Melflufen: A Peptide-Drug Conjugate for the Treatment of Multiple Myeloma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
N/A
Oncopeptides AB
PubMed
32992506
PubMed Central
PMC7601491
DOI
10.3390/jcm9103120
PII: jcm9103120
Knihovny.cz E-zdroje
- Klíčová slova
- drug combinations, melflufen, melphalan flufenamide, multiple myeloma, new drugs, peptide–drug conjugate,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Despite the availability of new therapies that have led to improved outcomes for patients with multiple myeloma, most patients will eventually relapse. With triplet and even quadruplet combination therapies becoming standard in the first and second line, many patients will have few treatment options after second-line treatment. Melflufen (melphalan flufenamide) is a first-in-class peptide-drug conjugate (PDC) that targets aminopeptidases and rapidly releases alkylating agents into tumor cells. Once inside the tumor cells, melflufen is hydrolyzed by peptidases to release alkylator molecules, which become entrapped. Melflufen showed anti-myeloma activity in myeloma cells that were resistant to bortezomib and the alkylator melphalan. In early phase studies (O-12-M1 and HORIZON [OP-106]), melflufen plus dexamethasone has demonstrated encouraging clinical activity and a manageable safety profile in heavily pretreated patients with relapsed/refractory multiple myeloma, including those with triple-class refractory disease and extramedullary disease. The Phase III OCEAN study (OP-104) is further evaluating melflufen plus dexamethasone in patients with relapsed/refractory multiple myeloma. The safety profile of melflufen is characterized primarily by clinically manageable hematologic adverse events. Melflufen, with its novel mechanism of action, has the potential to provide clinically meaningful benefits to patients with relapsed/refractory multiple myeloma, including those with high unmet needs.
Erasmus MC Cancer Institute 3075 EA Rotterdam The Netherlands
Hospital Clínico Universitario de Salamanca IBSAL CIC 37007 Salamanca Spain
University Hospital Marqués de Valdecilla University of Cantabria 39008 Santander Spain
Zobrazit více v PubMed
Kumar S.K., Dimopoulos M.A., Kastritis E., Terpos E., Nahi H., Goldschmidt H., Hillengass J., Leleu X., Beksac M., Alsina M., et al. Natural history of relapsed myeloma, refractory to immunomodulatory drugs and proteasome inhibitors: A multicenter IMWG study. Leukemia. 2017;31:2443–2448. doi: 10.1038/leu.2017.138. PubMed DOI
Gandhi U.H., Cornell R.F., Lakshman A., Gahvari Z.J., McGehee E., Jagosky M.H., Gupta R., Vamado W., Fiala M.A., Chhabra S., et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia. 2019;33:2266–2275. doi: 10.1038/s41375-019-0435-7. PubMed DOI PMC
Moreau P., San Miguel J., Sonneveld P., Mateos M.V., Zamagni E., Avet-Loiseau H., Hajek R., Dimopoulos M.A., Ludwig H., Einsele H., et al. Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017;28:iv52–iv61. doi: 10.1093/annonc/mdx096. PubMed DOI
National Comprehensive Cancer Network. NCCN Guidelines: Multiple Myeloma; Version 2. [(accessed on 23 September 2020)];2020 Available online: https://www.nccn.org/professionals/physician_gls/pdf/myeloma.pdf.
