Defining the clinical, molecular and imaging spectrum of adaptor protein complex 4-associated hereditary spastic paraplegia
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
K23 NS117310
NINDS NIH HHS - United States
U54 HD090255
NICHD NIH HHS - United States
R01 NS106298
NINDS NIH HHS - United States
R25 NS070682
NINDS NIH HHS - United States
Wellcome Trust - United Kingdom
PubMed
32979048
PubMed Central
PMC7780481
DOI
10.1093/brain/awz307
PII: 5911261
Knihovny.cz E-zdroje
- Klíčová slova
- SPG47, SPG50, SPG51, SPG52, neurodegeneration,
- MeSH
- adaptorový proteinový komplex 4 genetika MeSH
- corpus callosum diagnostické zobrazování MeSH
- dítě MeSH
- dospělí MeSH
- kohortové studie MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody trendy MeSH
- mladiství MeSH
- mladý dospělý MeSH
- předškolní dítě MeSH
- průřezové studie MeSH
- registrace MeSH
- spastická paraplegie dědičná diagnostické zobrazování genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- adaptorový proteinový komplex 4 MeSH
Bi-allelic loss-of-function variants in genes that encode subunits of the adaptor protein complex 4 (AP-4) lead to prototypical yet poorly understood forms of childhood-onset and complex hereditary spastic paraplegia: SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). Here, we report a detailed cross-sectional analysis of clinical, imaging and molecular data of 156 patients from 101 families. Enrolled patients were of diverse ethnic backgrounds and covered a wide age range (1.0-49.3 years). While the mean age at symptom onset was 0.8 ± 0.6 years [standard deviation (SD), range 0.2-5.0], the mean age at diagnosis was 10.2 ± 8.5 years (SD, range 0.1-46.3). We define a set of core features: early-onset developmental delay with delayed motor milestones and significant speech delay (50% non-verbal); intellectual disability in the moderate to severe range; mild hypotonia in infancy followed by spastic diplegia (mean age: 8.4 ± 5.1 years, SD) and later tetraplegia (mean age: 16.1 ± 9.8 years, SD); postnatal microcephaly (83%); foot deformities (69%); and epilepsy (66%) that is intractable in a subset. At last follow-up, 36% ambulated with assistance (mean age: 8.9 ± 6.4 years, SD) and 54% were wheelchair-dependent (mean age: 13.4 ± 9.8 years, SD). Episodes of stereotypic laughing, possibly consistent with a pseudobulbar affect, were found in 56% of patients. Key features on neuroimaging include a thin corpus callosum (90%), ventriculomegaly (65%) often with colpocephaly, and periventricular white-matter signal abnormalities (68%). Iron deposition and polymicrogyria were found in a subset of patients. AP4B1-associated SPG47 and AP4M1-associated SPG50 accounted for the majority of cases. About two-thirds of patients were born to consanguineous parents, and 82% carried homozygous variants. Over 70 unique variants were present, the majority of which are frameshift or nonsense mutations. To track disease progression across the age spectrum, we defined the relationship between disease severity as measured by several rating scales and disease duration. We found that the presence of epilepsy, which manifested before the age of 3 years in the majority of patients, was associated with worse motor outcomes. Exploring genotype-phenotype correlations, we found that disease severity and major phenotypes were equally distributed among the four subtypes, establishing that SPG47, SPG50, SPG51 and SPG52 share a common phenotype, an 'AP-4 deficiency syndrome'. By delineating the core clinical, imaging, and molecular features of AP-4-associated hereditary spastic paraplegia across the age spectrum our results will facilitate early diagnosis, enable counselling and anticipatory guidance of affected families and help define endpoints for future interventional trials.
