-128. https://doi.org/10.1021/mp049913g
Chen, R., Huo, L., Jaiswal, Y., Huang, J., Zhong, Z., Zhong, J., … Yan, Z. (2019). Design, synthesis, antimicrobial, and anticancer activities of acridine thiosemicarbazides derivatives molecule. Molecules, 24, 2065-2080. https://doi.org/10.3390/molecules24112065
Cholewinski, G., Dzierzbicka, K., & Kolodziejczyk, A. M. (2011). Natural and synthetic acridines/acridones as antitumor agents: Their biological activities and methods of synthesis. Pharmacological Reports, 63, 305-336. https://doi.org/10.1016/s1734-1140(11)70499-6
Chou, A. C., & Fitch, C. D. (1980). Hemolysis of mouse erythrocytes by ferriprotoporphyrin IX and chloroquine. Chemotherapeutic implications. Journal of Clinical Investigation, 66, 856-858. https://doi.org/10.1172/JCI109925
Chou, A. C., & Fitch, C. D. (1981). Mechanism of hemolysis induced by ferriprotoporphyrin IX. Journal of Clinical Investigation, 68, 672-677. https://doi.org/10.1172/jci110302
Demeunynck, M., Charmantray, F., & Martelli, A. (2001). Interest of acridine derivatives in the anticancer chemotherapy. Current Pharmaceutical Design, 7(17), 1703-1724. https://doi.org/10.2174/1381612013397131
El Khabery, S., El-Bahnsawye, M. A., El-Gokha, A. A. A., Salama, A. A., & El-Tantawy El Sayed, I. (2018). Synthesis and antiproliferative activity of novel acridine-biotin conjugates. International Journal of Pharmaceutical Science and Research, 3(1), 18-23.
Frese, K. K., & Tuveson, D. A. (2007). Maximizing mouse cancer models. Nature Reviews Cancer, 7(9), 645-658. https://doi.org/10.1038/nrc2192
Froelich-Ammon, S. J., & Osheroff, N. (1995). Topoisomerase poisons: Harnessing the dark side of enzyme mechanism. Journal of Biological Chemistry, 270, 21429-21432. https://doi.org/10.1074/jbc.270.37.21429
Galdino-Pitta, M. R., Pitta, M. G. R., Lima, M. C. A., Galdino, S. L., & Pitta, I. R. (2013). Niche for acridine derivatives in anticancer therapy. Mini-Reviews in Medicinal Chemistry, 13, 1256-1271. https://doi.org/10.2174/1389557511313090002
Gao, C., Li, B., Zhang, B., Sun, Q., Li, L., Chen, C., … Jiang, Y. (2015). Synthesis and biological evaluation of benzimidazole acridine derivatives as potential DNA-binding and apoptosis-inducing agents. Bioorganic & Medicinal Chemistry, 23, 1800-1807. https://doi.org/10.1016/j.bmc.2015.02.036
Goodell, J. R., Ougolkov, A. V., Hiasa, H., Kaur, H., Remmel, R., Billadeau, D. D., & Ferguson, D. M. (2008). Acridine-based agents with topoisomerase II activity inhibit pancreatic cancer cell proliferation and induce apoptosis. Journal of Medicinal Chemistry, 51(2), 179-182. https://doi.org/10.1021/jm701228e
Gurova, K. (2009). New hopes from old drugs: Revisiting DNA-binding small molecules as anticancer agents. Future Oncology, 5(10), 1685-1704. https://doi.org/10.2217/fon.09.127
Habeeb Unnisa Begum Nagma Fathima, Tasleem. (2018). Acridine derivatives and their pharmacology. International Journal of Pharmacy & Pharmaceutical Research, 11(2), 269-283.
Haider, M. R., Ahmad, K., Siddiqui, N., Ali, Z., Akhtar, M. J., Fuloria, N., … Yar, M. S. (2019). Novel 9-(2-(1-arylethylidene)hydrazinyl)acridine derivatives: target topoisomerase 1 and growth inhibition of HeLa cancer cells. Bioorganic Chemistry, 88, 102962. https://doi.org/10.1016/j.bioorg.2019.102962
Hamzi, A. H., Amine, A., Guenoun, F., Moukrad, N., Rhazi, F. F., & Chebaibi, A. (2013). Synthesis and antibacterial studies of a series of 9-aminoacridine derivatives. Physical and Chemical News, 70, 78-83.
