Clearance of senescent cells during cardiac ischemia-reperfusion injury improves recovery

. 2020 Oct ; 19 (10) : e13249. [epub] 20200929

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32996233

Grantová podpora
PG/14/86/31177 British Heart Foundation - United Kingdom
PG/11/117/29290 British Heart Foundation - United Kingdom
PG/12/47/29681 British Heart Foundation - United Kingdom
FS/15/77/31823 British Heart Foundation - United Kingdom
PG/18/57/33941 British Heart Foundation - United Kingdom
PG/15/4/31178 British Heart Foundation - United Kingdom
FS/12/31/29533 British Heart Foundation - United Kingdom
Wellcome Trust - United Kingdom
PG/15/18/31333 British Heart Foundation - United Kingdom
PG/19/15/34269 British Heart Foundation - United Kingdom
PG/18/25/33587 British Heart Foundation - United Kingdom

A key component of cardiac ischemia-reperfusion injury (IRI) is the increased generation of reactive oxygen species, leading to enhanced inflammation and tissue dysfunction in patients following intervention for myocardial infarction. In this study, we hypothesized that oxidative stress, due to ischemia-reperfusion, induces senescence which contributes to the pathophysiology of cardiac IRI. We demonstrate that IRI induces cellular senescence in both cardiomyocytes and interstitial cell populations and treatment with the senolytic drug navitoclax after ischemia-reperfusion improves left ventricular function, increases myocardial vascularization, and decreases scar size. SWATH-MS-based proteomics revealed that biological processes associated with fibrosis and inflammation that were increased following ischemia-reperfusion were attenuated upon senescent cell clearance. Furthermore, navitoclax treatment reduced the expression of pro-inflammatory, profibrotic, and anti-angiogenic cytokines, including interferon gamma-induced protein-10, TGF-β3, interleukin-11, interleukin-16, and fractalkine. Our study provides proof-of-concept evidence that cellular senescence contributes to impaired heart function and adverse remodeling following cardiac ischemia-reperfusion. We also establish that post-IRI the SASP plays a considerable role in the inflammatory response. Subsequently, senolytic treatment, at a clinically feasible time-point, attenuates multiple components of this response and improves clinically important parameters. Thus, cellular senescence represents a potential novel therapeutic avenue to improve patient outcomes following cardiac ischemia-reperfusion.

Zobrazit více v PubMed

Acosta, J. C. , Banito, A. , Wuestefeld, T. , Georgilis, A. , Janich, P. , Morton, J. P. , & Gil, J. (2013). A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 15(8), 978–990. 10.1038/ncb2784 PubMed DOI PMC

Anderson, R. , Lagnado, A. , Maggiorani, D. , Walaszczyk, A. , Dookun, E. , Chapman, J. , & Passos, J. F. (2019). Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence. EMBO Journal, 38 10.15252/embj.2018100492 PubMed DOI PMC

Anderson, R. , Richardson, G. D. , & Passos, J. F. (2018). Mechanisms driving the ageing heart. Experimental Gerontology, 109, 5–15. 10.1016/j.exger.2017.10.015 PubMed DOI

Baehr, A. , Klymiuk, N. , & Kupatt, C. (2019). Evaluating novel targets of ischemia reperfusion injury in pig models. International Journal of Molecular Sciences, 20(19), 4749 10.3390/ijms20194749 PubMed DOI PMC

Bhavsar, P. K. , Sukkar, M. B. , Khorasani, N. , Lee, K. Y. , & Chung, K. F. (2008). Glucocorticoid suppression of CX3CL1 (fractalkine) by reduced gene promoter recruitment of NF‐kappaB. The FASEB Journal, 22(6), 1807–1816. 10.1096/fj.07-094235 PubMed DOI

Bitko, V. , Velazquez, A. , Yang, L. , Yang, Y.‐C. , & Barik, S. (1997). Transcriptional induction of multiple cytokines by human respiratory syncytial virus requires activation of NF‐κB and is inhibited by sodium salicylate and aspirin. Virology, 232(2), 369–378. 10.1006/viro.1997.8582 PubMed DOI

