• This record comes from PubMed

Rate, Time Course, and Predictors of Implantable Cardioverter Defibrillator Infections: An Analysis From the SIMPLE Trial

. 2020 Sep ; 2 (5) : 354-359. [epub] 20200425

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Links

PubMed 32995720
PubMed Central PMC7499364
DOI 10.1016/j.cjco.2020.04.008
PII: S2589-790X(20)30048-2
Knihovny.cz E-resources

BACKGROUND: The number of implantable cardioverter defibrillator (ICD) infections is increasing due to an increased number of ICD implants, higher-risk patients, and more frequent replacement procedures, which carry a higher risk of infection. Reducing the morbidity, mortality, and cost of ICD-related infections requires an understanding of the current rate of this complication and its predictors. METHODS: The Shock Implant Evaluation Trial (SIMPLE) trial randomized 2500 ICD recipients to defibrillation testing or not. Over an average of 3.1 years, patients were seen every 6 months and examined for evidence of ICD infection, which was defined as requiring device removal and/or intravenous antibiotics. RESULTS: Within 24 months, 21 patients (0.8%) developed infection. Fourteen patients (67%) with infection presented within 30 days, 20 patients by 12 months, and only 1 patient beyond 12 months. Univariate analysis demonstrated that patients with primary electrical disorders (3 patients, P = 0.009) and those with a secondary prevention indication (13 patients, P = 0.0009) were more likely to develop infection. Among the 2.2% of patients who developed an ICD wound hematoma, 10.4% developed an infection. Among the 8.3% of patients requiring an ICD reintervention, 1.9% developed an infection. CONCLUSIONS: This cohort of ICD recipients at high-volume centres have a low risk of device-related infection. However; strategies to reduce wound hematoma and the need for ICD reintervention could further reduce the rate of infection.

CONTEXTE: L’incidence des cas d’infection du défibrillateur cardioverteur implantable (DCI) augmente en raison du nombre accru d’implantations, de l’emploi de ces dispositifs chez des patients exposés à un risque très élevé et de l’augmentation de la fréquence des interventions de remplacement, qui sont associées à un plus grand risque d’infections. Pour parvenir à réduire la morbidité, la mortalité et les coûts associés aux infections liées à un DCI, il faut connaître la fréquence de cette complication et les facteurs qui permettent de la prédire. MÉTHODOLOGIE: Lors de l’essai S hock Impl ant E valuation Trial (SIMPLE), 2 500 patients ayant reçu un DCI ont été répartis aléatoirement en deux groupes, l’un subissant des tests de défibrillation et l’autre, non. Sur une période de 3,1 ans en moyenne, les patients ont été vus en consultation tous les 6 mois et examinés à la recherche de signes d’infection du DCI, définie comme étant une infection exigeant le retrait du dispositif et/ou l’administration d’antibiotiques par voie intraveineuse. RÉSULTATS: Au total, 21 patients (0,8 %) ont présenté une infection dans les 24 mois suivant l’implantation. Quatorze patients (67 %) ont présenté une infection dans les 30 jours suivant l’intervention; à 12 mois, 20 patients avaient présenté une infection. Un seul patient a présenté une infection plus de 12 mois après l’intervention. Les résultats d’une analyse univariée ont démontré qu’une infection était plus probable chez les patients qui présentaient un trouble électrique primaire (3 patients, p = 0,009) et chez ceux qui avaient reçu un dispositif en prévention secondaire (13 patients, p = 0,0009). Parmi les patients qui présentaient un hématome après l’implantation du DCI (2,2 %), 10,4 % ont présenté une infection. Parmi les patients qui ont eu besoin d’une nouvelle intervention relative au DCI (8,3 %), 1,9 % ont présenté une infection. CONCLUSIONS: Les patients de cette cohorte ayant reçu un DCI dans des établissements à haut volume étaient exposés à un faible risque d’infection du défibrillateur. Des stratégies visant à réduire les hématomes et la nécessité d’une nouvelle intervention sur les DCI pourraient toutefois contribuer à réduire encore plus la fréquence des infections.

