A new look at 9-substituted acridines with various biological activities

. 2021 Jan ; 41 (1) : 175-189. [epub] 20200924

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32969520

Heterocycles have long been the focus of intensive study in attempts to develop novel therapeutic compounds, and acridine, a polynuclear nitrogen molecule containing a heterocycle, has attracted a considerable amount of scientific attention. Acridine derivatives have been studied in detail and have been found to possess multitarget properties, which inhibit topoisomerase enzymes that regulate topological changes in DNA and interfere with the essential biological function of DNA. This article describes some recent advancements in the field of new 9-substituted acridine heterocyclic agents and describes both the structure and the structure-activity relationship of the most promising molecules. The article will also present the IC50 values of the novel derivatives against various human cancer cell lines. The mini review also investigates the topoisomerase inhibition and antibacterial and antimalarial activity of these polycyclic aromatic derivatives.

Zobrazit více v PubMed

Acheson, R. M. (1973). Acridines (2nd ed.) (pp. 789-814). New York - London - Sydney -Toronto: Interscience Publishers, John Wiley & Sons, The Antibacterial Action of Acridines.

Agili, F. A. (2018). Synthesis, antioxidant and antitumor activity of some substituted 9-anilinoacridine and 4-anilinoquinolines derivatives. Current Organic Synthesis, 15(6), 846-852. https://doi.org/10.2174/1570179415666180521120531

Albert, A. (1966). The Acridines (2nd ed.). London: Edward Arnold Publishers Ltd.

Anderson, M. O., Sherrill, J., Madrid, P. B., Liou, A. P., Weisman, J. L., Joseph, L., … Guya, K. (2006). Parallel synthesis of 9-aminoacridines and their evaluation against chloroquine-resistant Plasmodium falciparum. Bioorganic & Medicinal Chemistry, 14, 334-343. https://doi.org/10.1016/j.bmc.2005.08.017

Auparakkitanon, S., Noonpakdee, W., Ralph, R. K., Denny, W. A., & Wilairat, P. (2003). Antimalarial 9-anilinoacridine compounds directed at hematin. Antimicrobial Agents and Chemotherapy, 47(12), 3708-3712. https://doi.org/10.1128/aac.47.12.3708-3712.2003

Auparakkitanon, S., & Wilairat, P. (2000). Cleavage of DNA induced by 9-anilinoacridine inhibitors of topoisomerase II in the malaria parasite Plasmodium falciparum. Biochemical and Biophysical Research Communications, 269(2), 406-409. https://doi.org/10.1006/bbrc.2000.2305

Bacherikov, V. A. (2014). 9-anilinoacridines as anticancer drugs. Bulletin of Dnipropetrovsk University. Series Chemistry, 22, 1-20. https://doi.org/10.15421/081416

Barot, K. P., Nikolova, S., Ivanov, I., & Ghate, M. D. (2013). Novel anticancer agents and targets: Recent advances and future perspectives. Mini-Reviews in Medicinal Chemistry, 13, 1239-1255. https://doi.org/10.2174/13895575113139990061

Belmont, P., Bosson, J., Godet, T., & Tiano, M. (2007). Acridine and acridone derivatives, anticancer properties and synthetic methods: Where are we now? Anticancer Agents in Medicinal Chemistry, 7(2), 139-169. https://doi.org/10.2174/187152007780058669

Belmont, P., & Dorange, I. (2008). Acridine/acridone: A simple scaffold with a wide range of application in oncology. Expert Opinion on Therapeutic Patents, 18(11), 1211-1224. https://doi.org/10.1517/13543776.18.11.1211

Chen, K. M., Sun, Y. W., Tang, Y. W., Sun, Z. Y., & Kwon, C. H. (2005). Synthesis and antitumor activity of sulfur-containing 9-anilinoacridines. Molecular Pharmaceutical, 2, 118-128. https://doi.org/10.1021/mp049913g

Chen, R., Huo, L., Jaiswal, Y., Huang, J., Zhong, Z., Zhong, J., … Yan, Z. (2019). Design, synthesis, antimicrobial, and anticancer activities of acridine thiosemicarbazides derivatives molecule. Molecules, 24, 2065-2080. https://doi.org/10.3390/molecules24112065

Cholewinski, G., Dzierzbicka, K., & Kolodziejczyk, A. M. (2011). Natural and synthetic acridines/acridones as antitumor agents: Their biological activities and methods of synthesis. Pharmacological Reports, 63, 305-336. https://doi.org/10.1016/s1734-1140(11)70499-6