Hartmann, J. T., & Lipp, H.-P. (2006). Camptothecin and podophyllotoxin derivatives: inhibitors of topoisomerase I and II-Mechanisms of action, pharmacokinetics and toxicity profile. Drug Safety, 29(3), 209-230. https://doi.org/10.2165/00002018-200629030-00005
Ismail, N. A., Salman, A. A., Yusof, M. S., Soh, S. K. C., Ali, H. M., & Sarip, R. (2018). The synthesis of a novel anticancer compound, N-(3,5 dimethoxyphenyl) acridin-9-amine and evaluation of its toxicity. Open Chemistry Journal., 5, 32-43. https://doi.org/10.2174/1874842201805010032
Ježek, J., Hlaváček, J., & Šebestík, J. (2017). Biomedical application of acridines. Progress in Drug Research 72. AG Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-63953-6
Jiang, B., Wang, X., Li, M. Y., Wu, Q., Ye, Q., Xu, H. W., & Tu, S. J. (2012). A domino synthetic strategy leading to two-carbon-tethered fused acridine/indole pairs and fused acridine derivatives. Organic & Biomolecular Chemistry, 10(42), 8533-8538. https://doi.org/10.1039/c2ob26315g
Kalirajan, R., Kulshrestha, V., & Sankar, S. (2018). Synthesis, characterization and antitumour activity of some novel oxazine substituted 9-anilinoacridines and their 3D-QSAR studies. Indian Journal of Pharmaceutical Sciences, 80(5), 921-929.
Kalirajan, R., Pandiselvi, M., Sankar, S., & Gowramma, B. (2018). Molecular docking studies and Insilico ADMET screening of some novel chalcone substituted 9-anilinoacridines as topoisomerase II inhibitors. SF Journal of Pharmaceutical and Analytical Chemistry, 1(1), 1004.
Kerton, A. C., Denny, W. A., Graves, D. E., & Osheroff, N. (2012). Amsacrine as a topoisomerase II poison: Importance of drug-DNA interactions. Biochemistry, 51(8), 1730-1739. https://doi.org/10.1021/bi201159b
Kožurková, M., Kristian, P., Sabolová, D., & Danihel, I. (2014). In P. Kristian (Ed.), Acridine isothiocyanates: Chemistry and biology. Saarbrücken: Lampert Academic Publishing. ISBN 9783659245022.
Kožurková, M., Sabolová, D., & Kristian, P. (2017). A review on acridinyl-thioureas and its derivatives: Biological and cytotoxic activity. Journal of Applied Toxicology, 37(10), 1132-1139. https://doi.org/10.1002/jat.3464
Kudryavtseva, T. N., Bogatyrev, K. V., Sysoev, P. I., & Klimova, L. G. (2019). Synthesis and antibacterial activity of new N9-substituted acridine-9-amines. Russian Journal of General Chemistry, 89(1), 157-159. https://doi.org/10.1134/S1070363219010298
Kudryavtseva, T. N., Lamanov, A. Y., Klimova, L. G., & Nazarov, G. V. (2018). Synthesis and antibacterial activity of 9-oxo-9,10-dihydroacridinecarboxylic acids esters bearing a triazole fragment. Russian Journal of General Chemistry, 88(4), 676-681. https://doi.org/10.1134/S1070363218040102
Kudryavtseva, T. N., Sysoev, P. I., Popkov, S. V., & Klimova, L. G. (2017). Synthesis and antimicrobial activity of 10-(5-arylamino-1,3,4-oxadiazol-2-ylmethyl)acridin-9(10H)-ones. Russian Journal of General Chemistry, 87(8), 1702-1706. https://doi.org/10.1134/S1070363217080102
Kumar, P., Kumar, R., & Prasad, D. N. (2013). Synthesis and anticancer study of 9-aminoacridine derivatives. Arabian Journal of Chemistry, 6, 79-85. https://doi.org/10.1016/j.arabjc.2012.04.039
Kumar, P., Kumar, R., & Prasad, D. N. (2013a). Synthesis and biological evaluation of new 9-aminoacridine-4-carboxamide derivatives as anticancer agents. Arabian Journal of Chemistry, 6, 59-65. https://doi.org/10.1016/j.arabjc.2011.03.003
Kumar, R., Sharma, A., Sharma, S., Silakari, O., Singh, M., & Kaur, M. (2017). Synthesis, characterization and antitumor activity of 2-methyl-9-substituted acridines. Arabian Journal of Chemistry, 10, S956-S963. https://doi.org/10.1016/j.arabjc.2012.12.035
Kumar, S., Bajaj, S., & Bodla, R. B. (2016). Preclinical screening methods in cancer. Indian Journal of Pharmacology, 48(5), 481-486. https://doi.org/10.4103/0253-7613.190716