Cejalvo M.J., de la Rubia J. Which therapies will move to the front line for multiple myeloma? Expert Rev. Hematol. 2017;10:383–392. doi: 10.1080/17474086.2017.1317589. PubMed DOI
Moreau P., Attal M., Hulin C., Arnulf B., Belhadj K., Benboubker L., Bene M.C., Broijl A., Caillon H., Caillot D., et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): A randomised, open-label, phase 3 study. Lancet. 2019;394:29–38. doi: 10.1016/S0140-6736(19)31240-1. PubMed DOI
Facon T., Kumar S., Plesner T., Orlowski R.Z., Moreau P., Bahlis N., Basu S., Nahi H., Hulin C., Quach H., et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N. Engl. J. Med. 2019;380:2104–2115. doi: 10.1056/NEJMoa1817249. PubMed DOI PMC
Mateos M.V., Dimopoulos M.A., Cavo M., Suzuki K., Jakubowiak A., Knop S., Doyen C., Lucio P., Nagy Z., Kaplan P., et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N. Engl. J. Med. 2018;378:518–528. doi: 10.1056/NEJMoa1714678. PubMed DOI
Palumbo A., Bringhen S., Rossi D., Cavalli M., Larocca A., Ria R., Offidani M., Patriarca F., Nozzoli C., Guglielmelli T., et al. Bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide compared with bortezomib-melphalan-prednisone for initial treatment of multiple myeloma: A randomized controlled trial. J. Clin. Oncol. 2010;28:5101–5109. doi: 10.1200/JCO.2010.29.8216. PubMed DOI
San Miguel J.F., Schlag R., Khuageva N.K., Dimopoulos M.A., Shpilberg O., Kropff M., Spicka I., Petrucci M.T., Palumbo A., Samoilova O.S., et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N. Engl. J. Med. 2008;359:906–917. doi: 10.1056/NEJMoa0801479. PubMed DOI
Benboubker L., Dimopoulos M.A., Dispenzieri A., Catalano J., Belch A.R., Cavo M., Pinto A., Weisel K., Ludwig H., Bahlis N., et al. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N. Engl. J. Med. 2014;371:906–917. doi: 10.1056/NEJMoa1402551. PubMed DOI
Durie B.G.M., Hoering A., Abidi M.H., Rajkumar S.V., Epstein J., Kahanic S.P., Thakuri M., Reu F., Reynolds C.M., Sexton R., et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): A randomised, open-label, phase 3 trial. Lancet. 2017;389:519–527. doi: 10.1016/S0140-6736(16)31594-X. PubMed DOI PMC
Rajkumar S.V., Jacobus S., Callander N.S., Fonseca R., Vesole D.H., Williams M.E., Abonour R., Siegel D.S., Katz M., Greipp P.R., et al. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: An open-label randomised controlled trial. Lancet Oncol. 2010;11:29–37. doi: 10.1016/S1470-2045(09)70284-0. PubMed DOI PMC
Takamatsu H., Iida S., Shibayama H., Shibayama K., Yamazaki H., Suzuki K. Daratumumab, lenalidomide, and dexamethasone in Japanese patients with transplant-ineligible newly diagnosed multiple myeloma: A phase 1b study. Int. J. Hematol. 2020;111:692–701. doi: 10.1007/s12185-020-02825-w. PubMed DOI
Moreau P., Zamagni E., Mateos M.V. Treatment of patients with multiple myeloma progressing on frontline-therapy with lenalidomide. Blood Cancer J. 2019;9:38. doi: 10.1038/s41408-019-0200-1. PubMed DOI PMC
Chapman M.A., Lawrence M.S., Keats J.J., Cibulskis K., Sougnez C., Schinzel A.C., Harview C.L., Brunet J.P., Ahmann G.J., Adli M., et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471:467–472. doi: 10.1038/nature09837. PubMed DOI PMC
Egan J.B., Shi C.X., Tembe W., Christoforides A., Kurdoglu A., Sinari S., Middha S., Asmann Y., Schmidt J., Braggio E., et al. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood. 2012;120:1060–1066. doi: 10.1182/blood-2012-01-405977. PubMed DOI PMC
Robak P., Drozdz I., Szemraj J., Robak T. Drug resistance in multiple myeloma. Cancer Treat. Rev. 2018;70:199–208. doi: 10.1016/j.ctrv.2018.09.001. PubMed DOI
Yong K., Delforge M., Driessen C., Fink L., Flinois A., Gonzalez-McQuire S., Safaei R., Karlin L., Mateos M.V., Raab M.S., et al. Multiple myeloma: Patient outcomes in real-world practice. Br. J. Haematol. 2016;175:252–264. doi: 10.1111/bjh.14213. PubMed DOI PMC
Xpovio (Selinexor) [Package Insert] Karyopharm Therapeutics Inc.; Newton, MA, USA: 2019.