Chou, A. C., & Fitch, C. D. (1980). Hemolysis of mouse erythrocytes by ferriprotoporphyrin IX and chloroquine. Chemotherapeutic implications. Journal of Clinical Investigation, 66, 856-858. https://doi.org/10.1172/JCI109925

Chou, A. C., & Fitch, C. D. (1981). Mechanism of hemolysis induced by ferriprotoporphyrin IX. Journal of Clinical Investigation, 68, 672-677. https://doi.org/10.1172/jci110302

Demeunynck, M., Charmantray, F., & Martelli, A. (2001). Interest of acridine derivatives in the anticancer chemotherapy. Current Pharmaceutical Design, 7(17), 1703-1724. https://doi.org/10.2174/1381612013397131

El Khabery, S., El-Bahnsawye, M. A., El-Gokha, A. A. A., Salama, A. A., & El-Tantawy El Sayed, I. (2018). Synthesis and antiproliferative activity of novel acridine-biotin conjugates. International Journal of Pharmaceutical Science and Research, 3(1), 18-23.

Frese, K. K., & Tuveson, D. A. (2007). Maximizing mouse cancer models. Nature Reviews Cancer, 7(9), 645-658. https://doi.org/10.1038/nrc2192

Froelich-Ammon, S. J., & Osheroff, N. (1995). Topoisomerase poisons: Harnessing the dark side of enzyme mechanism. Journal of Biological Chemistry, 270, 21429-21432. https://doi.org/10.1074/jbc.270.37.21429

Galdino-Pitta, M. R., Pitta, M. G. R., Lima, M. C. A., Galdino, S. L., & Pitta, I. R. (2013). Niche for acridine derivatives in anticancer therapy. Mini-Reviews in Medicinal Chemistry, 13, 1256-1271. https://doi.org/10.2174/1389557511313090002

Gao, C., Li, B., Zhang, B., Sun, Q., Li, L., Chen, C., … Jiang, Y. (2015). Synthesis and biological evaluation of benzimidazole acridine derivatives as potential DNA-binding and apoptosis-inducing agents. Bioorganic & Medicinal Chemistry, 23, 1800-1807. https://doi.org/10.1016/j.bmc.2015.02.036

Goodell, J. R., Ougolkov, A. V., Hiasa, H., Kaur, H., Remmel, R., Billadeau, D. D., & Ferguson, D. M. (2008). Acridine-based agents with topoisomerase II activity inhibit pancreatic cancer cell proliferation and induce apoptosis. Journal of Medicinal Chemistry, 51(2), 179-182. https://doi.org/10.1021/jm701228e

Gurova, K. (2009). New hopes from old drugs: Revisiting DNA-binding small molecules as anticancer agents. Future Oncology, 5(10), 1685-1704. https://doi.org/10.2217/fon.09.127

Habeeb Unnisa Begum Nagma Fathima, Tasleem. (2018). Acridine derivatives and their pharmacology. International Journal of Pharmacy & Pharmaceutical Research, 11(2), 269-283.

Haider, M. R., Ahmad, K., Siddiqui, N., Ali, Z., Akhtar, M. J., Fuloria, N., … Yar, M. S. (2019). Novel 9-(2-(1-arylethylidene)hydrazinyl)acridine derivatives: target topoisomerase 1 and growth inhibition of HeLa cancer cells. Bioorganic Chemistry, 88, 102962. https://doi.org/10.1016/j.bioorg.2019.102962

Hamzi, A. H., Amine, A., Guenoun, F., Moukrad, N., Rhazi, F. F., & Chebaibi, A. (2013). Synthesis and antibacterial studies of a series of 9-aminoacridine derivatives. Physical and Chemical News, 70, 78-83.

Hartmann, J. T., & Lipp, H.-P. (2006). Camptothecin and podophyllotoxin derivatives: inhibitors of topoisomerase I and II-Mechanisms of action, pharmacokinetics and toxicity profile. Drug Safety, 29(3), 209-230. https://doi.org/10.2165/00002018-200629030-00005

Ismail, N. A., Salman, A. A., Yusof, M. S., Soh, S. K. C., Ali, H. M., & Sarip, R. (2018). The synthesis of a novel anticancer compound, N-(3,5 dimethoxyphenyl) acridin-9-amine and evaluation of its toxicity. Open Chemistry Journal., 5, 32-43. https://doi.org/10.2174/1874842201805010032