Amrita Institute of Medical Sciences and Research Centre Cochin India
Barrow Neurological Institute Phoenix Children's Hospital Phoenix AZ USA
Cambridge Institute for Medical Research University of Cambridge Cambridge UK
Center for Neurogenetics Weill Cornell Medical College New York NY USA
Child Neurology University of Rochester School of Medicine Rochester NY USA
CHU Lille Institut de Génétique Médicale RADEME Lille France
Clinical Genetics Human Genetics and Genome Research Division National Research Centre Cairo Egypt
Department of General Pediatrics University Children's Hospital Muenster Muenster Germany
Department of Molecular Neuroscience UCL Institute of Neurology London UK
Department of Neurology Boston Children's Hospital Harvard Medical School Boston MA USA
Department of Neurology Papageorgiou Hospital Thessaloniki Greece
Department of Neurology University Hospital Würzburg Würzburg Germany
Department of Neurology University of Texas Southwestern Medical Center Dallas TX USA
Department of Neurology University of Yamanashi Yamanashi Japan
Department of Neurology Washington University School of Medicine St Louis MO USA
Department of Pediatric Neurology Jaslok Hospital and Research Centre Mumbai India
Division of Child Neurology Weill Cornell Medicine New York City NY USA
Division of Genetic Medicine Department of Pediatrics University of Washington Seattle WA USA
Genetic Health Queensland Royal Brisbane and Women's Hospital Brisbane Australia
Grupo de Medicina Xenómica CIBERER Santiago de Compostela Spain
Institute of Human Genetics Friedrich Alexander Universität Erlangen Nürnberg Erlangen Germany
Institute of Human Genetics University Hospital Leipzig Leipzig Germany
Medical Genetics Centre Hospitalier Universitaire de Liège Liège Belgium
Molecular Medicine IRCCS Fondazione Stella Maris Pisa Italy
Neonatal Research Center Shiraz University of Medical Sciences Shiraz Iran
Neurología Pediátrica Complexo Hospitalario Universitario Santiago de Compostela Spain
Pediatric Genetics Department of Pediatrics Acibadem Mehmet Ali Aydinlar University Istanbul Turkey
Pediatric Medical Genetics Maria Fareri Children's Hospital Valhalla NY USA
Pediatric Neurology Cairo University Cairo Egypt
Pediatric Neurology CHU Montpellier Montpellier France
Pediatric Neurology Dr Sami Ulus Hospital Ankara Turkey
Pediatric Neurology Faculty of Medicine Sohag University Sohag Egypt
Pediatric Neurology Ghent University Hospital Ghent Belgium
Pediatric Neurology Istanbul Medical Faculty Istanbul Turkey
Pediatric Neurology Medanta Hospital Indore India
Pediatric Neurology National Neuroscience Institute King Fahad Medical City Riyadh Saudi Arabia
Pediatric Neurology Saarland University Medical Center Homburg Saar Germany
Pediatric Neurology Unit Department of Pediatrics UZ Brussel Brussels Belgium
Pediatrics Ain Shams University Cairo Egypt
Pediatrics Evangelisches Krankenhaus Oberhausen Oberhausen Germany
Pediatrics Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia
Persian BayanGene Research and Training Center Shiraz University of Medical Sciences Shiraz Iran
Rady Children's Institute for Genomic Medicine Rady Children's Hospital San Diego CA USA
Scientific Institute IRCCS E Medea Unità Operativa Conegliano Treviso Italy
Service de Neurologie Hôpitaux Universitaires de Strasbourg Strasbourg France
Serviço de Genética Médica Universidade Federal da Bahia Salvador Brazil
Sozialpädiatrisches Zentrum Hannover Hannover Germany
Translational Neuroscience Celgene Cambridge MA USA
Translational Neuroscience Center Boston Children's Hospital Harvard Medical School Boston MA USA
Zobrazit více v PubMed
Abou Jamra R, Philippe O, Raas-Rothschild A, Eck SH, Graf E, Buchert R, et al.Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am J Hum Genet 2011; 88: 788–95. PubMed PMC
Accogli A, Hamdan FF, Poulin C, Nassif C, Rouleau GA, Michaud JL, et al.A novel homozygous AP4B1 mutation in two brothers with AP-4 deficiency syndrome and ocular anomalies. Am J Med Genet A 2018; 176: 985–91. PubMed