See more in PubMed

Mela T., McGovern B.A., Garan H. Long-term infection rates associated with the pectoral versus abdominal approach to cardioverter- defibrillator implants. Am J Cardiol. 2001;88:750–753. PubMed

Gould P.A., Krahn A.D. Complications associated with implantable cardioverter-defibrillator replacement in response to device advisories. JAMA. 2006;295:1907–1911. PubMed

Sohail M.R., Uslan D.Z., Khan A.H. Management and outcome of permanent pacemaker and implantable cardioverter-defibrillator infections. J Am Coll Cardiol. 2007;49:1851–1859. PubMed

Sohail M.R., Uslan D.Z., Khan A.H. Risk factor analysis of permanent pacemaker infection. Clin Infect Dis. 2007;45:166–173. PubMed

Klug D., Balde M., Pavin D. Risk factors related to infections of implanted pacemakers and cardioverter-defibrillators: results of a large prospective study. Circulation. 2007;116:1349–1355. PubMed

de Oliveira J.C., Martinelli M., Nishioka S.A. Efficacy of antibiotic prophylaxis before the implantation of pacemakers and cardioverter-defibrillators: results of a large, prospective, randomized, double-blinded, placebo-controlled trial. Circ Arrhythm Electrophysiol. 2009;2:29–34. PubMed

Sandoe J.A., Barlow G., Chambers J.B. Guidelines for the diagnosis, prevention and management of implantable cardiac electronic device infection. Report of a joint Working Party project on behalf of the British Society for Antimicrobial Chemotherapy (BSAC, host organization), British Heart Rhythm Society (BHRS), British Cardiovascular Society (BCS), British Heart Valve Society (BHVS) and British Society for Echocardiography (BSE) J Antimicrob Chemother. 2015;70:325–359. PubMed

Greenspon A.J., Rhim E.S., Mark G., Desimone J., Ho R.T. Lead-associated endocarditis: the important role of methicillin-resistant Staphylococcus aureus. Pacing Clin Electrophysiol. 2008;31:548–553. PubMed

Voigt A., Shalaby A., Saba S. Continued rise in rates of cardiovascular implantable electronic device infections in the United States: temporal trends and causative insights. Pacing Clin Electrophysiol. 2010;33:414–419. PubMed

Kapa S., Hyberger L., Rea R.F., Hayes D.L. Complication risk with pulse generator change: implications when reacting to a device advisory or recall. Pacing Clin Electrophysiol. 2007;30:730–733. PubMed

Paulin F.L., Gula L.J., Yee R. Management of infections involving implanted cardiac electrophysiologic devices. Curr Treat Options Cardiovasc Med. 2008;10:380–387. PubMed

Gula L.J., Krahn A.D., Yee R. Arrhythmia device lead extraction: factors that necessitate laser assistance. Can J Cardiol. 2008;24:767–770. PubMed PMC

Sood N., Martin D.T., Lampert R. Incidence and predictors of perioperative complications with transvenous lead extractions: real-world experience with National Cardiovascular Data Registry. Circ Arrhythm Electrophysiol. 2018;11 PubMed

Sohail M.R., Henrikson C.A., Braid-Forbes M.J., Forbes K.F., Lerner D.J. Mortality and cost associated with cardiovascular implantable electronic device infections. Arch Intern Med. 2011;171:1821–1828. PubMed

Greenspon A.J., Patel J.D., Lau E. 16-year trends in the infection burden for pacemakers and implantable cardioverter-defibrillators in the United States 1993 to 2008. J Am Coll Cardiol. 2011;58:1001–1006. PubMed

Greenspon A.J., Eby E.L., Petrilla A.A., Sohail M.R. Treatment patterns, costs, and mortality among Medicare beneficiaries with CIED infection. Pacing Clin Electrophysiol. 2018;41:495–503. PubMed

Gitenay E., Molin F., Blais S. Cardiac implantable electronic device infection: detailed analysis of cost implications. Can J Cardiol. 2018;34:1026–1032. PubMed

