Clearance of senescent cells during cardiac ischemia-reperfusion injury improves recovery
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
PG/14/86/31177
British Heart Foundation - United Kingdom
PG/11/117/29290
British Heart Foundation - United Kingdom
PG/12/47/29681
British Heart Foundation - United Kingdom
FS/15/77/31823
British Heart Foundation - United Kingdom
PG/18/57/33941
British Heart Foundation - United Kingdom
PG/15/4/31178
British Heart Foundation - United Kingdom
FS/12/31/29533
British Heart Foundation - United Kingdom
Wellcome Trust - United Kingdom
PG/15/18/31333
British Heart Foundation - United Kingdom
PG/19/15/34269
British Heart Foundation - United Kingdom
PG/18/25/33587
British Heart Foundation - United Kingdom
PubMed
32996233
PubMed Central
PMC7576252
DOI
10.1111/acel.13249
Knihovny.cz E-zdroje
- Klíčová slova
- cardiac, ischemia-reperfusion, remodeling, senescence, senolytic,
- MeSH
- lidé MeSH
- reperfuzní poškození metabolismus MeSH
- stárnutí buněk fyziologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A key component of cardiac ischemia-reperfusion injury (IRI) is the increased generation of reactive oxygen species, leading to enhanced inflammation and tissue dysfunction in patients following intervention for myocardial infarction. In this study, we hypothesized that oxidative stress, due to ischemia-reperfusion, induces senescence which contributes to the pathophysiology of cardiac IRI. We demonstrate that IRI induces cellular senescence in both cardiomyocytes and interstitial cell populations and treatment with the senolytic drug navitoclax after ischemia-reperfusion improves left ventricular function, increases myocardial vascularization, and decreases scar size. SWATH-MS-based proteomics revealed that biological processes associated with fibrosis and inflammation that were increased following ischemia-reperfusion were attenuated upon senescent cell clearance. Furthermore, navitoclax treatment reduced the expression of pro-inflammatory, profibrotic, and anti-angiogenic cytokines, including interferon gamma-induced protein-10, TGF-β3, interleukin-11, interleukin-16, and fractalkine. Our study provides proof-of-concept evidence that cellular senescence contributes to impaired heart function and adverse remodeling following cardiac ischemia-reperfusion. We also establish that post-IRI the SASP plays a considerable role in the inflammatory response. Subsequently, senolytic treatment, at a clinically feasible time-point, attenuates multiple components of this response and improves clinically important parameters. Thus, cellular senescence represents a potential novel therapeutic avenue to improve patient outcomes following cardiac ischemia-reperfusion.
Biosciences Institute Newcastle University Newcastle upon Tyne UK
Department of Physiology and Biomedical Engineering Mayo Clinic Rochester MN USA
Faculty of Pharmacy Charles University Prague Czech Republic
INSERM I2MC University of Toulouse Toulouse France
Translational and Clinical Research Newcastle University Newcastle upon Tyne UK
Zobrazit více v PubMed
Acosta, J. C. , Banito, A. , Wuestefeld, T. , Georgilis, A. , Janich, P. , Morton, J. P. , & Gil, J. (2013). A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 15(8), 978–990. 10.1038/ncb2784 PubMed DOI PMC
Anderson, R. , Lagnado, A. , Maggiorani, D. , Walaszczyk, A. , Dookun, E. , Chapman, J. , & Passos, J. F. (2019). Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence. EMBO Journal, 38 10.15252/embj.2018100492 PubMed DOI PMC