Aguilar RC, Boehm M, Gorshkova I, Crouch RJ, Tomita K, Saito T, et al.Signal-binding specificity of the mu4 subunit of the adaptor protein complex AP-4. J Biol Chem 2001; 276: 13145–52. PubMed
Appleton RE, Gupta R. Cerebral palsy: not always what it seems. Arch Dis Child 2019; 104: 809–14. PubMed
Bax M, Tydeman C, Flodmark O. Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. JAMA 2006; 296: 1602–8. PubMed
Behne R, Teinert J, Wimmer M, D’Amore A, Davies AK, Scarrott JM, et al.Adaptor protein complex 4 deficiency: a paradigm of childhood-onset hereditary spastic paraplegia caused by defective protein trafficking. Hum Mol Genet 2020; 29: 320–34. PubMed PMC
Blackstone C. Hereditary spastic paraplegia. Handb Clin Neurol. 2018; 148: 633–52. PubMed
Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 1987; 67: 206–7. PubMed
Burgos PV, Mardones GA, Rojas AL, daSilva LL, Prabhu Y, Hurley JH, et al.Sorting of the Alzheimer's disease amyloid precursor protein mediated by the AP-4 complex. Dev Cell 2010; 18: 425–36. PubMed PMC
Chrestian N, Dupre N, Gan-Or Z, Szuto A, Chen S, Venkitachalam A, et al.Clinical and genetic study of hereditary spastic paraplegia in Canada. Neurol Genet 2017; 3: e122. PubMed PMC
da Graca FF, de Rezende TJR, Vasconcellos LFR, Pedroso JL, Barsottini OGP, Franca MC Jr.. Neuroimaging in hereditary spastic paraplegias: current use and future perspectives. Front Neurol 2018; 9: 1117. PubMed PMC
Ebrahimi-Fakhari D. Congenital disorders of autophagy: what a pediatric neurologist should know. Neuropediatrics 2018; 49: 18–25. PubMed
Ebrahimi-Fakhari D, Behne R, Davies AK, Hirst J. AP-4-associated hereditary spastic paraplegia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle (WA: ); 2018a. PubMed
Ebrahimi-Fakhari D, Cheng C, Dies K, Diplock A, Pier DB, Ryan CS, et al.Clinical and genetic characterization of AP4B1-associated SPG47. Am J Med Genet A 2018b; 176: 311–8. PubMed
Ebrahimi-Fakhari D, Saffari A, Wahlster L, Lu J, Byrne S, Hoffmann GF, et al.Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Brain 2016; 139: 317–37. PubMed PMC
Erichsen AK, Koht J, Stray-Pedersen A, Abdelnoor M, Tallaksen CM. Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a population-based study. Brain 2009; 132: 1577–88. PubMed
Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, et al.DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet 2009; 84: 524–33. PubMed PMC
Hardies K, May P, Djemie T, Tarta-Arsene O, Deconinck T, Craiu D, et al.Recessive loss-of-function mutations in AP4S1 cause mild fever-sensitive seizures, developmental delay and spastic paraplegia through loss of AP-4 complex assembly. Hum Mol Genet 2015; 24: 2218–27. PubMed PMC
Hirst J, Bright NA, Rous B, Robinson MS. Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 1999; 10: 2787–802. PubMed PMC
Kara E, Tucci A, Manzoni C, Lynch DS, Elpidorou M, Bettencourt C, et al.Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain 2016; 139: 1904–18. PubMed PMC
Karaca E, Harel T, Pehlivan D, Jhangiani SN, Gambin T, Coban Akdemir Z, et al.Genes that affect brain structure and function identified by rare variant analyses of mendelian neurologic disease. Neuron 2015; 88: 499–513. PubMed PMC
Karle KN, Schule R, Klebe S, Otto S, Frischholz C, Liepelt-Scarfone I, et al.Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP). Orphanet J Rare Dis 2013; 8: 158. PubMed PMC
Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014; 46: 310–5. PubMed PMC
Kong XF, Bousfiha A, Rouissi A, Itan Y, Abhyankar A, Bryant V, et al.A novel homozygous p.R1105X mutation of the AP4E1 gene in twins with hereditary spastic paraplegia and mycobacterial disease. PLoS One 2013; 8: e58286. PubMed PMC
Kwong KL, Wong YC, Fong CM, Wong SN, So KT. Magnetic resonance imaging in 122 children with spastic cerebral palsy. Pediatr Neurol 2004; 31: 172–6. PubMed
Lamichhane DM. New AP4B1 mutation in an African-American child associated with intellectual disability. J Pediatr Genet 2013; 2: 191–5. PubMed PMC