Boag, S. E. , Das, R. , Shmeleva, E. V. , Bagnall, A. , Egred, M. , Howard, N. , & Spyridopoulos, I. (2015). T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. J Clin Invest, 125(8), 3063–3076. 10.1172/JCI80055 PubMed DOI PMC

Bogatyryov, Y. , Tomanek, R. J. , & Dedkov, E. I. (2013). Structural composition of myocardial infarction scar in middle‐aged male and female rats: does sex matter? Journal of Histochemistry and Cytochemistry, 61(11), 833–848. 10.1369/0022155413499794 PubMed DOI PMC

Campanella, G. S. V. , Colvin, R. A. , & Luster, A. D. (2010). CXCL10 can inhibit endothelial cell proliferation independently of CXCR3. PLoS One, 5(9), e12700 10.1371/journal.pone.0012700 PubMed DOI PMC

Chang, J. , Wang, Y. , Shao, L. , Laberge, R. M. , Demaria, M. , Campisi, J. , & Zhou, D. (2016). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 22(1), 78–83. 10.1038/nm.4010 PubMed DOI PMC

Chouchani, E. T. , Pell, V. R. , Gaude, E. , Aksentijevic, D. , Sundier, S. Y. , Robb, E. L. , & Murphy, M. P. (2014). Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 515(7527), 431–435. 10.1038/nature13909 PubMed DOI PMC

Coppe, J. P. , Desprez, P. Y. , Krtolica, A. , & Campisi, J. (2010). The senescence‐associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology: Mechanisms of Disease, 5, 99–118. 10.1146/annurev-pathol-121808-102144 PubMed DOI PMC

Coppe, J. P. , Patil, C. K. , Rodier, F. , Sun, Y. , Munoz, D. P. , Goldstein, J. , & Campisi, J. (2008). Senescence‐associated secretory phenotypes reveal cell‐nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biology, 6(12), 2853–2868. 10.1371/journal.pbio.0060301 PubMed DOI PMC

Correia‐Melo, C. , Birch, J. , Fielder, E. , Rahmatika, D. , Taylor, J. , Chapman, J. , & Passos, J. F. (2019). Rapamycin improves healthspan but not inflammaging in nfκb1−/− mice. Aging Cell, 18(1), e12882 10.1111/acel.12882 PubMed DOI PMC

de Magalhaes, J. P. , & Passos, J. F. (2018). Stress, cell senescence and organismal ageing. Mechanisms of Ageing and Development, 170, 2–9. 10.1016/j.mad.2017.07.001 PubMed DOI

Deten, A. , Holzl, A. , Leicht, M. , Barth, W. , & Zimmer, H. G. (2001). Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. Journal of Molecular and Cellular Cardiology, 33(6), 1191–1207. 10.1006/jmcc.2001.1383 PubMed DOI

Dewald, O. , Ren, G. , Duerr, G. D. , Zoerlein, M. , Klemm, C. , Gersch, C. , & Frangogiannis, N. G. (2004). Of mice and dogs: species‐specific differences in the inflammatory response following myocardial infarction. American Journal of Pathology, 164(2), 665–677. 10.1016/S0002-9440(10)63154-9 PubMed DOI PMC

Hanna, A. , & Frangogiannis, N. G. (2019). The role of the TGF‐beta superfamily in myocardial infarction. Front Cardiovasc Med, 6, 140 10.3389/fcvm.2019.00140 PubMed DOI PMC

Hausenloy, D. J. , & Yellon, D. M. (2013). Myocardial ischemia‐reperfusion injury: a neglected therapeutic target. J Clin Invest, 123(1), 92–100. 10.1172/JCI62874 PubMed DOI PMC

Hein, H. , Schluter, C. , Kulke, R. , Christophers, E. , Schroder, J. M. , & Bartels, J. (1997). Genomic organization, sequence, and transcriptional regulation of the human eotaxin gene. Biochemical and Biophysical Research Communications, 237(3), 537–542. 10.1006/bbrc.1997.7169 PubMed DOI

Hickson, L. J. , Prata, L. G. P. L. , Bobart, S. A. , Evans, T. K. , Giorgadze, N. , Hashmi, S. K. , & Kirkland, J. L. (2019). Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 47, 446–456. 10.1016/j.ebiom.2019.08.069 PubMed DOI PMC