Chari A., Vogl D.T., Gavriatopoulou M., Nooka A.K., Yee A.J., Huff C.A., Moreau P., Dingli D., Cole C., Lonial S., et al. Oral selinexor-dexamethasone for triple-class refractory multiple myeloma. N. Engl. J. Med. 2019;381:727–738. doi: 10.1056/NEJMoa1903455. PubMed DOI
Moreau P., Chanan-Khan A., Roberts A.W., Agarwal A.B., Facon T., Kumar S., Touzeau C., Punnoose E.A., Cordero J., Munasinghe W., et al. Promising efficacy and acceptable safety of venetoclax plus bortezomib and dexamethasone in relapsed/refractory MM. Blood. 2017;130:2392–2400. doi: 10.1182/blood-2017-06-788323. PubMed DOI
Kumar S., Harrison S., Cavo M., De la Rubia J., Popat R., Gasparetto C., Hungria V., Salwender H., Suzuki K., Kim I., et al. A phase 3 study of venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma. Clin. Lymphoma Myeloma Leuk. 2019;19:e31. doi: 10.1016/j.clml.2019.09.046. PubMed DOI
Cho S.F., Anderson K.C., Tai Y.T. Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Front. Immunol. 2018;9:1821. doi: 10.3389/fimmu.2018.01821. PubMed DOI PMC
D’Agostino M., Raje N. Anti-BCMA CAR T-cell therapy in multiple myeloma: Can we do better? Leukemia. 2019;34:21–34. doi: 10.1038/s41375-019-0669-4. PubMed DOI
Lonial S., Lee H.C., Badros A., Trudel S., Nooka A.K., Chari A., Abdallah A.O., Callander N., Lendvai N., Sborov D., et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): A two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2019;21:207–221. doi: 10.1016/S1470-2045(19)30788-0. PubMed DOI
Raje N., Berdeja J., Lin Y., Siegel D., Jagannath S., Madduri D., Liedtke M., Rosenblatt J., Maus M.V., Turka A., et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 2019;380:1726–1737. doi: 10.1056/NEJMoa1817226. PubMed DOI PMC
Chauhan D., Ray A., Viktorsson K., Spira J., Paba-Prada C., Munshi N., Richardson P., Lewensohn R., Anderson K.C. In vitro and in vivo antitumor activity of a novel alkylating agent, melphalan-flufenamide, against multiple myeloma cells. Clin. Cancer Res. 2013;19:3019–3031. doi: 10.1158/1078-0432.CCR-12-3752. PubMed DOI PMC
Wickstrom M., Nygren P., Larsson R., Harmenberg J., Lindberg J., Sjoberg P., Jerling M., Lehmann F., Richardson P., Anderson K., et al. Melflufen—A peptidase-potentiated alkylating agent in clinical trials. Oncotarget. 2017;8:66641–66655. doi: 10.18632/oncotarget.18420. PubMed DOI PMC
Wickström M., Viktorsson K., Lundholm L., Aesoy R., Nygren H., Sooman L., Fryknäs M., Vogel L.K., Lewensohn R., Larsson R., et al. The alkylating prodrug J1 can be activated by aminopeptidase N, leading to a possible target directed release of melphalan. Biochem. Pharm. 2010;79:1281–1290. doi: 10.1016/j.bcp.2009.12.022. PubMed DOI
Gullbo J., Wickstrom M., Tullberg M., Ehrsson H., Lewensohn R., Nygren P., Luthman K., Larsson R. Activity of hydrolytic enzymes in tumour cells is a determinant for anti-tumour efficacy of the melphalan containing prodrug J1. J. Drug Target. 2003;11:355–363. doi: 10.1080/10611860310001647140. PubMed DOI
Ray A., Ravillah D., Das D.S., Song Y., Nordstrom E., Gullbo J., Richardson P.G., Chauhan D., Anderson K.C. A novel alkylating agent Melflufen induces irreversible DNA damage and cytotoxicity in multiple myeloma cells. Br. J. Haematol. 2016;174:397–409. doi: 10.1111/bjh.14065. PubMed DOI PMC
Gullbo J., Dhar S., Luthman K., Ehrsson H., Lewensohn R., Nygren P., Larsson R. Antitumor activity of the alkylating oligopeptides J1 (L-melphalanyl-p-L-fluorophenylalanine ethyl ester) and P2 (L-prolyl-m-L-sarcolysyl-p-L-fluorophenylalanine ethyl ester): Comparison with melphalan. Anticancer Drugs. 2003;14:617–624. doi: 10.1097/00001813-200309000-00006. PubMed DOI
Palladini G., Schonland S., Lentzsch S., Cibeira M.T., Hajek R., Jaccard A., Jamroziak K., Kastritis E., Sanchorawala V., Schjesvold F.H., et al. OP201: A phase 1/2 study of melflufen and dexamethasone in patients with immunoglobulin light chain amyloidosis; Proceedings of the 61st American Society of Hematology Annual Meeting; Orlando, FL, USA. 7–10 December 2019; p. 3163.