Langouet M, Siquier-Pernet K, Sanquer S, Bole-Feysot C, Nitschke P, Boddaert N, et al.Contiguous mutation syndrome in the era of high-throughput sequencing. Mol Genet Genomic Med 2015; 3: 215–20. PubMed PMC
Leach EL, Shevell M, Bowden K, Stockler-Ipsiroglu S, van Karnebeek CD. Treatable inborn errors of metabolism presenting as cerebral palsy mimics: systematic literature review. Orphanet J Rare Dis 2014; 9: 197. PubMed PMC
Leventer RJ, Jansen A, Pilz DT, Stoodley N, Marini C, Dubeau F, et al.Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients. Brain 2010; 133: 1415–27. PubMed PMC
Moreno-De-Luca A, Helmers SL, Mao H, Burns TG, Melton AM, Schmidt KR, et al.Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal recessive cerebral palsy syndrome with microcephaly and intellectual disability. J Med Genet 2011; 48: 141–4. PubMed PMC
Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, et al.Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 2011; 478: 57–63. PubMed
Pearson TS, Pons R, Ghaoui R, Sue CM. Genetic mimics of cerebral palsy. Mov Disord 2019; 34: 625–36. PubMed
Pensato V, Castellotti B, Gellera C, Pareyson D, Ciano C, Nanetti L, et al.Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. Brain 2014; 137: 1907–20. PubMed
Rana KS, Narwal V, Chauhan L, Singh G, Sharma M, Chauhan S. Structural and perfusion abnormalities of brain on MRI and technetium-99m-ECD SPECT in children with cerebral palsy: a comparative study. J Child Neurol 2016; 31: 589–92. PubMed
Roubertie A, Hieu N, Roux CJ, Leboucq N, Manes G, Charif M, et al.AP4 deficiency: a novel form of neurodegeneration with brain iron accumulation? Neurol Genet 2018; 4: e217. PubMed PMC
Schule R, Holland-Letz T, Klimpe S, Kassubek J, Klopstock T, Mall V, et al.The spastic paraplegia rating scale (SPRS): a reliable and valid measure of disease severity. Neurology 2006; 67: 430–4. PubMed
Shain C, Ramgopal S, Fallil Z, Parulkar I, Alongi R, Knowlton R, et al.Polymicrogyria-associated epilepsy: a multicenter phenotypic study from the epilepsy phenome/genome project. Epilepsia 2013; 54: 1368–75. PubMed PMC
Stevanin G, Azzedine H, Denora P, Boukhris A, Tazir M, Lossos A, et al.Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain 2008; 131: 772–84. PubMed
Stutterd CA, Leventer RJ. Polymicrogyria: a common and heterogeneous malformation of cortical development. Am J Med Genet C Semin Med Genet 2014; 166C: 227–39. PubMed
Tan CA, Topper S, Del Gaudio D, Nelakuditi V, Shchelochkov O, Nowaczyk MJM, et al.Characterization of patients referred for non-specific intellectual disability testing: the importance of autosomal genes for diagnosis. Clin Genet 2016; 89: 478–83. PubMed
Tessa A, Battini R, Rubegni A, Storti E, Marini C, Galatolo D, et al.Identification of mutations in AP4S1/SPG52 through next generation sequencing in three families. Eur J Neurol 2016; 23: 1580–7. PubMed
Toh WH, Tan JZ, Zulkefli KL, Houghton FJ, Gleeson PA. Amyloid precursor protein traffics from the Golgi directly to early endosomes in an Arl5b- and AP4-dependent pathway. Traffic 2017; 18: 159–75. PubMed
Trujillano D, Oprea GE, Schmitz Y, Bertoli-Avella AM, Abou Jamra R, Rolfs A. A comprehensive global genotype-phenotype database for rare diseases. Mol Genet Genomic Med 2017; 5: 66–75. PubMed PMC
Tuysuz B, Bilguvar K, Kocer N, Yalcinkaya C, Caglayan O, Gul E, et al.Autosomal recessive spastic tetraplegia caused by AP4M1 and AP4B1 gene mutation: expansion of the facial and neuroimaging features. Am J Med Genet A 2014; 164A: 1677–85. PubMed
Verkerk AJ, Schot R, Dumee B, Schellekens K, Swagemakers S, Bertoli-Avella AM, et al.Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy. Am J Hum Genet 2009; 85: 40–52. PubMed PMC
Vill K, Muller-Felber W, Alhaddad B, Strom TM, Teusch V, Weigand H, et al.A homozygous splice variant in AP4S1 mimicking neurodegeneration with brain iron accumulation. Mov Disord 2017; 32: 797–9. PubMed
Wild B, Rodden FA, Grodd W, Ruch W. Neural correlates of laughter and humour. Brain 2003; 126: 2121–38. PubMed