Hilfiker‐Kleiner, D. , Shukla, P. , Klein, G. , Schaefer, A. , Stapel, B. , Hoch, M. , & Drexler, H. (2010). Continuous glycoprotein‐130‐mediated signal transducer and activator of transcription‐3 activation promotes inflammation, left ventricular rupture, and adverse outcome in subacute myocardial infarction. Circulation, 122(2), 145–155. 10.1161/circulationaha.109.933127 PubMed DOI

Ikeuchi, M. , Tsutsui, H. , Shiomi, T. , Matsusaka, H. , Matsushima, S. , Wen, J. , & Takeshita, A. (2004). Inhibition of TGF‐β signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovascular Research, 64(3), 526–535. 10.1016/j.cardiores.2004.07.017 PubMed DOI

Justice, J. N. , Nambiar, A. M. , Tchkonia, T. , LeBrasseur, N. K. , Pascual, R. , Hashmi, S. K. , & Kirkland, J. L. (2019). Senolytics in idiopathic pulmonary fibrosis: Results from a first‐in‐human, open‐label, pilot study. EBioMedicine, 10.1016/j.ebiom.2018.12.052 PubMed DOI PMC

Kimura, S. , Noguchi, H. , Nanbu, U. , Wang, K. Y. , Sasaguri, Y. , & Nakayama, T. (2018). Relationship between CCL22 expression by vascular smooth muscle cells and macrophage histamine receptors in atherosclerosis. Journal of Atherosclerosis and Thrombosis, 25(12), 1240–1254. 10.5551/jat.44297 PubMed DOI PMC

Lewis‐McDougall, F. C. , Ruchaya, P. J. , Domenjo‐Vila, E. , Shin Teoh, T. , Prata, L. , Cottle, B. J. , & Ellison‐Hughes, G. M. (2019). Aged‐senescent cells contribute to impaired heart regeneration. Aging Cell, 18(3), e12931 10.1111/acel.12931 PubMed DOI PMC

Lonborg, J. T. (2015). Targeting reperfusion injury in the era of primary percutaneous coronary intervention: Hope or hype? Heart, 101(20), 1612–1618. 10.1136/heartjnl-2015-307804 PubMed DOI

Malliaras, K. , Zhang, Y. , Seinfeld, J. , Galang, G. , Tseliou, E. , Cheng, K. , & Marban, E. (2013). Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Molecular Medicine, 5(2), 191–209. 10.1002/emmm.201201737 PubMed DOI PMC

Meyer, K. , Hodwin, B. , Ramanujam, D. , Engelhardt, S. , & Sarikas, A. (2016). Essential role for premature senescence of myofibroblasts in myocardial fibrosis. Journal of the American College of Cardiology, 67(17), 2018–2028. 10.1016/j.jacc.2016.02.047 PubMed DOI

Mozaffarian, D. , Benjamin, E. J. , Go, A. S. , Arnett, D. K. , Blaha, M. J. , Cushman, M. , & Turner, M. B. (2016). Executive summary: Heart disease and stroke statistics – 2016 update: A report from the American Heart Association. Circulation, 133(4), 447–454. 10.1161/cir.0000000000000366 PubMed DOI

Nakayama, T. , Hieshima, K. , Nagakubo, D. , Sato, E. , Nakayama, M. , Kawa, K. , & Yoshie, O. (2004). Selective induction of Th2‐attracting chemokines CCL17 and CCL22 in human B cells by latent membrane protein 1 of Epstein‐Barr virus. Journal of Virology, 78(4), 1665–1674. 10.1128/jvi.78.4.1665-1674.2004 PubMed DOI PMC

Obana, M. , Maeda, M. , Takeda, K. , Hayama, A. , Mohri, T. , Yamashita, T. , & Fujio, Y. (2010). Therapeutic activation of signal transducer and activator of transcription 3 by interleukin‐11 ameliorates cardiac fibrosis after myocardial infarction. Circulation, 121(5), 684–691. 10.1161/circulationaha.109.893677 PubMed DOI