Ježek, J., Hlaváček, J., & Šebestík, J. (2017). Biomedical application of acridines. Progress in Drug Research 72. AG Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-63953-6

Jiang, B., Wang, X., Li, M. Y., Wu, Q., Ye, Q., Xu, H. W., & Tu, S. J. (2012). A domino synthetic strategy leading to two-carbon-tethered fused acridine/indole pairs and fused acridine derivatives. Organic & Biomolecular Chemistry, 10(42), 8533-8538. https://doi.org/10.1039/c2ob26315g

Kalirajan, R., Kulshrestha, V., & Sankar, S. (2018). Synthesis, characterization and antitumour activity of some novel oxazine substituted 9-anilinoacridines and their 3D-QSAR studies. Indian Journal of Pharmaceutical Sciences, 80(5), 921-929.

Kalirajan, R., Pandiselvi, M., Sankar, S., & Gowramma, B. (2018). Molecular docking studies and Insilico ADMET screening of some novel chalcone substituted 9-anilinoacridines as topoisomerase II inhibitors. SF Journal of Pharmaceutical and Analytical Chemistry, 1(1), 1004.

Kerton, A. C., Denny, W. A., Graves, D. E., & Osheroff, N. (2012). Amsacrine as a topoisomerase II poison: Importance of drug-DNA interactions. Biochemistry, 51(8), 1730-1739. https://doi.org/10.1021/bi201159b

Kožurková, M., Kristian, P., Sabolová, D., & Danihel, I. (2014). In P. Kristian (Ed.), Acridine isothiocyanates: Chemistry and biology. Saarbrücken: Lampert Academic Publishing. ISBN 9783659245022.

Kožurková, M., Sabolová, D., & Kristian, P. (2017). A review on acridinyl-thioureas and its derivatives: Biological and cytotoxic activity. Journal of Applied Toxicology, 37(10), 1132-1139. https://doi.org/10.1002/jat.3464

Kudryavtseva, T. N., Bogatyrev, K. V., Sysoev, P. I., & Klimova, L. G. (2019). Synthesis and antibacterial activity of new N9-substituted acridine-9-amines. Russian Journal of General Chemistry, 89(1), 157-159. https://doi.org/10.1134/S1070363219010298

Kudryavtseva, T. N., Lamanov, A. Y., Klimova, L. G., & Nazarov, G. V. (2018). Synthesis and antibacterial activity of 9-oxo-9,10-dihydroacridinecarboxylic acids esters bearing a triazole fragment. Russian Journal of General Chemistry, 88(4), 676-681. https://doi.org/10.1134/S1070363218040102

Kudryavtseva, T. N., Sysoev, P. I., Popkov, S. V., & Klimova, L. G. (2017). Synthesis and antimicrobial activity of 10-(5-arylamino-1,3,4-oxadiazol-2-ylmethyl)acridin-9(10H)-ones. Russian Journal of General Chemistry, 87(8), 1702-1706. https://doi.org/10.1134/S1070363217080102

Kumar, P., Kumar, R., & Prasad, D. N. (2013). Synthesis and anticancer study of 9-aminoacridine derivatives. Arabian Journal of Chemistry, 6, 79-85. https://doi.org/10.1016/j.arabjc.2012.04.039

Kumar, P., Kumar, R., & Prasad, D. N. (2013a). Synthesis and biological evaluation of new 9-aminoacridine-4-carboxamide derivatives as anticancer agents. Arabian Journal of Chemistry, 6, 59-65. https://doi.org/10.1016/j.arabjc.2011.03.003

Kumar, R., Sharma, A., Sharma, S., Silakari, O., Singh, M., & Kaur, M. (2017). Synthesis, characterization and antitumor activity of 2-methyl-9-substituted acridines. Arabian Journal of Chemistry, 10, S956-S963. https://doi.org/10.1016/j.arabjc.2012.12.035

Kumar, S., Bajaj, S., & Bodla, R. B. (2016). Preclinical screening methods in cancer. Indian Journal of Pharmacology, 48(5), 481-486. https://doi.org/10.4103/0253-7613.190716

Kumar, S., Guha, M., Choubey, V., Maity, P., & Bndyopadhyay, U. (2007). Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: A mechanistic update. Life Sciences, 80(9), 813-828. https://doi.org/10.1016/j.lfs.2006.11.008

Lang, X., Li, L., Chen, Y., Sun, Q., Wua, Q., Liu, F., … Jiang, Y. (2013). Novel synthetic acridine derivatives as potent DNA-binding and apoptosis-inducing antitumor agents. Bioorganic & Medicinal Chemistry, 21, 4170-4177. https://doi.org/10.1016/j.bmc.2013.05.008