Gullbo J., Tullberg M., Vabeno J., Ehrsson H., Lewensohn R., Nygren P., Larsson R., Luthman K. Structure-activity relationship for alkylating dipeptide nitrogen mustard derivatives. Oncol. Res. 2003;14:113–132. doi: 10.3727/000000003771013071. PubMed DOI
Wickstrom M., Larsson R., Nygren P., Gullbo J. Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci. 2011;102:501–508. doi: 10.1111/j.1349-7006.2010.01826.x. PubMed DOI PMC
Hitzerd S.M., Verbrugge S.E., Ossenkoppele G., Jansen G., Peters G.J. Positioning of aminopeptidase inhibitors in next generation cancer therapy. Amino Acids. 2014;46:793–808. doi: 10.1007/s00726-013-1648-0. PubMed DOI
Delforoush M., Strese S., Wickstrom M., Larsson R., Enblad G., Gullbo J. In vitro and in vivo activity of melflufen (J1) in lymphoma. BMC Cancer. 2016;16:263. doi: 10.1186/s12885-016-2299-9. PubMed DOI PMC
Strese S., Hassan S.B., Velander E., Haglund C., Hoglund M., Larsson R., Gullbo J. In vitro and in vivo anti-leukemic activity of the peptidase-potentiated alkylator melflufen in acute myeloid leukemia. Oncotarget. 2017;8:6341–6352. doi: 10.18632/oncotarget.13856. PubMed DOI PMC
Zhao H., Meng X., Yuan H., Lan M. Novel melphalan and chlorambucil derivatives of 2,2,6,6-tetramethyl-1-piperidinyloxy radicals: Synthesis, characterization, and biological evaluation in vitro. Chem. Pharm. Bull. 2010;58:332–335. doi: 10.1248/cpb.58.332. PubMed DOI
Carlier C., Strese S., Viktorsson K., Velander E., Nygren P., Uustalu M., Juntti T., Lewensohn R., Larsson R., Spira J., et al. Preclinical activity of melflufen (J1) in ovarian cancer. Oncotarget. 2016;7:59322–59335. doi: 10.18632/oncotarget.11163. PubMed DOI PMC
Wickstrom M., Haglund C., Lindman H., Nygren P., Larsson R., Gullbo J. The novel alkylating prodrug J1: Diagnosis directed activity profile ex vivo and combination analyses in vitro. Investig. New Drugs. 2008;26:195–204. doi: 10.1007/s10637-007-9092-1. PubMed DOI
Wickstrom M., Johnsen J.I., Ponthan F., Segerstrom L., Sveinbjornsson B., Lindskog M., Lovborg H., Viktorsson K., Lewensohn R., Kogner P., et al. The novel melphalan prodrug J1 inhibits neuroblastoma growth in vitro and in vivo. Mol. Cancer. 2007;6:2409–2417. doi: 10.1158/1535-7163.MCT-07-0156. PubMed DOI
Byrgazov K., Slipicevic A., Lehmann F., Lion T., Kager L., Taschner-Mandl S. A peptidase-potentiated alkylating agent melflufen is an effective anti-neoplastic agent in osteosarcoma; Proceedings of the European Society of Medical Oncology (ESMO) Annual Meeting; Barcelona, Spain. 27 September–19 October 2019; p. 1726.