Palmowski, P. , Watson, R. , Europe‐Finner, G. N. , Karolczak‐Bayatti, M. , Porter, A. , Treumann, A. , & Taggart, M. J. (2019). The generation of a comprehensive spectral library for the analysis of the Guinea Pig proteome by SWATH‐MS. Proteomics, 19(15), doi:ARTN 1900156 10.1002/pmic.201900156 PubMed DOI PMC

Passos, J. F. , Saretzki, G. , Ahmed, S. , Nelson, G. , Richter, T. , Peters, H. , & von Zglinicki, T. (2007). Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere‐dependent senescence. PLOS Biology, 5(5), e110 10.1371/journal.pbio.0050110 PubMed DOI PMC

Peoples, J. N. , Saraf, A. , Ghazal, N. , Pham, T. T. , & Kwong, J. Q. (2019). Mitochondrial dysfunction and oxidative stress in heart disease. Experimental & Molecular Medicine, 51(12), 1–13. 10.1038/s12276-019-0355-7 PubMed DOI PMC

Prabhu, S. D. , & Frangogiannis, N. G. (2016). The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circulation Research, 119(1), 91–112. 10.1161/CIRCRESAHA.116.303577 PubMed DOI PMC

Rappsilber, J. , Mann, M. , & Ishihama, Y. (2007). Protocol for micro‐purification, enrichment, pre‐fractionation and storage of peptides for proteomics using StageTips. Nature Protocols, 2(8), 1896–1906. 10.1038/nprot.2007.261 PubMed DOI

Redgrave, R. E. , Tual‐Chalot, S. , Davison, B. J. , Singh, E. , Hall, D. , Amirrasouli, M. M. , & Arthur, H. M. (2017). Cardiosphere‐derived cells require endoglin for paracrine‐mediated angiogenesis. Stem Cell Reports, 8(5), 1287–1298. 10.1016/j.stemcr.2017.04.015 PubMed DOI PMC

Richardson, G. D. (2016). Simultaneous assessment of cardiomyocyte DNA synthesis and ploidy: A method to assist quantification of cardiomyocyte regeneration and turnover. J vis Exp(111), 10.3791/53979 PubMed DOI PMC

Richardson, G. D. , Breault, D. , Horrocks, G. , Cormack, S. , Hole, N. , & Owens, W. A. (2012). Telomerase expression in the mammalian heart. The FASEB Journal, 26(12), 4832–4840. 10.1096/fj.12-208843 PubMed DOI PMC

Richardson, G. D. , Laval, S. , & Owens, W. A. (2015). Cardiomyocyte regeneration in the mdx mouse model of nonischemic cardiomyopathy. Stem Cells and Development, 24(14), 1672–1679. 10.1089/scd.2014.0495 PubMed DOI PMC

Roger, V. L. (2007). Epidemiology of myocardial infarction. Medical Clinics of North America, 91(4), 537–552, ix 10.1016/j.mcna.2007.03.007 PubMed DOI PMC

Safa, A. , Rashidinejad, H. R. , Khalili, M. , Dabiri, S. , Nemati, M. , Mohammadi, M. M. , & Jafarzadeh, A. (2016). Higher circulating levels of chemokines CXCL10, CCL20 and CCL22 in patients with ischemic heart disease. Cytokine, 83, 147–157. 10.1016/j.cyto.2016.04.006 PubMed DOI

Salminen, A. , Kauppinen, A. , & Kaarniranta, K. (2012). Emerging role of NF‐kappaB signaling in the induction of senescence‐associated secretory phenotype (SASP). Cellular Signalling, 24(4), 835–845. 10.1016/j.cellsig.2011.12.006 PubMed DOI

Sánchez‐Hernández C. D., Torres‐Alarcón L. A., González‐Cortés A., Peón A. N. (2020). Ischemia/Reperfusion Injury: Pathophysiology, Current Clinical Management, and Potential Preventive Approaches. Mediators of Inflammation, 2020, 1–13. 10.1155/2020/8405370 PubMed DOI PMC

Schafer, S. , Viswanathan, S. , Widjaja, A. A. , Lim, W. W. , Moreno‐Moral, A. , DeLaughter, D. M. , & Cook, S. A. (2017). IL‐11 is a crucial determinant of cardiovascular fibrosis. Nature, 552(7683), 110‐+ 10.1038/nature24676 PubMed DOI PMC