Kumar, S., Guha, M., Choubey, V., Maity, P., & Bndyopadhyay, U. (2007). Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: A mechanistic update. Life Sciences, 80(9), 813-828. https://doi.org/10.1016/j.lfs.2006.11.008
Lang, X., Li, L., Chen, Y., Sun, Q., Wua, Q., Liu, F., … Jiang, Y. (2013). Novel synthetic acridine derivatives as potent DNA-binding and apoptosis-inducing antitumor agents. Bioorganic & Medicinal Chemistry, 21, 4170-4177. https://doi.org/10.1016/j.bmc.2013.05.008
Li, B., Gao, C.-M., Sun, Q.-S., Li, L.-L., Tan, C.-Y., Liu, H.-X., & Jiang, Y.-Y. (2014). Novel synthetic acridine-based derivatives as topoisomerase I inhibitors. Chinese Chemical Letters, 25, 1021-1024. https://doi.org/10.1016/j.cclet.2014.03.028
Li, T. K., & Liu, L. F. (2001). Tumor cell death induced by topoisomerase-targeting drugs. Annual Review of Pharmacology and Toxicology, 41, 53-77. https://doi.org/10.1146/annurev.pharmtox.41.1.53
Liu, C., Jiang, Z., Zhang, Y., Wang, Z., Zhang, X., Feng, F., & Wang, S. (2007). Intercalation interactions between dsDNA and acridine studied by single molecule force spectroscopy. Langmuir, 23, 9140-9142. https://doi.org/10.1021/la7013804
Lyakhov, S. A., Suveyzdis, L. A., Litvinova, Y. I., Rybalko, S. I., & Dyadyun, S. I. (2000). Biological active acridine derivatives. Part 4: Synthesis and antiviral activity of some bis-acridinylated diamides. Pharmazie, 55(10), 733-736.
Mazagova, D., Sabolova, D., Kristian, P., Imrich, J., Antalik, M., & Podhradsky, D. (1994). Fluorescence reagents for labelling of biomolecules. Collection Czechoslovak Chemical Communication, 59, 2003-2012.
de Mela Rego, M. J. B., de Sena, W. L. B., Moura, R. O., Jacob, I. T. T., … da Rocha Pitta (2017). Synthessis and anticancer evaluation of thiazacridine derivatives reveals new selective molecules to hematopoietic neoplastic cells. Combinatorial Chemistry & High Throughput Screening, 20, 1-6. https://doi.org/10.2174/1386207320666170602091308
Omodeo-Sale, F., Motti, A., Dondorp, A., White, N. J., & Taramelli, D. (2005). Destabilisation and subsequent lysis of human erythrocytes induced by Plasmodium falciparum haem products. European Journal of Haematology, 74, 324-332. https://doi.org/10.1111/j.1600-0609.2004.00352.x
Oppegard, L. M., Ougolkov, A. V., Luchini, D. N., Schoon, R. A., Goodell, J. R., Kaur, H., … Hiasa, H. (2009). Novel acridine-based compounds that exhibit an anti-pancreatic cancer activity are catalytic inhibitors of human topoisomerase II. European Journal of Pharmacology, 602, 223-229. https://doi.org/10.1016/j.ejphar.2008.11.044
Park, S. K., Kang, H., & Kwon, C. H. (2008). Caspase-dependent cell death mediates potent cytotoxicity of sulfide derivatives of 9-anilino-acridine. Anti-Cancer Drugs, 19, 381-389. https://doi.org/10.1097/CAD.0b013e3282f9adb2
Pérez, B., Teixeira, C., Gomes, A. S., Albuquerque, I. S., Gut, J., Rosenthal, P. J., … Gomesa, P. (2013). In vitro efficiency of 9-(N-cinnamoylbutyl)aminoacridines against blood- and liver-stage malaria parasites. Bioorganic & Medicinal Chemistry Letters, 23(3), 610-613. https://doi.org/10.1016/j.bmcl.2012.12.032
Prajapati, S. P., Kaushik, N. K., Zaveri, M., Mohanakrishanan, D., Kawathekar, N., & Sahal, D. (2017). Synthesis, characterization and antimalarial evaluation of new β-benzoylstyrene derivatives of acridine. Arabian Journal of Chemistry, 10, S274-S280. https://doi.org/10.1016/j.arabjc.2012.07.033
Prasher, P., & Sharma, M. (2018). Medicinal chemistry of acridine and its analogues. Medicinal Chemistry Communications, 9(10), 1589-1618. https://doi.org/10.1039/c8md00384j
Rupar, J. S., Dobričić, V. D., Aleksić, M. M., Brborić, J. S., & Čudina, O. A. (2018). A review of published data on acridine derivatives with different biological activities. Kragujevac Journal of Science, 40, 83-101. https://doi.org/10.5937/KgJSci1840083R