Anderson, R. , Richardson, G. D. , & Passos, J. F. (2018). Mechanisms driving the ageing heart. Experimental Gerontology, 109, 5–15. 10.1016/j.exger.2017.10.015 PubMed DOI
Baehr, A. , Klymiuk, N. , & Kupatt, C. (2019). Evaluating novel targets of ischemia reperfusion injury in pig models. International Journal of Molecular Sciences, 20(19), 4749 10.3390/ijms20194749 PubMed DOI PMC
Bhavsar, P. K. , Sukkar, M. B. , Khorasani, N. , Lee, K. Y. , & Chung, K. F. (2008). Glucocorticoid suppression of CX3CL1 (fractalkine) by reduced gene promoter recruitment of NF‐kappaB. The FASEB Journal, 22(6), 1807–1816. 10.1096/fj.07-094235 PubMed DOI
Bitko, V. , Velazquez, A. , Yang, L. , Yang, Y.‐C. , & Barik, S. (1997). Transcriptional induction of multiple cytokines by human respiratory syncytial virus requires activation of NF‐κB and is inhibited by sodium salicylate and aspirin. Virology, 232(2), 369–378. 10.1006/viro.1997.8582 PubMed DOI
Boag, S. E. , Das, R. , Shmeleva, E. V. , Bagnall, A. , Egred, M. , Howard, N. , & Spyridopoulos, I. (2015). T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. J Clin Invest, 125(8), 3063–3076. 10.1172/JCI80055 PubMed DOI PMC
Bogatyryov, Y. , Tomanek, R. J. , & Dedkov, E. I. (2013). Structural composition of myocardial infarction scar in middle‐aged male and female rats: does sex matter? Journal of Histochemistry and Cytochemistry, 61(11), 833–848. 10.1369/0022155413499794 PubMed DOI PMC
Campanella, G. S. V. , Colvin, R. A. , & Luster, A. D. (2010). CXCL10 can inhibit endothelial cell proliferation independently of CXCR3. PLoS One, 5(9), e12700 10.1371/journal.pone.0012700 PubMed DOI PMC
Chang, J. , Wang, Y. , Shao, L. , Laberge, R. M. , Demaria, M. , Campisi, J. , & Zhou, D. (2016). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 22(1), 78–83. 10.1038/nm.4010 PubMed DOI PMC
Chouchani, E. T. , Pell, V. R. , Gaude, E. , Aksentijevic, D. , Sundier, S. Y. , Robb, E. L. , & Murphy, M. P. (2014). Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 515(7527), 431–435. 10.1038/nature13909 PubMed DOI PMC
Coppe, J. P. , Desprez, P. Y. , Krtolica, A. , & Campisi, J. (2010). The senescence‐associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology: Mechanisms of Disease, 5, 99–118. 10.1146/annurev-pathol-121808-102144 PubMed DOI PMC
Coppe, J. P. , Patil, C. K. , Rodier, F. , Sun, Y. , Munoz, D. P. , Goldstein, J. , & Campisi, J. (2008). Senescence‐associated secretory phenotypes reveal cell‐nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biology, 6(12), 2853–2868. 10.1371/journal.pbio.0060301 PubMed DOI PMC
Correia‐Melo, C. , Birch, J. , Fielder, E. , Rahmatika, D. , Taylor, J. , Chapman, J. , & Passos, J. F. (2019). Rapamycin improves healthspan but not inflammaging in nfκb1−/− mice. Aging Cell, 18(1), e12882 10.1111/acel.12882 PubMed DOI PMC
de Magalhaes, J. P. , & Passos, J. F. (2018). Stress, cell senescence and organismal ageing. Mechanisms of Ageing and Development, 170, 2–9. 10.1016/j.mad.2017.07.001 PubMed DOI
Deten, A. , Holzl, A. , Leicht, M. , Barth, W. , & Zimmer, H. G. (2001). Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. Journal of Molecular and Cellular Cardiology, 33(6), 1191–1207. 10.1006/jmcc.2001.1383 PubMed DOI
Dewald, O. , Ren, G. , Duerr, G. D. , Zoerlein, M. , Klemm, C. , Gersch, C. , & Frangogiannis, N. G. (2004). Of mice and dogs: species‐specific differences in the inflammatory response following myocardial infarction. American Journal of Pathology, 164(2), 665–677. 10.1016/S0002-9440(10)63154-9 PubMed DOI PMC