Li, B., Gao, C.-M., Sun, Q.-S., Li, L.-L., Tan, C.-Y., Liu, H.-X., & Jiang, Y.-Y. (2014). Novel synthetic acridine-based derivatives as topoisomerase I inhibitors. Chinese Chemical Letters, 25, 1021-1024. https://doi.org/10.1016/j.cclet.2014.03.028

Li, T. K., & Liu, L. F. (2001). Tumor cell death induced by topoisomerase-targeting drugs. Annual Review of Pharmacology and Toxicology, 41, 53-77. https://doi.org/10.1146/annurev.pharmtox.41.1.53

Liu, C., Jiang, Z., Zhang, Y., Wang, Z., Zhang, X., Feng, F., & Wang, S. (2007). Intercalation interactions between dsDNA and acridine studied by single molecule force spectroscopy. Langmuir, 23, 9140-9142. https://doi.org/10.1021/la7013804

Lyakhov, S. A., Suveyzdis, L. A., Litvinova, Y. I., Rybalko, S. I., & Dyadyun, S. I. (2000). Biological active acridine derivatives. Part 4: Synthesis and antiviral activity of some bis-acridinylated diamides. Pharmazie, 55(10), 733-736.

Mazagova, D., Sabolova, D., Kristian, P., Imrich, J., Antalik, M., & Podhradsky, D. (1994). Fluorescence reagents for labelling of biomolecules. Collection Czechoslovak Chemical Communication, 59, 2003-2012.

de Mela Rego, M. J. B., de Sena, W. L. B., Moura, R. O., Jacob, I. T. T., … da Rocha Pitta (2017). Synthessis and anticancer evaluation of thiazacridine derivatives reveals new selective molecules to hematopoietic neoplastic cells. Combinatorial Chemistry & High Throughput Screening, 20, 1-6. https://doi.org/10.2174/1386207320666170602091308

Omodeo-Sale, F., Motti, A., Dondorp, A., White, N. J., & Taramelli, D. (2005). Destabilisation and subsequent lysis of human erythrocytes induced by Plasmodium falciparum haem products. European Journal of Haematology, 74, 324-332. https://doi.org/10.1111/j.1600-0609.2004.00352.x

Oppegard, L. M., Ougolkov, A. V., Luchini, D. N., Schoon, R. A., Goodell, J. R., Kaur, H., … Hiasa, H. (2009). Novel acridine-based compounds that exhibit an anti-pancreatic cancer activity are catalytic inhibitors of human topoisomerase II. European Journal of Pharmacology, 602, 223-229. https://doi.org/10.1016/j.ejphar.2008.11.044

Park, S. K., Kang, H., & Kwon, C. H. (2008). Caspase-dependent cell death mediates potent cytotoxicity of sulfide derivatives of 9-anilino-acridine. Anti-Cancer Drugs, 19, 381-389. https://doi.org/10.1097/CAD.0b013e3282f9adb2

Pérez, B., Teixeira, C., Gomes, A. S., Albuquerque, I. S., Gut, J., Rosenthal, P. J., … Gomesa, P. (2013). In vitro efficiency of 9-(N-cinnamoylbutyl)aminoacridines against blood- and liver-stage malaria parasites. Bioorganic & Medicinal Chemistry Letters, 23(3), 610-613. https://doi.org/10.1016/j.bmcl.2012.12.032

Prajapati, S. P., Kaushik, N. K., Zaveri, M., Mohanakrishanan, D., Kawathekar, N., & Sahal, D. (2017). Synthesis, characterization and antimalarial evaluation of new β-benzoylstyrene derivatives of acridine. Arabian Journal of Chemistry, 10, S274-S280. https://doi.org/10.1016/j.arabjc.2012.07.033

Prasher, P., & Sharma, M. (2018). Medicinal chemistry of acridine and its analogues. Medicinal Chemistry Communications, 9(10), 1589-1618. https://doi.org/10.1039/c8md00384j

Rupar, J. S., Dobričić, V. D., Aleksić, M. M., Brborić, J. S., & Čudina, O. A. (2018). A review of published data on acridine derivatives with different biological activities. Kragujevac Journal of Science, 40, 83-101. https://doi.org/10.5937/KgJSci1840083R