Chesi M., Matthews G.M., Garbitt V.M., Palmer S.E., Shortt J., Lefebure M., Stewart A.K., Johnstone R.W., Bergsagel P.L. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood. 2012;120:376–385. doi: 10.1182/blood-2012-02-412783. PubMed DOI PMC
Chin M., Sive J.I., Allen C., Roddie C., Chavda S.J., Smith D., Blombery P., Jones K., Ryland G.L., Popat R., et al. Prevalence and timing of TP53 mutations in del(17p) myeloma and effect on survival. Blood Cancer J. 2017;7:e610. doi: 10.1038/bcj.2017.76. PubMed DOI PMC
Strese S., Wickstrom M., Fuchs P.F., Fryknas M., Gerwins P., Dale T., Larsson R., Gullbo J. The novel alkylating prodrug melflufen (J1) inhibits angiogenesis in vitro and in vivo. Biochem. Pharm. 2013;86:888–895. doi: 10.1016/j.bcp.2013.07.026. PubMed DOI
Berglund A., Ullen A., Lisyanskaya A., Orlov S., Hagberg H., Tholander B., Lewensohn R., Nygren P., Spira J., Harmenberg J., et al. First-in-human, phase I/IIa clinical study of the peptidase potentiated alkylator melflufen administered every three weeks to patients with advanced solid tumor malignancies. Investig. New Drugs. 2015;33:1232–1241. doi: 10.1007/s10637-015-0299-2. PubMed DOI
Dimopoulos M.A., Sonneveld P., Leung N., Merlini G., Ludwig H., Kastritis E., Goldschmidt H., Joshua D., Orlowski R.Z., Powles R., et al. International Myeloma Working Group Recommendations for the Diagnosis and Management of Myeloma-Related Renal Impairment. J. Clin. Oncol. 2016;34:1544–1557. doi: 10.1200/JCO.2015.65.0044. PubMed DOI
Nath C.E., Shaw P.J., Trotman J., Zeng L., Duffull S.B., Hegarty G., McLachlan A.J., Gurney H., Kerridge I., Kwan Y.L., et al. Population pharmacokinetics of melphalan in patients with multiple myeloma undergoing high dose therapy. Br. J. Clin. Pharm. 2010;69:484–497. doi: 10.1111/j.1365-2125.2010.03638.x. PubMed DOI PMC
Richardson P., Bringhen S., Voorhees P., Plesner T., Mellqvist U.H., Reeves B., Paba-Prada C., Zubair H., Byrne C., Chauhan D., et al. Melflufen plus dexamethasone in relapsed and refractory multiple myeloma (O-12-M1): A multicentre, international, open-label, phase 1–2 study. Lancet Haematol. 2020;7:e395–e407. doi: 10.1016/S2352-3026(20)30044-2. PubMed DOI
Bringhen S., Vorhees P.M., Plesner T., Mellqvist U.H., Reeves B., Sonneveld P., Byrne C., Nordstrom E., Harmenberg J., Obermuller J., et al. Updated progression-free survival and overall survival with melflufen and dexamethasone in patients with relapsed/refractory multiple myeloma: Results from the phase 2 study O-12-M1; Proceedings of the 61st American Society of Hematology Annual Meeting; Orlando, FL, USA. 7–10 December 2019; p. 1839.
Dimopoulos M.A., Palumbo A., Corradini P., Cavo M., Delforge M., Di Raimondo F., Weisel K.C., Oriol A., Hansson M., Vacca A., et al. Safety and efficacy of pomalidomide plus low-dose dexamethasone in STRATUS (MM-010): A phase 3b study in refractory multiple myeloma. Blood. 2016;128:497–503. doi: 10.1182/blood-2016-02-700872. PubMed DOI PMC
San-Miguel J.F., Hungria V.T., Yoon S.S., Beksac M., Dimopoulos M.A., Elghandour A., Jedrzejczak W.W., Gunther A., Nakorn T.N., Siritanaratkul N., et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: A multicentre, randomised, double-blind phase 3 trial. Lancet Oncol. 2014;15:1195–1206. doi: 10.1016/S1470-2045(14)70440-1. PubMed DOI
Usmani S.Z., Weiss B.M., Plesner T., Bahlis N.J., Belch A., Lonial S., Lokhorst H.M., Voorhees P.M., Richardson P.G., Chari A., et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. Blood. 2016;128:37–44. doi: 10.1182/blood-2016-03-705210. PubMed DOI PMC
Mateos M.V., Oriol A., Larocca A., Otero P.R., Bladé J., Cavo M., Hassoun H., Leleu X., Alegre A., Maisel C., et al. Clinical activity of melflufen in patients with triple-class refractory multiple myeloma and poor-risk features in an updated analysis of HORIZON (OP-106), a phase 2 study in patients with relapsed/refractory multiple myeloma refractory to pomalidomide and/or daratumumab; Proceedings of the 61st American Society of Hematology Annual Meeting; Orlando, FL, USA. 7–10 December 2019; p. 1883.
