Automated Detection of Acute Lymphoblastic Leukemia From Microscopic Images Based on Human Visual Perception
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32984283
PubMed Central
PMC7484487
DOI
10.3389/fbioe.2020.01005
Knihovny.cz E-zdroje
- Klíčová slova
- acute leukemia, automated leukemia detection, blood smear image analysis, cell segmentation, image processing, leukemic cell identification, machine learning,
- Publikační typ
- časopisecké články MeSH
Microscopic image analysis plays a significant role in initial leukemia screening and its efficient diagnostics. Since the present conventional methodologies partly rely on manual examination, which is time consuming and depends greatly on the experience of domain experts, automated leukemia detection opens up new possibilities to minimize human intervention and provide more accurate clinical information. This paper proposes a novel approach based on conventional digital image processing techniques and machine learning algorithms to automatically identify acute lymphoblastic leukemia from peripheral blood smear images. To overcome the greatest challenges in the segmentation phase, we implemented extensive pre-processing and introduced a three-phase filtration algorithm to achieve the best segmentation results. Moreover, sixteen robust features were extracted from the images in the way that hematological experts do, which significantly increased the capability of the classifiers to recognize leukemic cells in microscopic images. To perform the classification, we applied two traditional machine learning classifiers, the artificial neural network and the support vector machine. Both methods reached a specificity of 95.31%, and the sensitivity of the support vector machine and artificial neural network reached 98.25 and 100%, respectively.
Zobrazit více v PubMed
Ahmed A. S., Morsy M., Abou-Elsoud M. E. A. (2016). Microscopic digital image segmentation and feature extraction of acute Leukemia. Int. J. Sci. Eng. Appl. 5 228–233. 10.7753/IJSEA0505.1001 DOI
Aljaboriy S., Sjarif N., Chuprat S. (2019). Segmentation and detection of acute leukemia using image processing and machine learning techniques: a review. AUS 26 511–531. 10.4206/aus.2019.n26.2.60 DOI
Alsalem M. A., Zaidan A. A., Zaidan B. B., Hashim M., Madhloom H. T., Azeez N. D., et al. (2018). A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations. Comput. Methods Programs 158 93–112. PubMed
American Dental Association [ADA] (2012). The ADA Practical Guide to Patients with Medical Conditions, ed. Patton L. L. (New York, NY: Wiley; ).
Bagasjvara R. G., Candradewi I., Hartati S., Harjoko A. (2016). Automated detection and classification techniques of Acute leukemia using image processing: A review. Paper Presented at the 2nd International Conference on Science and Technology-Compute, Yogyakarta 35–43. 10.1109/ICSTC.2016.7877344 DOI
Batchelor B. G., Waltz F. M. (2001). Intelligent machine vision: techniques, implementations, and applications. New York, NY: Springer.
Bodzas A. (2019). Diagnosis of Malignant Haematopoietic Diseases based on the Automation of Blood Microscopic Image Analysis. Master’s thesis, Technical University of Ostrava, Ostrava, CZ.
Chan Y. K., Tsai M. H., Huang D. C. H., Zheng Z. H., Hung K. D. (2010). Leukocyte nucleus segmentation and nucleus lobe counting. BMC Bioinformatics 11:558. 10.1186/1471-2105-11-558 PubMed DOI PMC
Chen J., Ying H., Liu X., Gu J., Feng R., Chen T., et al. (2020). A transfer learning based super-resolution microscopy for biopsy slice images: the joint methods perspective. IEEE/ACM Trans. Comput. Biol. Bioinform. (in press). 10.1109/TCBB.2020.2991173 PubMed DOI
Chen T., Xu J., Ying H., Chen X., Feng R., Fang X., et al. (2019). Prediction of Extubation Failure for Intensive Care Unit Patients Using Light Gradient Boosting Machine. IEEE Access. 7 150960–150968. 10.1109/ACCESS.2019.2946980 DOI
Chiaretti S., Zini G., Bassan R. (2014). Diagnosis and Subclassification of Acute Lymphoblastic Leukemia. Mediter. J. Hematol. Infect. Dis. 6:e2014073. 10.4084/MJHID.2014.073 PubMed DOI PMC
Daniels R., Nicoll L. H. (2012). Contemporary Medical Surgical Nursing, 2nd Edn New York, NY: Cengage Learning.
Díaz G., Manzanera A. (2009). “Automatic Analysis of Microscopic Images in Hematological Cytology Applications,” in Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques, eds González F. A., Romero E. (Landisville, PA: Yurchak Printing Inc; ), 167–196.
Fairchild M. D. (2005). Color Appearance Models, 2nd Edn Chichester: John Wiley & Sons.