Rizwan S.M., Henrikson C.A., Jo Braid-Forbes M., Forbes K.F., Lerner D.J. Increased long-term mortality in patients with cardiovascular implantable electronic device infections. Pacing Clin Electrophysiol. 2015;38:231–239. PubMed

Masiero S., Connolly S.J., Birnie D. Wound haematoma following defibrillator implantation: incidence and predictors in the Shockless Implant Evaluation (SIMPLE) trial. Europace. 2017;19:1002–1006. PubMed

Sridhar A.R., Lavu M., Yarlagadda V. Cardiac implantable electronic device-related infection and extraction trends in the U.S. Pacing Clin Electrophysiol. 2017;40:286–293. PubMed

Prutkin J.M., Reynolds M.R., Bao H. Rates of and factors associated with infection in 200 909 Medicare implantable cardioverter-defibrillator implants: results from the National Cardiovascular Data Registry. Circulation. 2014;130:1037–1043. PubMed

Rohacek M., Baddour L.M. Cardiovascular implantable electronic device infections: associated risk factors and prevention. Swiss Med Wkly. 2015;145:w14157. PubMed

Birnie D.H., Wang J., Alings M. Risk factors for infections involving cardiac implanted electronic devices. J Am Coll Cardiol. 2019;74:2845–2854. PubMed

Da C.A., Kirkorian G., Cucherat M. Antibiotic prophylaxis for permanent pacemaker implantation: a meta-analysis. Circulation. 1998;97:1796–1801. PubMed

Epstein A.E., DiMarco J.P., Ellenbogen K.A. ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;51:e1–e62. PubMed

Bratzler D.W., Houck P.M. Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project. Clin Infect Dis. 2004;38:1706–1715. PubMed

Edwards F.H., Engelman R.M., Houck P., Shahian D.M., Bridges C.R. The Society of Thoracic Surgeons Practice Guideline Series: antibiotic prophylaxis in cardiac surgery, part i: duration. Ann Thorac Surg. 2006;81:397–404. PubMed

Antimicrobial prophylaxis for surgery. Treat Guidel Med Lett. 2009;7:47–52. PubMed

Healey J.S., Hohnloser S.H., Glikson M. Cardioverter defibrillator implantation without induction of ventricular fibrillation: a single-blind, non-inferiority, randomised controlled trial (SIMPLE) Lancet. 2015;385:785–791. PubMed

Olde Nordkamp L.R., Postema P.G., Knops R.E. Implantable cardioverter-defibrillator harm in young patients with inherited arrhythmia syndromes: a systematic review and meta-analysis of inappropriate shocks and complications. Heart Rhythm. 2016;13:443–454. PubMed

Krahn A.D., Longtin Y., Philippon F. Prevention of Arrhythmia Device Infection Trial: The PADIT Trial. J Am Coll Cardiol. 2018;72:3098–3109. PubMed

Tarakji K.G., Mittal S., Kennergren C. Antibacterial envelope to prevent cardiac implantable device infection. N Engl J Med. 2019;380:1895–1905. PubMed

Essebag V., Healey J.S., Ayala-Paredes F. Strategy of continued vs interrupted novel oral anticoagulant at time of device surgery in patients with moderate to high risk of arterial thromboembolic events: The BRUISE CONTROL-2 trial. Am Heart J. 2016;173:102–107. PubMed

Birnie D.H., Healey J.S., Wells G.A. Continued vs. interrupted direct oral anticoagulants at the time of device surgery, in patients with moderate to high risk of arterial thrombo-embolic events (BRUISE CONTROL-2) Eur Heart J. 2018;39:3973–3979. PubMed

Essebag V., Verma A., Healey J.S. Clinically significant pocket hematoma increases long-term risk of device infection: BRUISE CONTROL INFECTION Study. J Am Coll Cardiol. 2016;67:1300–1308. PubMed

Peterson P.N., Varosy P.D., Heidenreich P.A. Association of single- vs dual-chamber ICDs with mortality, readmissions, and complications among patients receiving an ICD for primary prevention. JAMA. 2013;309:2025–2034. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...