Sabolová, D., Kristian, P., & Kožurková, M. (2018). Multifunctional properties of novel tacrine congeners: Cholinesterase inhibition and cytotoxic activity. Journal of Applied Toxicology, 11, 1377-1387. https://doi.org/10.1002/jat.3622
Sabolová, D., Kristian, P., & Kožurková, M. (2020). Proflavine/acriflavine derivatives with versatile biological activities. Journal of Applied Toxicology, 40, 64-71. https://doi.org/10.1002/jat.3818
Salem, O., Vilkova, M., Janočková, J., Jendželovský, R., Fedoročko, P., Žilecká, E., & Kožurkova, M. (2016). New spiro tria (thia)zolidine-acridines as topoisomerase inhibitors, DNA binders and cytostatic compounds. International Journal of Biological Macromolecules, 86, 690-700. https://doi.org/10.1016/j.ijbiomac.2016.02.018
Salem, O., Vilkova, M., Plsikova, J., Grolmusova, A., Burikova, M., Prokaiova, M., … Kožurkova, M. (2015). DNA binding, anti-tumour activity and reactivity toward cell thiols ofacridin-9-ylalkenoic derivatives. Journal of Chemical Sciences, 127, 931-940. https://doi.org/10.1007/s12039-015-0851-9
Sing, N. P., Kumar, R., Prasad, D. N., Sharma, S., & Silakari, O. (2011). Synthesis and antibacterial activity of benzotriazole substituted acridines. International Journal of Biological Macromolecules, 5(3), 193-199. https://doi.org/10.3923/ijbc.2011.193.199
Sondhi, S. M., Singh, J., Rani, R., Gupta, P. P., Agrawal, S. K., & Saxena, A. K. (2010). Synthesis, anti-inflammatory and anticancer activity evaluation of some novel acridine derivatives. European Journal of Medicinal Chemistry, 45, 555-563. https://dx.doi.org/10.1016/j.ejmech.2009.10.042
Songbuer Li M, & Imerhasa, M (2018). Synthesis and application of acridine derivatives. Chinese Journal of Organic Chemistry, 38(3), 594-611. https://doi.org/10.6023/cjoc201710007
Su, T. L., Lin, Y. W., Chou, T. C., Zhang, X., Bacherikov, V. A., Chen Ch, H., … Tsai, T. J. (2006). Potent antitumor 9-anilinoacridines and acridines bearing an alkylating N-mustard residue on the acridine chromophore: synthesis and biological activity. Journal of Medicinal Chemistry, 49, 3710-3718. https://doi.org/10.1021/jm060197r
Sun, Y. W., Chen, K. Y., Kwon, C. H., & Chen, K. M. (2016). CK0403, a 9-aminoacridine, is a potent anti-cancer agentin human breast cancer cells. Molecular Medicine Reports, 13, 933-938. https://doi.org/10.3892/mmr.2015.4604
Suveyzdis, Y. A., Lyakhov, S. A., Litvinova, L. A., Rybalko, S. I., & Dyadyun, S. T. (2000). Antiviral activity of acridinylaminoalcohols and acridinylaminoacid esters. Pharmaceutical Chemistry Journal, 34(10), 528-529. https://doi.org/10.1023/A:1010303112897
Tot, M., Opsenica, D. M., Mitrić, M., Burnett, J. C., Gomba, L., Bavari, S., … Šolaja, B. A. (2013). New 9-aminoacridine derivatives as inhibitors of botulinum neurotoxins and P. falciparum malaria. Journal of Serbian Chemical Society, 78(12), 1847-1864. https://doi.org/10.2298/JSC130924112T
Valdes, A. F.-C. (2011). Aciridne and acridone: Old and new structures with antimalarial activity. The Open Medicinal Chemistry Journal, 5, 11-20. https://doi.org/10.2174/1874104501105010011
Walker, J. V., & Nitiss, J. L. (2002). DNA topoisomerase II as a target for cancer chemotherapy. Cancer Investigation, 20, 570-589. https://doi.org/10.1081/cnv-120002156
Zhang, B., Li, X., Li, B., Gao, C., & Jiang, Y. (2014). Acridine and its derivatives: a patent review (2009-2013). Expert Opinion on Therapeutic Patents, 24, 647-664. https://doi.org/10.1517/13543776.2014.902052
Zhitkovich, A., & Costa, M. (1992). A simple, sensitive assay to detect DNA-protein cromlinks in intact cells and in vivo. Carcinogenesis, 13(8), 1485-1489. https://doi.org/10.1093/carcin/13.8.1485