Gao W., Zhu Y., Zhang W., Zhang K., Gao H. (2019). A hierarchical recurrent approach to predict scene graphs from a visualion-oriented perspective. Comput. Intellig. 35 496–516. 10.1111/coin.12202 DOI
Hariprasath S., Dharani T., Santh M. (2019). Detection of acute lymphocytic leukemia using statistical features. Paper Presented at the 4th International Conference on Current Research in Engineering Science and Technology, Trichy Available online at: http://www.internationaljournalssrg.org/uploads/specialissuepdf/ICCREST/2019/ECE/IJECE-ICCREST-P102-JRCE1119.pdf
Inaba H., Greaves M., Mullighan C. G. (2013). Acute lymphoblastic leukaemia. Lancet 381 1943–1955. 10.1016/S0140-6736(12)62187-4 PubMed DOI PMC
James G., Witten D., Hastie T., Tibshirani R. (2013). An Introduction to Statistical Learning: With Applications in R. New York, NY: Springer.
Joshi M. D., Karode A. H., Suralkar S. R. (2013). White blood cells segmentation and classification to detect acute Leukemia. Int. J. Emerg. Trends Technol. Computer Sci. 2 147–151.
Katz A. J., Chia V. M., Schoonen W. M. (2015). Acute lymphoblastic leukemia: an assessment of international incidence, survival, and disease burden. Cancer Causes Control 26 1627–1642. 10.1007/s10552-015-0657-6 PubMed DOI
Kazemi F., Najafabadi T., Araabi B. (2016). Automatic Recognition of Acute Myelogenous Leukemia in Blood Microscopic Images Using K-means Clustering and Support Vector Machine. J. Med. Signals Sens. 6 183–193. PubMed PMC
Manisha P. (2012). Leukemia: a review article. Int. J. Adv. Res. Pharm. Bio Sci. 2 397–407.
Moradiamin M., Samadzadehaghdam N., Kermani S., Talebi A. (2015). Enhanced recognition of acute lymphoblastic leukemia cells in microscopic images based on feature reduction using principle component analysis. Front. Biomed. Technol. 2:128–136.
Nailon W. H. (2010). “Texture analysis methods for medical image characterisation,” in Biomedical Imaging, ed. Mao Y. (London: Intech Publishing; ), 75–100.
Neoh S., Srisukkham W., Zhang L., Todryk S., Greystoke B., Lim C., et al. (2015). An intelligent decision support system for leukaemia diagnosis using microscopic blood images. Sci. Rep. 5:14938. 10.1038/srep14938 PubMed DOI PMC
Pisner D. A., Schnyer D. M. (2020). “Chapter 6 - Support vector machine,” in Machine Learning, eds Mechelli A., Vieira S. (Cambridge, MA: Academic Press; ), 101–121.
Putzu L., Caocci G., Di Ruberto C. (2014). Leucocyte classification for leukaemia detection using image processing techniques. Artif. Intellig. Med. 62 179–191. 10.1016/j.artmed.2014.09.002 PubMed DOI
Rogers K. (Ed.) (2011). Blood: Physiology and Circulation. Edinburgh: Britannica Educational Publishing.
Rose M. (2013). Oncology in Primary Care, 1st Edn Philadelphia: Lippincott Williams & Wilkins.
Serfontein W. (2011). Cancer Diagnosed: What Now? 2nd Edn Bloomington: Xlibris.
Shafique S., Thesin S. (2018). Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technol. Cancer Res. Treatment 17:1533033818802789. 10.1177/1533033818802789 PubMed DOI PMC
Tharwat A. (2018). Deep belief networks and cortical algorithms: A comparative study for supervised classification. Appl. Comput. Inform. 15 81–93. 10.1016/j.aci.2018.08.003 DOI
Wan S., Mak M. W. (2015). Machine Learning for Protein Subcellular Localization Prediction. Boston: De Gruyter.
Wang M., Zhou X., Li F., Huckins J., King R., Wong S. (2008). Novel Cell Segmentation and Online SVM for Cell Cycle Phase Identification in Automated Microscopy. Bioinformatics. 24 94–101. 10.1093/bioinformatics/btm530 PubMed DOI
Wang Q., Bi S., Sun M., Wang Y., Wang D., Yang S. (2019). Deep learning approach to peripheral leukocyte recognition. PLoS ONE. 14: e0218808. 10.1371/journal.pone.0218808 PubMed DOI PMC
Wiernik P. H. (2001). Adult Leukemia (Atlas of Clinical Oncology). Hamilton: BC Decker Inc.
Zayegh A., Bassam N. (2018). “Neural Network Principles and Applications,” in Digital Systems, Ed. Tocci R. J. (London: Pearson; ), 10.5772/intechopen.80416 DOI