Sharpless, N. E. , Bardeesy, N. , Lee, K. H. , Carrasco, D. , Castrillon, D. H. , Aguirre, A. J. , & DePinho, R. A. (2001). Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature, 413(6851), 86–91. 10.1038/35092592 PubMed DOI

Shultz, D. B. , Fuller, J. D. , Yang, Y. , Sizemore, N. , Rani, M. R. , & Stark, G. R. (2007). Activation of a subset of genes by IFN‐gamma requires IKKbeta but not interferon‐dependent activation of NF‐kappaB. Journal of Interferon and Cytokine Research, 27(10), 875–884. 10.1089/jir.2007.0031 PubMed DOI

Sohal, D. S. , Nghiem, M. , Crackower, M. A. , Witt, S. A. , Kimball, T. R. , Tymitz, K. M. , & Molkentin, J. D. (2001). Temporally regulated and tissue‐specific gene manipulations in the adult and embryonic heart using a tamoxifen‐inducible Cre protein. Circulation Research, 89(1), 20–25. 10.1161/hh1301.092687 PubMed DOI

Son, Y.‐H. , Jeong, Y.‐T. , Lee, K.‐A. , Choi, K.‐H. , Kim, S.‐M. , Rhim, B.‐Y. , & Kim, K. (2008). Roles of MAPK and NF‐κB in Interleukin‐6 Induction by Lipopolysaccharide in Vascular Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 51(1), 71–77. 10.1097/FJC.0b013e31815bd23d PubMed DOI

Szklarczyk, D. , Gable, A. L. , Lyon, D. , Junge, A. , Wyder, S. , Huerta‐Cepas, J. , & Mering, C. (2019). STRING v11: protein‐protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. 10.1093/nar/gky1131 PubMed DOI PMC

Tamaki, S. , Mano, T. , Sakata, Y. , Ohtani, T. , Takeda, Y. , Kamimura, D. , & Komuro, I. (2013). Interleukin‐16 promotes cardiac fibrosis and myocardial stiffening in heart failure with preserved ejection fraction. PLoS One, 8(7), doi:ARTN e68893 10.1371/journal.pone.0068893 PubMed DOI PMC

Tyanova, S. , Temu, T. , Sinitcyn, P. , Carlson, A. , Hein, M. Y. , Geiger, T. , & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13(9), 731–740. 10.1038/Nmeth.3901 PubMed DOI

Velagaleti, R. S. , Pencina, M. J. , Murabito, J. M. , Wang, T. J. , Parikh, N. I. , D'Agostino, R. B. , & Vasan, R. S. (2008). Long‐term trends in the incidence of heart failure after myocardial infarction. Circulation, 118(20), 2057–2062. 10.1161/Circulationaha.108.784215 PubMed DOI PMC

Vizcaíno, J. A. , Deutsch, E. W. , Wang, R. , Csordas, A. , Reisinger, F. , Ríos, D. , & Hermjakob, H. (2014). ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nature Biotechnology, 32(3), 223–226. 10.1038/nbt.2839 PubMed DOI PMC

Walaszczyk, A. , Dookun, E. , Redgrave, R. , Tual‐Chalot, S. , Victorelli, S. , Spyridopoulos, I. , & Richardson, G. D. (2019). Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction. Aging Cell, e12945, 10.1111/acel.12945 PubMed DOI PMC

Wang, M. , Wang, J. , Carver, J. , Pullman, B. S. , Cha, S. W. , & Bandeira, N. (2018). Assembling the community‐scale discoverable human proteome. Cell Syst, 7(4), 412–421.e415. 10.1016/j.cels.2018.08.004 PubMed DOI PMC

Zhu, F. L. , Li, Y. L. , Zhang, J. M. , Piao, C. M. , Liu, T. T. , Li, H. H. , & Du, J. (2013). Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS One, 8(9), doi:ARTN e74535 10.1371/journal.pone.0074535 PubMed DOI PMC

Zhu, Y. , Tchkonia, T. , Pirtskhalava, T. , Gower, A. C. , Ding, H. , Giorgadze, N. , & Kirkland, J. L. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14(4), 644–658. 10.1111/acel.12344 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...