Sabolová, D., Kristian, P., & Kožurková, M. (2018). Multifunctional properties of novel tacrine congeners: Cholinesterase inhibition and cytotoxic activity. Journal of Applied Toxicology, 11, 1377-1387. https://doi.org/10.1002/jat.3622

Sabolová, D., Kristian, P., & Kožurková, M. (2020). Proflavine/acriflavine derivatives with versatile biological activities. Journal of Applied Toxicology, 40, 64-71. https://doi.org/10.1002/jat.3818

Salem, O., Vilkova, M., Janočková, J., Jendželovský, R., Fedoročko, P., Žilecká, E., & Kožurkova, M. (2016). New spiro tria (thia)zolidine-acridines as topoisomerase inhibitors, DNA binders and cytostatic compounds. International Journal of Biological Macromolecules, 86, 690-700. https://doi.org/10.1016/j.ijbiomac.2016.02.018

Salem, O., Vilkova, M., Plsikova, J., Grolmusova, A., Burikova, M., Prokaiova, M., … Kožurkova, M. (2015). DNA binding, anti-tumour activity and reactivity toward cell thiols ofacridin-9-ylalkenoic derivatives. Journal of Chemical Sciences, 127, 931-940. https://doi.org/10.1007/s12039-015-0851-9

Sing, N. P., Kumar, R., Prasad, D. N., Sharma, S., & Silakari, O. (2011). Synthesis and antibacterial activity of benzotriazole substituted acridines. International Journal of Biological Macromolecules, 5(3), 193-199. https://doi.org/10.3923/ijbc.2011.193.199

Sondhi, S. M., Singh, J., Rani, R., Gupta, P. P., Agrawal, S. K., & Saxena, A. K. (2010). Synthesis, anti-inflammatory and anticancer activity evaluation of some novel acridine derivatives. European Journal of Medicinal Chemistry, 45, 555-563. https://dx.doi.org/10.1016/j.ejmech.2009.10.042

Songbuer Li M, & Imerhasa, M (2018). Synthesis and application of acridine derivatives. Chinese Journal of Organic Chemistry, 38(3), 594-611. https://doi.org/10.6023/cjoc201710007

Su, T. L., Lin, Y. W., Chou, T. C., Zhang, X., Bacherikov, V. A., Chen Ch, H., … Tsai, T. J. (2006). Potent antitumor 9-anilinoacridines and acridines bearing an alkylating N-mustard residue on the acridine chromophore: synthesis and biological activity. Journal of Medicinal Chemistry, 49, 3710-3718. https://doi.org/10.1021/jm060197r

Sun, Y. W., Chen, K. Y., Kwon, C. H., & Chen, K. M. (2016). CK0403, a 9-aminoacridine, is a potent anti-cancer agentin human breast cancer cells. Molecular Medicine Reports, 13, 933-938. https://doi.org/10.3892/mmr.2015.4604

Suveyzdis, Y. A., Lyakhov, S. A., Litvinova, L. A., Rybalko, S. I., & Dyadyun, S. T. (2000). Antiviral activity of acridinylaminoalcohols and acridinylaminoacid esters. Pharmaceutical Chemistry Journal, 34(10), 528-529. https://doi.org/10.1023/A:1010303112897

Tot, M., Opsenica, D. M., Mitrić, M., Burnett, J. C., Gomba, L., Bavari, S., … Šolaja, B. A. (2013). New 9-aminoacridine derivatives as inhibitors of botulinum neurotoxins and P. falciparum malaria. Journal of Serbian Chemical Society, 78(12), 1847-1864. https://doi.org/10.2298/JSC130924112T

Valdes, A. F.-C. (2011). Aciridne and acridone: Old and new structures with antimalarial activity. The Open Medicinal Chemistry Journal, 5, 11-20. https://doi.org/10.2174/1874104501105010011

Walker, J. V., & Nitiss, J. L. (2002). DNA topoisomerase II as a target for cancer chemotherapy. Cancer Investigation, 20, 570-589. https://doi.org/10.1081/cnv-120002156

Zhang, B., Li, X., Li, B., Gao, C., & Jiang, Y. (2014). Acridine and its derivatives: a patent review (2009-2013). Expert Opinion on Therapeutic Patents, 24, 647-664. https://doi.org/10.1517/13543776.2014.902052

Zhitkovich, A., & Costa, M. (1992). A simple, sensitive assay to detect DNA-protein cromlinks in intact cells and in vivo. Carcinogenesis, 13(8), 1485-1489. https://doi.org/10.1093/carcin/13.8.1485

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...