Hanna, A. , & Frangogiannis, N. G. (2019). The role of the TGF‐beta superfamily in myocardial infarction. Front Cardiovasc Med, 6, 140 10.3389/fcvm.2019.00140 PubMed DOI PMC
Hausenloy, D. J. , & Yellon, D. M. (2013). Myocardial ischemia‐reperfusion injury: a neglected therapeutic target. J Clin Invest, 123(1), 92–100. 10.1172/JCI62874 PubMed DOI PMC
Hein, H. , Schluter, C. , Kulke, R. , Christophers, E. , Schroder, J. M. , & Bartels, J. (1997). Genomic organization, sequence, and transcriptional regulation of the human eotaxin gene. Biochemical and Biophysical Research Communications, 237(3), 537–542. 10.1006/bbrc.1997.7169 PubMed DOI
Hickson, L. J. , Prata, L. G. P. L. , Bobart, S. A. , Evans, T. K. , Giorgadze, N. , Hashmi, S. K. , & Kirkland, J. L. (2019). Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 47, 446–456. 10.1016/j.ebiom.2019.08.069 PubMed DOI PMC
Hilfiker‐Kleiner, D. , Shukla, P. , Klein, G. , Schaefer, A. , Stapel, B. , Hoch, M. , & Drexler, H. (2010). Continuous glycoprotein‐130‐mediated signal transducer and activator of transcription‐3 activation promotes inflammation, left ventricular rupture, and adverse outcome in subacute myocardial infarction. Circulation, 122(2), 145–155. 10.1161/circulationaha.109.933127 PubMed DOI
Ikeuchi, M. , Tsutsui, H. , Shiomi, T. , Matsusaka, H. , Matsushima, S. , Wen, J. , & Takeshita, A. (2004). Inhibition of TGF‐β signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovascular Research, 64(3), 526–535. 10.1016/j.cardiores.2004.07.017 PubMed DOI
Justice, J. N. , Nambiar, A. M. , Tchkonia, T. , LeBrasseur, N. K. , Pascual, R. , Hashmi, S. K. , & Kirkland, J. L. (2019). Senolytics in idiopathic pulmonary fibrosis: Results from a first‐in‐human, open‐label, pilot study. EBioMedicine, 10.1016/j.ebiom.2018.12.052 PubMed DOI PMC
Kimura, S. , Noguchi, H. , Nanbu, U. , Wang, K. Y. , Sasaguri, Y. , & Nakayama, T. (2018). Relationship between CCL22 expression by vascular smooth muscle cells and macrophage histamine receptors in atherosclerosis. Journal of Atherosclerosis and Thrombosis, 25(12), 1240–1254. 10.5551/jat.44297 PubMed DOI PMC
Lewis‐McDougall, F. C. , Ruchaya, P. J. , Domenjo‐Vila, E. , Shin Teoh, T. , Prata, L. , Cottle, B. J. , & Ellison‐Hughes, G. M. (2019). Aged‐senescent cells contribute to impaired heart regeneration. Aging Cell, 18(3), e12931 10.1111/acel.12931 PubMed DOI PMC
Lonborg, J. T. (2015). Targeting reperfusion injury in the era of primary percutaneous coronary intervention: Hope or hype? Heart, 101(20), 1612–1618. 10.1136/heartjnl-2015-307804 PubMed DOI
Malliaras, K. , Zhang, Y. , Seinfeld, J. , Galang, G. , Tseliou, E. , Cheng, K. , & Marban, E. (2013). Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Molecular Medicine, 5(2), 191–209. 10.1002/emmm.201201737 PubMed DOI PMC
Meyer, K. , Hodwin, B. , Ramanujam, D. , Engelhardt, S. , & Sarikas, A. (2016). Essential role for premature senescence of myofibroblasts in myocardial fibrosis. Journal of the American College of Cardiology, 67(17), 2018–2028. 10.1016/j.jacc.2016.02.047 PubMed DOI
Mozaffarian, D. , Benjamin, E. J. , Go, A. S. , Arnett, D. K. , Blaha, M. J. , Cushman, M. , & Turner, M. B. (2016). Executive summary: Heart disease and stroke statistics – 2016 update: A report from the American Heart Association. Circulation, 133(4), 447–454. 10.1161/cir.0000000000000366 PubMed DOI
Nakayama, T. , Hieshima, K. , Nagakubo, D. , Sato, E. , Nakayama, M. , Kawa, K. , & Yoshie, O. (2004). Selective induction of Th2‐attracting chemokines CCL17 and CCL22 in human B cells by latent membrane protein 1 of Epstein‐Barr virus. Journal of Virology, 78(4), 1665–1674. 10.1128/jvi.78.4.1665-1674.2004 PubMed DOI PMC