Ocio E.M., Efebera Y.A., Granell M., Hajek R., Maisnar V., Karlin L., Mateos M.V., Richardson P.G., Oriol A., Norin S., et al. ANCHOR (OP-104): Updated efficacy and safety from a phase 1/2 study of melflufen and dexamethasone plus bortezomib or daratumumab in patients with relapsed/refractory multiple myeloma (RRMM) refractory to an IMiD or a proteasome inhibitor (PI) Blood. 2019;133:3124. doi: 10.1182/blood-2019-124815. DOI
Schjesvold F., Robak P., Pour L., Aschan J., Sonneveld P. OCEAN: A randomized phase III study of melphalan flufenamide + dexamethasone to treat relapsed refractory multiple myeloma. Future Oncol. 2020;16:631–641. doi: 10.2217/fon-2020-0024. PubMed DOI
NIH US National Library of Medicine. ClinicalTrials.gov. [(accessed on 24 March 2020)]; Available online: https://clinicaltrials.gov/
Merlini G., Dispenzieri A., Sanchorawala V., Schonland S.O., Palladini G., Hawkins P.N., Gertz M.A. Systemic immunoglobulin light chain amyloidosis. Nat. Rev. Dis. Primers. 2018;4:38. doi: 10.1038/s41572-018-0034-3. PubMed DOI
Varga C., Titus S.E., Toskic D., Comenzo R.L. Use of novel therapies in the treatment of light chain amyloidosis. Blood Rev. 2019;37:100581. doi: 10.1016/j.blre.2019.05.005. PubMed DOI
Milani P., Palladini G., Merlini G. New concepts in the treatment and diagnosis of amyloidosis. Expert Rev. Hematol. 2018;11:117–127. doi: 10.1080/17474086.2018.1424534. PubMed DOI
Paner A., Okwuosa T.M., Richardson K.J., Libby E.N. Triplet therapies—The new standard of care for multiple myeloma: How to manage common toxicities. Expert Rev. Hematol. 2018;11:957–973. doi: 10.1080/17474086.2018.1538777. PubMed DOI
Parameswaran R., Lunning M., Mantha S., Devlin S., Hamilton A., Schwartz G., Soff G. Romiplostim for management of chemotherapy-induced thrombocytopenia. Support. Care Cancer. 2014;22:1217–1222. doi: 10.1007/s00520-013-2074-2. PubMed DOI
Lakshman A., Abeykoon J.P., Kumar S.K., Rajkumar S.V., Dingli D., Buadi F.K., Gonsalves W.I., Leung N., Dispenzieri A., Kourelis T.V., et al. Efficacy of daratumumab-based therapies in patients with relapsed, refractory multiple myeloma treated outside of clinical trials. Am. J. Hematol. 2017;92:1146–1155. doi: 10.1002/ajh.24883. PubMed DOI
Richardson P.G., San Miguel J.F., Moreau P., Hajek R., Dimopoulos M.A., Laubach J.P., Palumbo A., Luptakova K., Romanus D., Skacel T., et al. Interpreting clinical trial data in multiple myeloma: Translating findings to the real-world setting. Blood Cancer J. 2018;8:109. doi: 10.1038/s41408-018-0141-0. PubMed DOI PMC
Al Hamed R., Bazarbachi A.H., Malard F., Harousseau J.L., Mohty M. Current status of autologous stem cell transplantation for multiple myeloma. Blood Cancer J. 2019;9:44. doi: 10.1038/s41408-019-0205-9. PubMed DOI PMC