Obana, M. , Maeda, M. , Takeda, K. , Hayama, A. , Mohri, T. , Yamashita, T. , & Fujio, Y. (2010). Therapeutic activation of signal transducer and activator of transcription 3 by interleukin‐11 ameliorates cardiac fibrosis after myocardial infarction. Circulation, 121(5), 684–691. 10.1161/circulationaha.109.893677 PubMed DOI
Palmowski, P. , Watson, R. , Europe‐Finner, G. N. , Karolczak‐Bayatti, M. , Porter, A. , Treumann, A. , & Taggart, M. J. (2019). The generation of a comprehensive spectral library for the analysis of the Guinea Pig proteome by SWATH‐MS. Proteomics, 19(15), doi:ARTN 1900156 10.1002/pmic.201900156 PubMed DOI PMC
Passos, J. F. , Saretzki, G. , Ahmed, S. , Nelson, G. , Richter, T. , Peters, H. , & von Zglinicki, T. (2007). Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere‐dependent senescence. PLOS Biology, 5(5), e110 10.1371/journal.pbio.0050110 PubMed DOI PMC
Peoples, J. N. , Saraf, A. , Ghazal, N. , Pham, T. T. , & Kwong, J. Q. (2019). Mitochondrial dysfunction and oxidative stress in heart disease. Experimental & Molecular Medicine, 51(12), 1–13. 10.1038/s12276-019-0355-7 PubMed DOI PMC
Prabhu, S. D. , & Frangogiannis, N. G. (2016). The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circulation Research, 119(1), 91–112. 10.1161/CIRCRESAHA.116.303577 PubMed DOI PMC
Rappsilber, J. , Mann, M. , & Ishihama, Y. (2007). Protocol for micro‐purification, enrichment, pre‐fractionation and storage of peptides for proteomics using StageTips. Nature Protocols, 2(8), 1896–1906. 10.1038/nprot.2007.261 PubMed DOI
Redgrave, R. E. , Tual‐Chalot, S. , Davison, B. J. , Singh, E. , Hall, D. , Amirrasouli, M. M. , & Arthur, H. M. (2017). Cardiosphere‐derived cells require endoglin for paracrine‐mediated angiogenesis. Stem Cell Reports, 8(5), 1287–1298. 10.1016/j.stemcr.2017.04.015 PubMed DOI PMC
Richardson, G. D. (2016). Simultaneous assessment of cardiomyocyte DNA synthesis and ploidy: A method to assist quantification of cardiomyocyte regeneration and turnover. J vis Exp(111), 10.3791/53979 PubMed DOI PMC
Richardson, G. D. , Breault, D. , Horrocks, G. , Cormack, S. , Hole, N. , & Owens, W. A. (2012). Telomerase expression in the mammalian heart. The FASEB Journal, 26(12), 4832–4840. 10.1096/fj.12-208843 PubMed DOI PMC
Richardson, G. D. , Laval, S. , & Owens, W. A. (2015). Cardiomyocyte regeneration in the mdx mouse model of nonischemic cardiomyopathy. Stem Cells and Development, 24(14), 1672–1679. 10.1089/scd.2014.0495 PubMed DOI PMC
Roger, V. L. (2007). Epidemiology of myocardial infarction. Medical Clinics of North America, 91(4), 537–552, ix 10.1016/j.mcna.2007.03.007 PubMed DOI PMC
Safa, A. , Rashidinejad, H. R. , Khalili, M. , Dabiri, S. , Nemati, M. , Mohammadi, M. M. , & Jafarzadeh, A. (2016). Higher circulating levels of chemokines CXCL10, CCL20 and CCL22 in patients with ischemic heart disease. Cytokine, 83, 147–157. 10.1016/j.cyto.2016.04.006 PubMed DOI
Salminen, A. , Kauppinen, A. , & Kaarniranta, K. (2012). Emerging role of NF‐kappaB signaling in the induction of senescence‐associated secretory phenotype (SASP). Cellular Signalling, 24(4), 835–845. 10.1016/j.cellsig.2011.12.006 PubMed DOI
Sánchez‐Hernández C. D., Torres‐Alarcón L. A., González‐Cortés A., Peón A. N. (2020). Ischemia/Reperfusion Injury: Pathophysiology, Current Clinical Management, and Potential Preventive Approaches. Mediators of Inflammation, 2020, 1–13. 10.1155/2020/8405370 PubMed DOI PMC
Schafer, S. , Viswanathan, S. , Widjaja, A. A. , Lim, W. W. , Moreno‐Moral, A. , DeLaughter, D. M. , & Cook, S. A. (2017). IL‐11 is a crucial determinant of cardiovascular fibrosis. Nature, 552(7683), 110‐+ 10.1038/nature24676 PubMed DOI PMC
Sharpless, N. E. , Bardeesy, N. , Lee, K. H. , Carrasco, D. , Castrillon, D. H. , Aguirre, A. J. , & DePinho, R. A. (2001). Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature, 413(6851), 86–91. 10.1038/35092592 PubMed DOI
Shultz, D. B. , Fuller, J. D. , Yang, Y. , Sizemore, N. , Rani, M. R. , & Stark, G. R. (2007). Activation of a subset of genes by IFN‐gamma requires IKKbeta but not interferon‐dependent activation of NF‐kappaB. Journal of Interferon and Cytokine Research, 27(10), 875–884. 10.1089/jir.2007.0031 PubMed DOI
Sohal, D. S. , Nghiem, M. , Crackower, M. A. , Witt, S. A. , Kimball, T. R. , Tymitz, K. M. , & Molkentin, J. D. (2001). Temporally regulated and tissue‐specific gene manipulations in the adult and embryonic heart using a tamoxifen‐inducible Cre protein. Circulation Research, 89(1), 20–25. 10.1161/hh1301.092687 PubMed DOI
Son, Y.‐H. , Jeong, Y.‐T. , Lee, K.‐A. , Choi, K.‐H. , Kim, S.‐M. , Rhim, B.‐Y. , & Kim, K. (2008). Roles of MAPK and NF‐κB in Interleukin‐6 Induction by Lipopolysaccharide in Vascular Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 51(1), 71–77. 10.1097/FJC.0b013e31815bd23d PubMed DOI
Szklarczyk, D. , Gable, A. L. , Lyon, D. , Junge, A. , Wyder, S. , Huerta‐Cepas, J. , & Mering, C. (2019). STRING v11: protein‐protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. 10.1093/nar/gky1131 PubMed DOI PMC
Tamaki, S. , Mano, T. , Sakata, Y. , Ohtani, T. , Takeda, Y. , Kamimura, D. , & Komuro, I. (2013). Interleukin‐16 promotes cardiac fibrosis and myocardial stiffening in heart failure with preserved ejection fraction. PLoS One, 8(7), doi:ARTN e68893 10.1371/journal.pone.0068893 PubMed DOI PMC
Tyanova, S. , Temu, T. , Sinitcyn, P. , Carlson, A. , Hein, M. Y. , Geiger, T. , & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13(9), 731–740. 10.1038/Nmeth.3901 PubMed DOI
Velagaleti, R. S. , Pencina, M. J. , Murabito, J. M. , Wang, T. J. , Parikh, N. I. , D'Agostino, R. B. , & Vasan, R. S. (2008). Long‐term trends in the incidence of heart failure after myocardial infarction. Circulation, 118(20), 2057–2062. 10.1161/Circulationaha.108.784215 PubMed DOI PMC
Vizcaíno, J. A. , Deutsch, E. W. , Wang, R. , Csordas, A. , Reisinger, F. , Ríos, D. , & Hermjakob, H. (2014). ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nature Biotechnology, 32(3), 223–226. 10.1038/nbt.2839 PubMed DOI PMC
Walaszczyk, A. , Dookun, E. , Redgrave, R. , Tual‐Chalot, S. , Victorelli, S. , Spyridopoulos, I. , & Richardson, G. D. (2019). Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction. Aging Cell, e12945, 10.1111/acel.12945 PubMed DOI PMC
Wang, M. , Wang, J. , Carver, J. , Pullman, B. S. , Cha, S. W. , & Bandeira, N. (2018). Assembling the community‐scale discoverable human proteome. Cell Syst, 7(4), 412–421.e415. 10.1016/j.cels.2018.08.004 PubMed DOI PMC
Zhu, F. L. , Li, Y. L. , Zhang, J. M. , Piao, C. M. , Liu, T. T. , Li, H. H. , & Du, J. (2013). Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS One, 8(9), doi:ARTN e74535 10.1371/journal.pone.0074535 PubMed DOI PMC
Zhu, Y. , Tchkonia, T. , Pirtskhalava, T. , Gower, A. C. , Ding, H. , Giorgadze, N. , & Kirkland, J. L. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14(4), 644–658. 10.1111/acel.12344 PubMed DOI PMC